Skip to main content
Log in

A free boundary approach to the Rosensweig instability of ferrofluids

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We establish the existence of saddle points for a free boundary problem describing the two-dimensional free surface of a ferrofluid undergoing normal field instability. The starting point is the ferrohydrostatic equations for the magnetic potentials in the ferrofluid and air, and the function describing their interface. These constitute the strong form for the Euler–Lagrange equations of a convex–concave functional, which we extend to include interfaces that are not necessarily graphs of functions. Saddle points are then found by iterating the direct method of the calculus of variations and applying classical results of convex analysis. For the existence part, we assume a general nonlinear magnetization law; for a linear law, we also show, via convex duality, that the saddle point is a constrained minimizer of the relevant energy functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Buttazzo, G.: An optimal design problem with perimeter penalization. Calc. Var. Partial Differ. Equ. 1(1), 55–69 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  3. Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. Springer Monographs in Mathematics, 4th edn. Springer, Dordrecht (2012)

    Book  MATH  Google Scholar 

  4. Carozza, M., Fonseca, I., Passarelli di Napoli, A.: Regularity results for an optimal design problem with a volume constraint. ESAIM Control Optim. Calc. Var. 20(2), 460–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Philippis, G., Figalli, A.: A note on the dimension of the singular set in free interface problems. Differ. Integral Equ. 28(5–6), 523–53605 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Ekeland, I., Temam, R.: Convex analysis and variational problems. In: Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), vol. 28, English edn. Philadelphia (Translated from the French) (1999)

  7. Fusco, N., Julin, V.: On the regularity of critical and minimal sets of a free interface problem. Interfaces Free Bound. 17(1), 117–142 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser, Basel (1984)

    Book  MATH  Google Scholar 

  9. Groves, M.D., Lloyd, D.J.B., Stylianou, A.: Pattern formation on the free surface of a ferrofluid: spatial dynamics and homoclinic bifurcation. Physica D 350, 1–12 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex analysis and minimization algorithms. II. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Advanced Theory and Bundle Methods, vol. 306. Springer, Berlin (1993)

  11. Knaster, B., Kuratowski, C., Mazurkiewicz, S.: Ein Beweis des Fixpunktsatzes für \(n\)-dimensionale Simplexe. Fundam. Math. 14, 132–137 (1929)

    Article  MATH  Google Scholar 

  12. Larsen, C.J.: Regularity of components in optimal design problems with perimeter penalization. Calc. Var. Partial Differ. Equ. 16(1), 17–29 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin, F.-H.: Variational problems with free interfaces. Calc. Var. Partial Differ. Equ. 1(2), 149–168 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, F.H., Kohn, R.V.: Partial regularity for optimal design problems involving both bulk and surface energies. Chin. Ann. Math. Ser. B 20(2), 137–158 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lloyd, D.J.B., Gollwitzer, C., Rehberg, I., Richter, R.: Homoclinic snaking near the surface instability of a polarisable fluid. J. Fluid Mech. 783, 283–305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer Monographs in Mathematics (Translated from the 1967 French original by Gerard Tronel and Alois Kufner, Editorial coordination and preface by Šárka Nečasová and a contribution by Christian G. Simader). Springer, Heidelberg (2012)

  17. Papageorgiou, N.S., Kyritsi-Yiallourou, S.T.: Handbook of Applied Analysis. Advances in Mechanics and Mathematics, vol. 19. Springer, New York (2009)

    MATH  Google Scholar 

  18. Papell, S.S.: Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles, 11 US Patent 3,215,572 (1965)

  19. Richter, R., Lange, A.: Surface instabilities of ferrofluids. In: Odenbach, S. (ed.) Colloidal Magnetic Fluids. Lecture Notes in Physics, vol. 763, pp. 1–91. Springer, Berlin (2009)

    Chapter  Google Scholar 

  20. Rosensweig, R.E.: Ferrohydrodynamics. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  21. Struwe, M.: Variational methods. In: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, vol. 34, 4th edn. Springer, Berlin (2008)

  22. Twombly, E.E., Thomas, J.W.: Bifurcating instability of the free surface of a ferrofluid. SIAM J. Math. Anal. 14(4), 736–766 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Weiss, G.S., Zhang, G.: A free boundary approach to two-dimensional steady capillary gravity water waves. Arch. Ration. Mech. Anal. 203(3), 747–768 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Stylianou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parini, E., Stylianou, A. A free boundary approach to the Rosensweig instability of ferrofluids. Z. Angew. Math. Phys. 69, 32 (2018). https://doi.org/10.1007/s00033-018-0924-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0924-y

Keywords

Mathematics Subject Classification

Navigation