Skip to main content
Log in

Growth effects and distribution of selenite in Medicago sativa

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The detailed Se distribution in plants has been poorly described. This study was performed to determine the optimal dose of selenite for enhanced Medicago sativa growth and comprehensively explore the distribution characteristics of Se in this plant.

Methods

Alfalfa pot experiments were conducted in a growth chamber. The plants were grown in sterilized quartz sand and treated with different selenite levels for 21 days to determine the effect of Se on growth. Plants exposed to 1 and 10 μM selenite were used to clarify the Se distribution in alfalfa.

Results

Alfalfa growth was significantly stimulated (P < 0.05) under <5 μM Se. Three linear correlations were found between the applied Se doses and Se concentrations in alfalfa roots, stems, and leaves. The following patterns of Se concentrations were observed: root>leaf>stem in the organs; rhizodermis and cortex>stele in the tissues; and younger leaf >mature leaf>older leaf and marginal leaf>midrib>internal leaf in the leaves. In addition, Se concentration in the cytoplasm fraction was significantly higher than that in cell wall fraction at 1 μM selenite, and the opposite result was found at 10 μM selenite.

Conclusions

Appropriate selenite addition (1 μM) benefited alfalfa. Se binding in the rhizodermis and cortex of the root caused relatively low transport efficiency of Se from the root to the shoot. Se redistributions may be a possible important factor affecting the transportation of Se in shoot and Se was transported along with the transpiration stream within a single leaf. Cell wall immobilization might be a major strategy to protect plant organs from potential Se toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Se:

selenium

GSH:

glutathione

O2 − •:

superoxide radical

SE:

standard error

References

  • Abbas SM (2013) Low levels of selenium application attenuate low temperature stress in sorghum [Sorghum Bicolor (L.) Moench.] seedlings. Pak J Bot 45:e1604

    Google Scholar 

  • Ali F, Peng Q, Wang D, Cui Z, Huang J, Fu D, Liang D (2017) Effects of selenite and selenate application on distribution and transformation of selenium fractions in soil and its bioavailability for wheat (Triticum Aestivum L.) Environ Sci Pollut Res 24:8315–8325

    Article  CAS  Google Scholar 

  • Arvy M (1993) Selenate and selenite uptake and translocation in bean plants (Phaseolus Vulgaris). J Exp Bot 44:1083–1087

    Article  CAS  Google Scholar 

  • Bachiega P, Salgado JM, de Carvalho JE, Ruiz ALTG, Schwarz K, Tezotto T, Morzelle MC (2016) Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica Oleracea Italica) biofortified with selenium. Food Chem 190:771–776. https://doi.org/10.1016/j.foodchem.2015.06.024

    Article  CAS  PubMed  Google Scholar 

  • Brown PH, Shelp BJ (1997) Boron mobility in plants. Plant Soil 193:85–101

    Article  CAS  Google Scholar 

  • Broyer T, Johnson C, Huston R (1972) Selenium and nutrition of Astragalus. Plant Soil 36:635–649

    Article  CAS  Google Scholar 

  • Broyer T, Lee D, Asher C (1966) Selenium nutrition of green plants. Effect of selenite supply on growth and selenium content of alfalfa and subterranean clover. Plant Physiol 41:1425–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese EJ, Blain RB (2009) Hormesis and plant biology. Environ Pollut 157:42–48

    Article  CAS  PubMed  Google Scholar 

  • Cartes P, Gianfreda L, Paredes C, Mora M (2011) Selenium uptake and its antioxidant role in ryegrass cultivars as affected by selenite seed pelletization. J Soil Sci Plant Nutr 11:1–14

    Article  Google Scholar 

  • Castillo-Godina R, Foroughbakhch-Pournavab R, Benavides-Mendoza A (2016) Effect of selenium on elemental concentration and antioxidant enzymatic activity of tomato plants. J Agric Sci Technol 18:233–244

    Google Scholar 

  • Cosio C, Desantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi Caerulescens. J Exp Bot 56:765

    Article  CAS  PubMed  Google Scholar 

  • de Souza MP, Pilon-Smits EA, Lytle CM, Hwang S, Tai J, Honma TS, Yeh L, Terry N (1998) Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol 117:1487–1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Diao M, Ma L, Wang J, Cui J, Fu A, Liu HY (2014) Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. J Plant Growth Regul 33:671–682

    Article  CAS  Google Scholar 

  • Ding Y, Wang R, Guo J, Wu F, Xu Y, Feng R (2015) The effect of selenium on the subcellular distribution of antimony to regulate the toxicity of antimony in paddy rice. Environ Sci Pollut Res Int 22:5111–5123. https://doi.org/10.1007/s11356-014-3865-9

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PV, Seppanen M (2010) Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiol Biochem 48:999–1007. https://doi.org/10.1016/j.plaphy.2010.09.009

    Article  CAS  PubMed  Google Scholar 

  • Eiche E, Bardelli F, Nothstein A, Charlet L, Göttlicher J, Steininger R, Dhillon K, Sadana U (2015) Selenium distribution and speciation in plant parts of wheat (Triticum Aestivum) and Indian mustard (Brassica Juncea) from a seleniferous area of Punjab, India. Sci Total Environ 505:952–961

    Article  CAS  PubMed  Google Scholar 

  • El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Salah E-DF, Shams MS, Youssef SM, Shalaby T, Bayoumi Y (2016) Selenium and nano-selenium in plant nutrition. Environ Chem Lett 14:123–147

    Article  CAS  Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  CAS  PubMed  Google Scholar 

  • Ernst W, Schuurmann G, Markert B (1998) Population dynamics of plants under exposure and the selection of resistance. Ecotoxicology:117–132

  • Farooq MA, Gill RA, Ali B, Wang J, Islam F, Ali S, Zhou W (2016) Subcellular distribution, modulation of antioxidant and stress-related genes response to arsenic in Brassica Napus L. Ecotoxicology 25:350–366. https://doi.org/10.1007/s10646-015-1594-6

    Article  CAS  PubMed  Google Scholar 

  • Feng R, Liao G, Guo J, Wang R, Xu Y, Ding Y, Mo L, Fan Z, Li N (2016) Responses of root growth and antioxidative systems of paddy rice exposed to antimony and selenium. Environ Exp Bot 122:29–38

    Article  CAS  Google Scholar 

  • Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68. https://doi.org/10.1016/j.envexpbot.2012.09.002

    Article  CAS  Google Scholar 

  • Feng R, Wei C, Tu S, Tang S, Wu F (2011) Simultaneous hyperaccumulation of arsenic and antimony in Cretan brake fern: evidence of plant uptake and subcellular distributions. Microchem J 97:38–43. https://doi.org/10.1016/j.microc.2010.05.010

    Article  CAS  Google Scholar 

  • Finley JW (2006) Bioavailability of selenium from foods. Nutr Rev 64:146–151

    Article  PubMed  Google Scholar 

  • Fleming (1962) Selenium in irish soils and plants. Soil Sci 94:28–35

    Article  CAS  Google Scholar 

  • Fordyce FM (2013) Selenium deficiency and toxicity in the environment. Essentials of medical geology, Springer, London

    Book  Google Scholar 

  • Golob A, Kavčič J, Stibilj V, Gaberščik A, Vogel-Mikuš K, Germ M (2017) The effect of selenium and UV radiation on leaf traits and biomass production in Triticum Aestivum L. Ecotoxicol Environ Saf 136:142–149. https://doi.org/10.1016/j.ecoenv.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  • Guerrero B, Llugany M, Palacios O, Valiente M (2014) Dual effects of different selenium species on wheat. Plant Physiol Biochem 83:300–307

    Article  CAS  PubMed  Google Scholar 

  • Habibi G (2013) Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley/Ucinek susnega stresa in skropljenja s selenom na fotosintezo in antioksidativno aktivnost jarega jecmena. Acta Agriculturae Slovenica 101:31

    Article  CAS  Google Scholar 

  • Han D, Xiong S, Tu S, Liu J, Chen C (2015) Interactive effects of selenium and arsenic on growth, antioxidant system, arsenic and selenium species of Nicotiana Tabacum L. Environ Exp Bot 117:12–19. https://doi.org/10.1016/j.envexpbot.2015.04.008

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2010) Selenium in higher plants: physiological role, antioxidant metabolism and abiotic stress tolerance. J Plant Sci 5:354–375

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B, Matraszek R, Pogorzelec M (2015) The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiol Plant 37:41

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station. University of California, Berkeley, p 347

  • Hopper JL, Parker DR (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 210:199–207

    Article  CAS  Google Scholar 

  • Iqbal M, Hussain I, Liaqat H, Ashraf MA, Rasheed R, Rehman AU (2015) Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiol Biochem 94:95–103. https://doi.org/10.1016/j.plaphy.2015.05.012

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Zu C, Shen J, Shao F, Li T (2015) Effects of selenium on the growth and photosynthetic characteristics of flue-cured tobacco (Nicotiana Tabacum L.). Acta Soc Bot Pol 84(1):71

    Article  CAS  Google Scholar 

  • Kaur S, Nayyar H (2015) Selenium fertilization to salt-stressed mungbean (Vigna Radiata L. Wilczek) plants reduces sodium uptake, improves reproductive function, pod set and seed yield. Sci Hortic 197:304–317. https://doi.org/10.1016/j.scienta.2015.09.048

    Article  CAS  Google Scholar 

  • Krystofova O, Adam V, Babula P, Zehnalek J, Beklova M, Havel L, Kizek R (2010) Effects of various doses of selenite on stinging nettle (Urtica Dioica L.) Int J Environ Res Public Health 7:3804–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Bijo A, Baghel RS, Reddy C, Jha B (2012) Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria Dura by regulating antioxidants and DNA methylation. Plant Physiol Biochem 51:129–138

    Article  CAS  PubMed  Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Duan C-Q, Zhang X-H, Zhu Y-N, Hu C (2009) Subcellular distribution of chromium in accumulating plant Leersia Hexandra Swartz. Plant Soil 322:187–195. https://doi.org/10.1007/s11104-009-9907-2

    Article  CAS  Google Scholar 

  • Matich AJ, Mckenzie MJ, Lill RE, Mcghie TK, Chen RK, Rowan DD (2015) Distribution of Selenoglucosinolates and their metabolites in brassica treated with sodium Selenate. J Agric Food Chem 63:1896–1905

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Boylan M, Selvam A, Spallholz JE, Björnstedt M (2015) Redox-active selenium compounds—from toxicity and cell death to cancer treatment. Nutrients 7:3536–3556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Suzui N, Nagasaka T, Komatsu F, Ishioka NS, Itotanabata S, Kawachi N, Rai H, Hattori H, Chino M (2013) Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape. J Exp Bot 64:1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz F, Ahmad R, Ashraf M, Waraich E, Khan SZ (2015) Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol Environ Saf 113:191–200. https://doi.org/10.1016/j.ecoenv.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  • Nawaz F, Ashraf MY, Ahmad R, Waraich EA (2013) Selenium (se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biol Trace Elem Res 151:284–293. https://doi.org/10.1007/s12011-012-9556-9

    Article  CAS  PubMed  Google Scholar 

  • Naz FS, Yusuf M, Khan TA, Fariduddin Q, Ahmad A (2015) Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica Juncea plants. Food Chem 185:441–448

    Article  CAS  PubMed  Google Scholar 

  • Nothstein AK, Eiche E, Riemann M, Nick P, Winkel LH, Göttlicher J, Steininger R, Brendel R, von Brasch M, Konrad G (2016) Tracking se assimilation and speciation through the rice plant–nutrient competition, toxicity and distribution. PLoS One 11:e0152081

    Article  PubMed  PubMed Central  Google Scholar 

  • Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25. https://doi.org/10.1016/j.plantsci.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  • Rios JJ, Blasco B, Leyva R, Sanchez-Rodriguez E, Rubio-Wilhelmi M, Romero L, Ruiz JM (2013) Nutritional balance changes in lettuce plant grown under different doses and forms of selenium. J Plant Nutr 36:1344–1354

    Article  CAS  Google Scholar 

  • Schiavon M, Lima LW, Jiang Y, Hawkesford MJ (2017) Effects of selenium on plant metabolism and implications for crops and consumers. Springer International Publishing

  • Shen R, Ma JF (2001) Distribution and mobility of aluminium in an al-accumulating plant, Fagopyrum Esculentum Moench. J Exp Bot 52:1683–1687

    CAS  PubMed  Google Scholar 

  • Singh M, Singh N, Bhandari D (1980) Interaction of selenium and sulfur on the growth and chemical composition of raya. Soil Sci 129:238–244

    Article  CAS  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389. https://doi.org/10.1007/s11120-005-5222-9

    Article  CAS  PubMed  Google Scholar 

  • Terry N, Zayed A, De Souza M, Tarun A (2000) Selenium in higher plants. Annu Rev Plant Biol 51:401–432

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Chung I-M (2015) Selenium, putrescine, and cadmium influence health-promoting phytochemicals and molecular-level effects on turnip (Brassica Rapa Ssp. Rapa). Food Chem 173:185–193. https://doi.org/10.1016/j.foodchem.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  • Trelease SF, Trelease HM (1938) Selenium as a stimulating and possibly essential element for indicator plants. Am J Bot 25:372–380

    Article  CAS  Google Scholar 

  • Wang P, Menzies NW, Lombi E, McKenna BA, James S, Tang C, Kopittke PM (2015) Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice. J Exp Bot 66:4795–4806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y-D, Wang X, Y-s W (2012) Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. J Proteome 75:1849–1866

    Article  CAS  Google Scholar 

  • Xin J, Huang B, Yang Z, Yuan J, Zhang Y (2013) Comparison of cadmium subcellular distribution in different organs of two water spinach ( Ipomoea Aquatica Forsk.) cultivars. Plant Soil 372:431–444. https://doi.org/10.1007/s11104-013-1729-6

    Article  CAS  Google Scholar 

  • Xu P, Wang Z (2013) Physiological mechanism of hypertolerance of cadmium in Kentucky bluegrass and tall fescue: chemical forms and tissue distribution. Environ Exp Bot 96:35–42. https://doi.org/10.1016/j.envexpbot.2013.09.001

    Article  CAS  Google Scholar 

  • Xu X, Shi J, Chen Y, Chen X, Wang H, Perera A (2006) Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca Acinosa Roxb. (Phytolaccaceae). Plant Soil 285:323–331

    Article  CAS  Google Scholar 

  • Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292

    Article  CAS  Google Scholar 

  • Zhang L, Hu B, Li W, Che R, Deng K, Li H, Yu F, Ling H, Li Y, Chu C (2014a) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201:1183–1191. https://doi.org/10.1111/nph.12596

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Tang S, Huang X, Zhang F, Pang Y, Huang Q, Yi Q (2014b) Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice ( Oryza Sativa L.) Environ Exp Bot 107:39–45

    Article  CAS  Google Scholar 

  • Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153:1871–1877. https://doi.org/10.1104/pp.110.157867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nonprofit Industry (Agriculture) Research Subject (201403048). As first author, I am grateful to Professor Shen, Dr. Chen and Dr. Zhang for their professional guidance in all the works related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Shen.

Additional information

Responsible Editor: Juan Barcelo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, B., Chen, W., Zhang, J. et al. Growth effects and distribution of selenite in Medicago sativa. Plant Soil 425, 527–538 (2018). https://doi.org/10.1007/s11104-018-3589-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3589-6

Keywords

Navigation