Skip to main content
Log in

Morphology and impurity elements of zircon in the oceanic lithosphere at the Mid-Atlantic ridge axial zone (6°–13° N): Evidence of specifics of magmatic crystallization and postmagmatic transformations

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents newly obtained original data on the morphology, internal structure (as seen in cathodoluminescence images, CL), and composition of more than 400 zircon grains separated from gabbroids and plagiogranites (OPG) sampled at the axial zone of the Mid-Atlantic Ridge (MAR). The zircons were analyzed for REE by LA-ICP-MS and for Hf, U, Th, Y, and P by EPMA. Magmatic zircon in the gabbroids crystallized from differentiating magmatic melt in a number of episodes, as follows from systematic rimward increase in the Hf concentration, and also often from the simultaneous increase in the (U + Th) and (Y + P) concentrations. These tendencies are also discernible (although much less clearly) in zircons from the OPG. Zircon in the OPG is depleted in REE compared to the least modified zircons in the gabbro, which suggests that the OPG were derived via partial melting of gabbro in the presence of seawater-derived concentrated aqueous salt fluid. Another reason for the REE depletion might be simultaneous crystallization of zircon and apatite. The CL-dark sectors, which are found in practically all of the magmatic zircon grains, have Y/P (a.p.f.u.) ≫ 1 which most likely resulted from OH accommodation in the zircon structure, a fact suggesting that the OPG parental melt contained water. High-temperature hydrothermal processes induced partial to complete recrystallization of zircon (via dissolution-reprecepitation), a process that was associated with ductile and brittle deformations of the zircon-hosting rocks. The morphology of the hydrothermal zircons varies depending on pH and silica activity in the fluid from weakly corroded subhedral crystals with typical vermicular microtopography of the crystal faces to completely modified grains of colloform structure. Geochemically, the earlier hydrothermal transformations of the zircons resulted in their enrichment in La and other LREE, except only Ce, whose concentration, conversely, decreases compared to that of the unmodified magmatic zircons. The hydrothermal zircon displays a reduced Ce anomaly and its most altered domains typically host minute inclusions of xenotime, U and Th oxides and silicates, and occasionally also baddeleyite, which suggests that the hydrothermal fluid was reduced and highly alkaline. These features were acquired by the seawater-derived fluid when it circulated within the axial MAR zone area due to phase separation in the H2O–NaCl system and particularly as a result of fluid interaction with the abyssal peridotites of oceanic core complexes. Our data demonstrate that zircon is a sensitive indicator of tectonic and physicochemical processes in the oceanic crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aranovich, L.Ya., Fluid–mineral equilibria and thermodynamic mixing properties of fluid systems, Petrology, 2013, vol. 21, no. 6, pp. 539–549.

    Article  Google Scholar 

  • Antignano, A. and Manning, C.E., Fluorapatite solubility in H2O and H2O–NaCl at 700 to 900oC and 0.7 to 2.0 GPa, Chem. Geol., 2008, vol. 251, pp. 112–119.

    Article  Google Scholar 

  • Aranovich, L.I., Bortnikov, N.S., Serebryakov, N.S., and Sharkov, E.V., Conditions of the formation of plagiogranite from the Markov Trough, Mid-Atlantic Ridge, 5°52′–6°02′ N, Dokl. Earth Sci., 2010, vol. 434, no. 3, pp. 1257–1262.

    Article  Google Scholar 

  • Aranovich, L.Ya., Zinger, T.F., Bortnikov, N.S., et al., Zircon in gabbroids from the axial zone of the Mid-Atlantic Ridge, Markov Deep, 6 N: correlation of geochemical features with petrogenetic processes, Petrology, 2013, vol. 21, no. 1, pp. 1–15.

    Article  Google Scholar 

  • Aranovich, L.Ya., Prokof’ev, V.Yu., Pertsev, A.N., et al., Composition and origin of a K2O-rich granite melt in the Mid-Atlantic Ridge, 13°34′ N: evidence from the analysis of melt inclusions and minerals of the gabbro–plagiogranite association, Dokl. Earth Sci., 2015, vol. 460, no. 6, pp. 174–178.

    Article  Google Scholar 

  • Ayers, J.C., Zhang, L., Luo, Y., and Peters, T.J., Zircon solubility in alkaline aqueous fluids at upper crustal conditions, Geochim. Cosmochim. Acta, 2012, vol. 96, pp. 18–28.

    Article  Google Scholar 

  • Barnes, J.D., Paulick, H., Sharp, Z.D., et al., Stable isotope (δ18O, δD, δ37Cl) evidence for multiple fluid histories in Mid-Atlantic abyssal peridotites (ODP Leg 209), Lithos, 2009, vol. 110, pp. 83–94.

    Article  Google Scholar 

  • Barth, A.P. and Wooden, J.L., Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas, Chem. Geol., 2010, vol. 277, pp. 149–159.

    Article  Google Scholar 

  • Bea, F., Residence of REE, Y, Th, and U in granites and crustal protoliths: implications for the chemistry of crustal melts, J. Petrol., 1996, vol. 37, pp. 521–552.

    Article  Google Scholar 

  • Bea, F., Montero, P., Stroh, A., and Baasner, J., Microanalysis of minerals by an excimer UV-LA-ICP-MS system, Chem. Geol., 1996, vol. 133, nos. 1–4, pp. 145–156.

    Article  Google Scholar 

  • Bernini, D., Audetat, A., Dolejs, D., and Keppler, H., Zircon solubility in aqueous fluids at high temperatures and pressures, Geochim. Cosmochim. Acta, 2013, vol. 119, pp. 178–187.

    Article  Google Scholar 

  • Bischoff, J.L. and Pitzer, K.S., Phase relations and adiabats in boiling seafloor geothermal systems, Earth Planet. Sci. Lett., 1985, vol. 75, pp. 327–338.

    Article  Google Scholar 

  • Blundy, J. and Wood, B., Mineral–melt partitioning of uranium, thorium and their daughters, Rev. Mineral. Geochem., 2003, vol. 52, pp. 59–124.

    Article  Google Scholar 

  • Bortnikov N.S., Sharkov E.V., Bogatikov O.A., et al., Finds of young and ancient zircons in gabbroids of the Markov Deep, Mid-Atlantic Ridge, 5°30.6–5°32.4 N (results of SHRIMP-II U–Pb dating): implication for deep geodynamics of modern oceans, Dokl. Earth Sci., 2008, vol. 421, no. 2, pp. 859–867.

    Article  Google Scholar 

  • Burnham, A.D. and Berry, A.J., An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity, Geochim. Cosmochim. Acta, 2012, vol. 95, pp. 196–212.

    Article  Google Scholar 

  • Casas, I., De Pablo, J., Gimenez, J., et al., The role of pE, pH, and carbonate on the solubility of UO2 and uraninite under nominally reducing conditions, Geochim. Cosmochim. Acta, 1998, vol. 62, pp. 2223–2231.

    Article  Google Scholar 

  • Cherniak, D.J., Hanchar, J.M., and Watson, E.B., Rareearth diffusion in zircon, Chem. Geol., 1997, vol. 134, pp. 289–301.

    Article  Google Scholar 

  • Ciazela, J., Koepke, J., Dick, H.J.B., and Muszynski, A., Mantle rock exposures at oceanic core complexes along mid-ocean ridges, Geologos, 2015, vol. 21, pp. 207–231. doi 10.1515/logos-2015-0017

    Article  Google Scholar 

  • Claiborne, L.L., Miller, C.F., Walker, B.A., et al., Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada, Mineral. Mag., 2006, vol. 70, pp. 517–543.

    Article  Google Scholar 

  • Claiborne, L.L., Miller, C.F., and Wooden, J.L., Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada, Contrib. Mineral. Petrol., 2010, vol. 160, pp. 511–531.

    Article  Google Scholar 

  • Coogan, L.A., Wilson, R.N., and Gillis, K.M., Macleod, C.J., Near-solidus evolution of oceanic gabbros: insights from amphibole geochemistry, Geochim. Cosmochim. Acta, 2001, vol. 65, pp. 4339–4357.

    Article  Google Scholar 

  • Davis, D.W., Krogh, T.E., and Williams, I.S., Historical development of zircon geochronology, Rev. Mineral. Geochem., 2003, vol. 53, no. 1, pp. 145–181.

    Article  Google Scholar 

  • De Baar, H.J., Bacon, M.P., and Brewer, P.G., Rare earth elements in the Pacific and Atlantic oceans, Geochim. Cosmochim. Acta, 1985, vol. 49, pp. 1943–1959.

    Article  Google Scholar 

  • De Hoog, J.C.M., Lissenberg, C.J., Brooker, R.A., et al., Hydrogen incorporation and charge balance in natural zircon, Geochim. Cosmochim. Acta, 2014, vol. 141, pp. 472–486. doi 10.1007/s00410-015-1199-3

    Article  Google Scholar 

  • Ferry, J.M. and Watson, E.B., New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-inrutile thermometers, Contrib. Mineral. Petrol., 2007, vol. 154, pp. 429–437.

    Article  Google Scholar 

  • Geisler, T., Schaltegger, U., and Tomaschek, F., Re-equilibration of zircon in aqueous fluids and melts, Elements, 2007, vol. 3, pp. 43–50.

    Article  Google Scholar 

  • Grimes, C.B., John, B.E., Kelemen, P.B., et al., Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance, Geology, 2007, vol. 35, pp. 643–646.

    Article  Google Scholar 

  • Grimes, C.B., John, B.E., Cheadle, M.J., et al., On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere, Contrib. Mineral. Petrol., 2009, vol. 158, pp. 757–783.

    Article  Google Scholar 

  • Grimes, C.B., Wooden, J.L., Cheadle, M.J., and John, B.E., “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon, Contrib. Mineral. Petrol., 2015, vol. 170, p. 46.

    Article  Google Scholar 

  • Halpin, J.A., Daczko, N.R., Milan, L.A., and Clarke, G.L., Decoding near-concordant U–Pb zircon ages spanning several hundred million years: recrystallisation, metamictisation or diffusion?, Contrib. Mineral. Petrol., 2011, vol. 163, pp. 67–85. doi 10.1007/s00410-011-0659-7

    Article  Google Scholar 

  • Hanchar, J.M., Finch, R.J., Hoskin, P.W.O., et al., Rare earth elements in synthetic zircon: part 1. Synthesis, and rare earth element and phosphorus doping, Am. Mineral., 2001, vol. 86, pp. 667–680.

    Article  Google Scholar 

  • Harley, S.L. and Kelly, N.M., Zircon: tiny but timely, Elements, 2007, vol. 3, no. 1, pp. 13–18.

    Article  Google Scholar 

  • Harlov, D.E. and Dunkley, D.J., Experimental high-grade alteration of zircon using alkali- and Ca-bearing solutions, Mineral. Mag., 2011, vol. 75, p. 980.

    Google Scholar 

  • Harlov, D.E., Lewerentz, A., and Schersten, A., Alteration of zircon in alkaline fluids: nature and experiment, Mineral. Mag., 2012, vol. 76, p. 1813.

    Google Scholar 

  • Hay, D.C., Dempster, T.J., Lee, M.R., and Brown, D.J., Anatomy of a low temperature zircon outgrowth, Contrib. Mineral. Petrol., 2010, vol. 159, pp. 81–92. doi 10.1007/s00410-009-0417-2

    Article  Google Scholar 

  • Hoskin, P.W.O. and Schaltegger, U., The composition of zircon and igneous and metamorphic petrogenesis, Zircon, Hanchar, J.M. and Hoskin, P.W.O., Eds., Rev. Mineral. Geochem., 2003, vol. 53, pp. 27–62.

    Google Scholar 

  • Hoskin, P.W.O., Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 637–648. doi 10.1016/j.gca.2004.07.006

    Article  Google Scholar 

  • Kaulina, T.V., Sinai, M.Yu., and Savchenko, E.E., Metasomatic replacements and isotope relationships in zircon crystals and crystallogenetic models, Geol. Ore Deposits, 2011, vol. 53, no. 8, pp. 735–744.

    Article  Google Scholar 

  • Kaulina, T.V., Sinai, M.Y., and Savchenko, E.E., Crystallogenetic models for metasomatic replacement in zircons: implications for U–Pb geochronology of Precambrian rocks, Int. Geol. Rev., 2014, vol. 57, pp. 1526–1542. doi 10.1080/ 00206814.2014.961976

    Article  Google Scholar 

  • Kohn, M.J., Corrie, S.L., and Markley, C., The fall and rise of metamorphic zircon, Am. Mineral., 2015, vol. 100, pp. 897–908.

    Article  Google Scholar 

  • Korzhinskaya, V.S., Solubility of baddeleyite (ZrO2) and zircon (ZrSiO4) in aqueous hydrochloric solutions at elevated T and P parameters, Exp. Geosci., 1999, vol. 8, no. 1, pp. 9–19.

    Google Scholar 

  • Kostitsyn, Yu.A., Belousova, E.A., Silantyev, S.A., et al., Modern problems of geochemical and U–Pb geochronological studies of zircon in oceanic rocks, Geochem. Int., 2015, vol. 53, no. 9, pp. 759–785.

    Article  Google Scholar 

  • Lewerentz, A., Experimental zircon alteration and baddeleyite formation in silica saturated systems: implications for dating hydrothermal events, Dissertations in Geology at Lund University, Master’s Thesis, 2011. lup.lub.lu.se/student-papers/record/2371989/…/2371990.pdf

    Google Scholar 

  • Liati, A., Gebauer, D., and Fanning, C.M., Geochronological evolution of HP metamorphic rocks of the Adula nappe, Central Alps, in pre-Alpine and Alpine subduction cycles, J. Geol. Soc., 2009, vol. 166, pp. 797–810.

    Article  Google Scholar 

  • Linnen, R.L. and Keppler, H., Melt composition control of Zr/Hf fractionation in magmatic processes, Geochim. Cosmochim. Acta, 2002, vol. 66, pp. 3293–3301.

    Article  Google Scholar 

  • Luo, Y. and Ayers, J., Experimental measurements of zircon/ melt trace-element partition coefficients, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 3656–3679.

    Article  Google Scholar 

  • Manning, C.E. and Aranovich, L.Y., Brines at high pressure and temperature: thermodynamic, petrologic and geochemical effects, Precambrian Res., 2014, vol. 253, pp. 6–16.

    Article  Google Scholar 

  • McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  • Nasdala, L., Hanchar, J.M., Rhede, D., et al., Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario, Chem. Geol., 2010, vol. 269, pp. 290–300.

    Article  Google Scholar 

  • Pertsev, A.N., Aranovich, L.Y., Prokofiev, V.I., et al., Signatures of residual melts, magmatic and seawater-derived fluids in oceanic lower-crust gabbro from the Vema lithospheric section, Central Atlantic, J. Petrol., 2015, vol. 56, pp. 1069–1088. doi 10.1093/petrology/egv028

    Article  Google Scholar 

  • Pushcharovsky, Yu.M., Stroenie zony razloma Dolrams (Structure of the Doldrums Fault Zone), Moscow: Nauka, 1991.

    Google Scholar 

  • Pushcharovsky, Yu.M., Mazarovich, A.O., and Skolotnev, S.G., Neotectonics of the Central Atlantic, Dokl. Earth Sci., 2004, vol. 398, no. 8, pp. 1065–1070.

    Google Scholar 

  • Reddy, S.M., Timms, N.E., Pantleon, W., and Trimby, P., Quantity characterization of plastic deformation of zircon and geological application, Contrib. Mineral. Petrol., 2007, vol. 153, pp. 625–645.

    Article  Google Scholar 

  • Rubatto, D., Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism, Chem. Geol., 2002, vol. 184, pp. 123–138.

    Article  Google Scholar 

  • Schrenk, M.O., Brazelton, W.J., and Lang, S.Q., Serpentinization, carbon, and deep life, Rev. Mineral. Geochem., 2013, vol. 75, pp. 575–606.

    Article  Google Scholar 

  • Schwartz, J.J., John, B.E., Cheadle, M.J., et al., Dissolution-reprecipitation of igneous zircon in Mid-Ocean ridge gabbro, Atlantis Bank, southwest Indian Ridge, Chem. Geol., 2010, vol. 274, pp. 68–81.

    Article  Google Scholar 

  • Searle, R. Mid-Ocean, Ridges, Cambridge: University Press, 2013.

    Book  Google Scholar 

  • Shmulovich, K.I., Tkachenko, S.I., and Plyasunova, N.V., Phase equilibria in fluid systems at high pressures and temperatures, in Fluids in the Crust: Equilibrium and Transport Properties, Shmulovich, K.I., Yardley, B.W.D., and Gonchar, G.G., Eds., London: Chapman & Hall, 1995, pp. 193–214.

    Chapter  Google Scholar 

  • Shmulovich, K.I., Graham, C.M., and Yardley, B.W.D., Quartz, albite and diopside solubilities in H2O–NaCl fluids at 0.5–0.9 GPa, Contrib. Mineral. Petrol., 2001, vol. 141, pp. 95–108.

    Article  Google Scholar 

  • Silantyev S.A., Aranovich, L.Ya., and Bortnikov, N.S., Oceanic plagiogranites as a result of interaction between magmatic and hydrothermal systems in the slow-spreading mid-ocean ridges, Petrology, 2010, vol. 18, no. 4, pp. 369–383.

    Article  Google Scholar 

  • Skolotnev, S.G., Bel’tenev, V.E., Lepekhina, E.N., and Ipat’eva, I.S., Younger and older zircons from rocks of the oceanic lithosphere in the Central Atlantic and their geotectonic implications, Geotectonics, 2010, vol. 44, no. 6, pp. 462–492.

    Article  Google Scholar 

  • Skublov, S.G., Berezin, A.V., and Mel’nik, A.E. Paleoproterozoic eclogites in the Salma Area, northwestern Belomorian Mobile Belt: composition and isotopic geochronologic characteristics of minerals and metamorphic age, Petrology, 2011, vol. 19, no. 5, pp. 470–495.

    Article  Google Scholar 

  • Smith, D.K., Escartin, J., Schouten, H., and Cann, J.R., Fault rotation and core complex formation: significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic ridge 13°–15° N), Geochem., Geophys., Geosyst., 2008, vol. 9, Q03003. doi 10.1029/2007GC001699

    Article  Google Scholar 

  • Spandler, C., Hermann, J., and Rubatto, D., Exsolution of thortveitite, yttrialite, and xenotime during low-temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon, Am. Mineral., 2004, vol. 89, pp. 1795–1806.

    Article  Google Scholar 

  • Speer, J.A., Zircon, Orthosilicates, P.H. Ribbe, Ed., Rev. Mineral., 1980, vol. 5, pp. 67–112.

    Google Scholar 

  • Tanis, E.A., Simon, A., Tschauner, O., et al., Solubility of xenotime in a 2M HCl aqueous fluid from 1.2 to 2.6 GPa and 300 to 500°C, Am. Mineral., 2012, vol. 97, pp. 1708–1713.

    Article  Google Scholar 

  • Timms, N.E., Kinny, P.D., Reddy, S.M., et al., Relationship among titanium, rare earth elements, U–Pb ages and deformation microstructures in zircon: implications for Tiin-zircon thermometry, Chem. Geol., 2011, vol. 280, pp. 33–46.

    Article  Google Scholar 

  • Tomaschek, F., Kennedy, A.K., Villa, I.M., et al., Zircons from Syros, Cyclades, Greece—recrystallization and mobilization of zircon during high-pressure metamorphism, J. Petrol., 2003, vol. 44, pp. 977–2002.

    Article  Google Scholar 

  • Trail, D., Thomas, J.B., and Watson, E.B., The incorporation of hydroxyl into zircon, Am. Mineral., 2011, vol. 96, pp. 60–67.

    Article  Google Scholar 

  • Trail, D., Watson, E.B., and Tailby, N.D., Ce and Eu anomalies in zircon as proxies for the oxidation state of magma, Geochim. Cosmochim. Acta, 2012, vol. 97, pp. 70–87.

    Article  Google Scholar 

  • Vinokurov, V.M., Gainullina, N.M., Evgrafova, L.A., et al., Isomorphism and specifics of accompanying charge compensation in zircon crystals, Kristallografiya, 1971, vol. 16, pp. 318–323.

    Google Scholar 

  • Wang, X., Griffin, W.L., and Chen, J., Hf contents and Zr/Hf ratios in granitic zircons, Geochem. J., 2010, vol. 44, pp. 65–72.

    Article  Google Scholar 

  • Watson, E.B. and Harrison, T.M., Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types, Earth Planet. Sci. Lett., 1983, vol. 64, pp. 295–304.

    Article  Google Scholar 

  • Wilke, M., Schmidt, C., Dubrail, J., et al., Zircon solubility and zirconium complexation in H2O + Na2O + SiO2 + Al2O3 fluids at high pressure and temperature, Earth Planet. Sci. Lett., 2012, vol. 349–350, pp. 15–25.

    Google Scholar 

  • Woodhead, J.A., Rossman, G.R., and Thomas, A.P., Hydrous species in zircon, Am. Mineral., 1991, vol. 76, pp. 1533–1546.

    Google Scholar 

  • Yang, W., Lin, Y., Hao, J., et al., Phosphorus-controlled trace element distribution in zircon revealed by nanoSIMS, Contrib. Mineral. Petrol., 2016, vol. 171, p. 28. doi 10.1007/s00410-016-1242-z

    Article  Google Scholar 

  • Zinger T.F., Bortnikov N.S., Sharkov E.V., et al., Influence of plastic deformations in zircon on its chemical composition: evidence from gabbroids of the spreading zone of the Mid-Atlantic Ridge, Markov Trough, 6o N, Dokl. Earth Sci., 2010, vol. 433, no. 2, pp. 1098–1103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Y. Aranovich.

Additional information

Original Russian Text © L.Y. Aranovich, N.S. Bortnikov, T.F. Zinger, S.E. Borisovskiy, V.A. Matrenichev, A.N. Pertsev, E.V. Sharkov, S.G. Skolotnev, 2017, published in Petrologiya, 2017, Vol. 25, No. 4, pp. 335–361.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aranovich, L.Y., Bortnikov, N.S., Zinger, T.F. et al. Morphology and impurity elements of zircon in the oceanic lithosphere at the Mid-Atlantic ridge axial zone (6°–13° N): Evidence of specifics of magmatic crystallization and postmagmatic transformations. Petrology 25, 339–364 (2017). https://doi.org/10.1134/S0869591117040026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117040026

Navigation