Skip to main content
Log in

Geodynamics of Late Paleozoic batholith-forming processes in western Transbaikalia

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Isotopic dates newly obtained for the northwestern portion of the Angara–Vitim batholith are consistent with preexisting data on the duration of the Late Paleozoic magmatic cycle: 55–60 Ma (from 325 to 280 Ma). These data also indicate that alkaline mafic magmatism in western Transbaikalia began simultaneously with the transition from crustal granite-forming processes to the derivation of granites of a mixed mantle–crustal nature, with gradual enrichment of the juvenile component in the source of the magmas. Analysis of the currently discussed geodynamic models of Late Paleozoic magmatism shows that a key role in all models of extensive granite-forming processes in the region is assigned to mafic mantle magmas, which can be generated in various geotectonic environments: subduction, delamination, decompression, and a mantle plume. The plume model is most consistent with the intraplate character of the Angara–Vitim batholith. The derivation of the vast volume of granitic material (approximately 1 million km3) should have required a comparable volume of mafic magma that should have been pooled in the middle crust of the Baikal fold area. However, the density structure of the region does not provide evidence of significant volumes of mafic rocks. This suggests that the mechanism of plume–lithospheric interaction that should have induced extensive crustal melting and the origin of vast granite areas was more complicated than simply conductive melting of crustal protoliths in contact with mafic intrusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belichenko V.G., Geletii N.K., and Barash I.G., Barguzin microcontinent (Baikal mountain are): the problem of outlining, Russ. Geol. Geophys., 2006, vol. 47, no. 10, pp. 1035–1045.

    Google Scholar 

  • Bird, P., Continental delamination and the Colorado plateau, J. Geophys. Res., 1979, vol. 84, pp. 7561–7571.

    Article  Google Scholar 

  • Bonin, B., Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review, Lithos, 2004, vol. 78, pp. 1–24.

    Article  Google Scholar 

  • Bryan, S.E., Peate, I.U., Peate, D.W., et al., The largest volcanic eruptions on Earth, Earth Sci. Rev., 2010, vol. 102, pp. 207–229.

    Article  Google Scholar 

  • Bulgatov, A.N. and Gordienko, I.V., Terrains of the Baikal mountain range and the location of gold deposits, Geol. Ore Deposits, 1999, vol. 41, no. 3, pp. 204–213.

    Google Scholar 

  • Burmakina, G.N. and Tsygankov, A.A., Mafic microgranular enclaves in Late Paleozoic granitoids in the Burgasy quartz syenite massif, western Transbaikalia: composition and petrogenesis, Petrology 2013, vol. 21, no. 3, pp. 280–303.

    Article  Google Scholar 

  • Dobretsov, N.L., Borisenko, A.S., Izokh, A.E., and Zhmodik, S.M., A thermochemical model of Eurasian Permo–Triassic mantle plumes as a basis for prediction and exploration for Cu–Ni–PGE and rare-metal ore deposits, Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 903–924.

    Article  Google Scholar 

  • Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., and Ivanov, A.V., Late Paleozoic–Mesozoic subductionrelated magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol–Okhotsk ocean, J. Asian Earth Sci., 2013, vol. 62, pp. 79–97.

    Article  Google Scholar 

  • Doroshkevich, A.G., Ripp, G.S., and Sergeev, S.A., U–Pb (SHRIMP-II) isotope dating of zircons from alkali rocks of Vitim Province, West Transbaikalia, Dokl. Earth Sci., 2012a, vol. 443, no. 1, pp. 297–301.

    Article  Google Scholar 

  • Doroshkevich A.G., Ripp G.S., Sergeev S.A., and Konopel’ko D.L., The U–Pb geochronology of the Mukhal alkaline massif (western Transbaikalia), Russ. Geol. Geophys., 2012b, vol. 53, no. 2, pp. 169–174.

    Article  Google Scholar 

  • Doroshkevich, A.G., Ripp, G.S., Isbrodin, I.A., and Savatenkov, V.M., Alkaline magmatism of the Vitim Province, West Transbaikalia, Russia: age, mineralogical, geochemical and isotope (O, C, D, Sr and Nd) data, Lithos, 2012, vol. 152, pp. 157–172.

    Article  Google Scholar 

  • Farmer, G.L., Continental basaltic rocks, in Treatise on Geochemistry, Amsterdam: Elsevier, 2003, vol. 3, pp. 85–121.

    Google Scholar 

  • Filimonov, A.V., Minina, O.R., and Neberekutina, L.N., Urmin sequence as the reference Upper Devonian stratotone of West Transbaikalia, Vestn. Voronezhsk. Gos. Univ., Ser. Geol., 1999, no. 8, pp. 46–57.

    Google Scholar 

  • Gordienko, I.V., Paleozoiskii magmatizm i geodinamika Tsentral’no-Aziatskogo skladchatogo poyasa (Paleozoic Magmatism and Geodynamics of the Central Asian Foldbelt), Moscow: Nauka, 1987.

    Google Scholar 

  • Gordienko, I.V., Geodynamic evolution of Late Baikalides and Paleozoids in the folded periphery of the Siberian Craton, Russ. Geol. Geophys., 2006, vol. 47, no. 1, pp. 51–67.

    Google Scholar 

  • Gordienko, I.V., Kiselev, A.I., and Lashkevich, V.V., Delamination lithosphere and related magmatism in folded areas: evidence from folded framing of the southern Siberian Platform, in Problemy global’noi geodinamiki: Materialy teoreticheskogo seminara OGGGGN RAN (Problems of Global Geodynamics: Proceedings of Theoretical Seminar of OGGGGN RAN), Rundkvist, D.V., Ed., Moscow: GEOS, 2003, pp. 185–199.

    Google Scholar 

  • Gordienko, I.V., Filimonov, A.V., Minina, O.R., et al., Dzhida island-arc system in the Paleoasian ocean: structure and main stages of Vendian–Paleozoic geodynamic evolution, Russ. Geol Geophys., 2007, vol. 48, no. 1, 91–106.

    Google Scholar 

  • Gordienko, I.V., Bulgatov, A.N., Ruzhentsev, S.V., et al., The Late Riphean–Paleozoic history of the Uda–Vitim island-arc system in the Transbaikalian sector of the Paleoasian ocean, Russ. Geol Geophys., 2010, vol. 51, no. 5, pp. 589–614.

    Article  Google Scholar 

  • Houseman, J.A., McKenzie, D.P., and Molnar, P., Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts, J. Geophys. Res., 1981, vol. 86, pp. 6115–6132.

    Article  Google Scholar 

  • Huppert, H.E. and Sparcks, R.S.J., The generation of granitic magmas by intrusion of basalt into continental crust, J. Petrol., 1988, vol. 29, pp. 596–624.

    Article  Google Scholar 

  • Jahn, B.M., The Central Asian orogenic belt and growth of the continental crust in the Phanerozoic, Geol. Soc. London, Sp. Publ., 2004, vol. 226, pp. 73–100.

    Article  Google Scholar 

  • Jahn, B.M., Litvinovsky, B.A., Zanvilevich, A.N., and Reichow, M.K., Peralkaline granitoid magmatism in the Mongolian-Transbaikalian belt: evolution, petrogenesis and tectonic significance, Lithos, 2009, vol. 113, pp. 521–539.

    Article  Google Scholar 

  • Karta magmaticheskikh formatsii yuga Sibiri i Severnoi Mongolii. Masshtab 1: 1500000 (1: 1500000 Map of Magmatic Formations of Southern Siberia and North Mongolia), Moscow: MinGeo, 1989.

  • Khubanov, V.B., Bimodal Dike Belt of Central Part of West Transbaikalia: geological Structure, Age, Composition, and Genesis, Extended Abstract of Candidate (Geol-Min.) Sci., Ulan-Ude: GIN SO RAN, 2009. 23 s.

    Google Scholar 

  • Khubanov, V.B., Buyantuev, M.D., and Tsygankov, A.A., U–Pb dating of zircons from PZ3–MZ igneous complexes of Transbaikala by sector-field mass spectrometry with laser sampling: technique and comparison with SHRIMP, Russ. Geol. Geophys., 2016, vol. 57, no. 1, pp. 241–258.

    Article  Google Scholar 

  • Kiselev, A.I., Gordienko, I.V., and Lashkevich, V.V., Petrographic aspects of gravitational instability of tectonically thickened lithosphere, Tikhookean. Geol., 2004, vol. 23, no. 2, pp. 20–29.

    Google Scholar 

  • Kovach, V.P., Sal’nikova, E.B., Rytsk, E.Yu., et al., The time length of formation of the Angara–Vitim batholith: results of U–Pb geochronological studies, Dokl. Earth Sci., 2012, vol. 444, no. 1, pp. 553–559.

    Article  Google Scholar 

  • Kovalenko, V.I., Kozlovskii, A.M., and Yarmolyuk, V.V., Trace element ratios as indicators of source mixing and magma differentiation of alkali granitoids and basites of the Haldzan–Buregtey Massif and the Haldzan–Buregtey rare-metal deposit, Western Mongolia, Petrology, 2009, vol. 17, no. 2, pp. 158–177.

    Article  Google Scholar 

  • Kröner, A., Fedotova, A.A., Khain, E.V., et al., Neoproterozoic ophiolite and related high-grade rocks of the Baikal–Muya belt, Siberia: geochronology and geodynamic implications, J. Asian Earth Sci., 2015, vol. 111, pp. 138–160.

    Article  Google Scholar 

  • Liégeois, J.P., Navez, J., Hertogen, J., and Black, R., Contrasting origin of post-collisional high-K calk-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization, Lithos, 1998, vol. 45, pp. 1–28.

    Article  Google Scholar 

  • Litvinovsky, B.A. and Zanvilevich, A.N., Trends of chemical variations of granitoid and basic magmas during evolution of the Mongol–Transbaikalian mobile belt, Geol. Geofiz., 1998, vol. 39, no. 2, pp. 157–177.

    Google Scholar 

  • Litvinovsky, B.A., Zanvilevich, A.N., Alakshin, A.M., and Podladchikov, Yu.Yu., Angaro-Vitimskii batolit- krupneishii granitoidnyi pluton (Angara–Vitim Batholith: The Largest Granitoid Pluton), Novosibirsk: OIGGM SO RAN, 1993.

    Google Scholar 

  • Litvinovsky, B.A., Zanvilevich, A.N., and Kalmanovich, M.A., Multiple mixing of coexisting syenite and basite magmas and its petrological significance, Ust’-Khilok Massif, Transbaikalia, Petrologiya, 1995, vol. 3, no. 2, pp. 133–157.

    Google Scholar 

  • Litvinovsky, B.A., Posokhov, V.F., and Zanvilevich, A.N., New Rb-Sr age data on the Late Paleozoic granitoids of Western Transbaikalia, Geol. Geofiz., 1999, vol. 40, no. 5, pp. 694–702.

    Google Scholar 

  • Litvinovsky B.A., Yarmolyuk V.V., Vorontsov A.A., et al., late Triassic stage of formation of the Mongolo–Transbaikalian alkaline–granitoid province: data of isotope-geochemicla studies, Russ. Geol. Geophys., 2001, vol. 42, no. 3, pp. 445–455.

    Google Scholar 

  • Litvinovsky, B.A., Jahn, B.M., Zanvilevich, A.N., et al., Petrogenesis of syenite–granite suite from Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas, Chem. Geol., 2002, vol. 189, pp. 105–133.

    Article  Google Scholar 

  • Litvinovsky, B.A., Tsygankov, A.A., Jahn, B.M., et al., Origin and evolution of overlapping calc-alkaline and alkaline magmas: the Late Paleozoic post-collisional igneous province of Transbaikalia, Lithos, 2011, vol. 125, pp. 845–874.

    Article  Google Scholar 

  • Litvinovsky, B.A., Zanvilevich, A.N., and Katzir, Y., Formation of composite dykes by contact remelting and magma mingling: the Shaluta Pluton, Transbaikalia (Russia), J. Asian Earth Sci., 2012, vol. 60, pp. 18–30.

    Article  Google Scholar 

  • Magmaticheskie gornye porody (Magmatic Igneous Rocks), Moscow: Nauka, vol. 3, 1985.

  • Minina, O.R. Early Hercynides of the Baikal–Vitim Folded Area: Composition, Structure, Geodynamic Evolution, Extended Abstract of Candidate (Geol.-Min.) Dissertation, Irkutsk: IZK SO RAN, 2014. 36 pp.

    Google Scholar 

  • Nédélec, A., Stephens, W.E., and Fallick, A.E., The Panafrican stratoid granites of Madagaskar; alkaline magmatism in a post-collisional setting, J. Petrol., 1995, vol. 36, pp. 1367–1391.

    Article  Google Scholar 

  • Puffer, J.H., A reactivated back-arc source for camp magma, The Central Atlantic Magmatic Province: insights from fragments of Pangea, Geophys. Monogr. Amer. Geophys. Union, 2003, vol. 136, pp. 151–162.

    Google Scholar 

  • Reichow, M.K., Pringle, M.S., Al’Mukhamedov, A.I., et al., The timing and extent of the eruption of the Siberian traps large igneous province: implications for the end- Permian environmental crisis, Earth Planet. Sci. Lett., 2009, vol. 277, pp. 9–20.

    Article  Google Scholar 

  • Reichow, M.K., Litvinovsky, B.A., Parrish, R.R., and Saunders, A.D., Multi-stage emplacement of alkaline and peralkaline syenite–granite suites in the Mongolian–Transbaikalian belt, Russia: evidence from U–Pb geochronology and whole rock geochemistry, Chem. Geol., 2010, vol. 273, pp. 120–135.

    Article  Google Scholar 

  • Reif, F.G., Fiziko-khimicheskie usloviya formirovaniya krupnykh granitoidnykh mass Vostochnogo Pribaikal’ya (Physicochemical Conditions of Formation of Large Granitoid Masses of Eastern Baikal Region), Novosibirsk: Nauka, 1976.

    Google Scholar 

  • Rudnick, R.L. and Gao, S., Composition of the continental crust, in Treatise on Geochemistry, Elsevier: Oxford, 2003, vol. 3, pp. 1–64.

    Google Scholar 

  • Ruzhentsev, S.V., Minina, O.R., Nekrasov, G.E., et al., The Baikal–Vitim Fold System: Structure and Geodynamic Evolution, Geotectonics, 2012, vol. 46, no. 2, pp. 87–110.

    Article  Google Scholar 

  • Rytsk E.Yu., Kovach V.P., Yarmolyuk V.V., et al., Isotopic structure and evolution of the continental crust in the East Transbaikalian segment of the Central Asian Foldbelt, Geotectonics, 2011, vol. 45, no. 5, pp. 349–377.

    Article  Google Scholar 

  • Rytsk E.Yu., Neimark L.A., Amelin Yu.V. Paleozoic granitoids in the northern part of the Baikalian orogenic area: age and past geodynamic settings, Geotectonics, 1998, vol. 32, no. 5, 379–393.

    Google Scholar 

  • Salop, L.I., Geologiya Baikal’skoi gornoi oblasti (Geology of the Baikal Mountain Area), Moscow: Nedra, 1967, vol. 2.

    Google Scholar 

  • Sláma, J., Košler, J., Condon, D.J., et al., Plesovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis, Chem. Geol., 2008, vol. 249, pp. 1–35.

    Article  Google Scholar 

  • Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in the Oceanic Basins, Saunders, A.D. and Norry, M.J., Ed.s, Geol. Soc. Spec. Publ, 1989, no. 42, pp. 313–345.

    Google Scholar 

  • Suvorov, V.D., Mishenkina, Z.M., Petrick, G.V., et al., Structure of the crust in the Baikal Rift zone and adjacent areas from deep seismic sounding data, Tectonophysics, 2002, vol. 351, pp. 61–74.

    Article  Google Scholar 

  • Sylvester, P.J., Post-collisional strongly peraluminous granites, Lithos, 1998, vol. 45, pp. 29–44.

    Article  Google Scholar 

  • Titov A.V., Litvinovsky, B.A., Zanvilevich, A.N., and Shadaev, M.G., Hybridization in the composite basite–leucogranite dikes of the Ust’-Khilok Massif (Transbaikalia), Geol. Geofiz., 2000, vol. 41, no. 2, pp. 1714–1728.

    Google Scholar 

  • Tsygankov, A.A., Magmaticheskaya evolyutsiya Baikalo- Muiskogo vulkanoplutonicheskogo poyasa v pozdnem dokembrii (Magmatic Evolution of the Baikal–Muya Volcanoplutonic Belt in the Late Precambrian), Novosibirsk: SO RAN, 2005.

    Google Scholar 

  • Tsygankov, A.A., Late Paleozoic granitoids in Western Transbaikalia: sequence of formation, sources of magmas, and geodynamics, Russ. Geol. Geophys., 2014, vol. 55, no. 2, pp. 153–176.

    Article  Google Scholar 

  • Tsygankov, A.A., Burdukov, I.V., and Vrublevskaya, T.T., Composition and genesis of inner-contact syenites of the Khasurta quartz syenite–monzonite massif, Western Transbaikalia, Petrology, 2007a, vol. 15, no. 2, 184–209.

    Google Scholar 

  • Tsygankov, A.A., Matukov, D.I., Berezhnaya, N.G., et al., Late Paleozoic granitoids of Western Kamchatka: magma sources and stages of formation, Russ. Geol. Geophys., 2007b, vol. 48, no. 1, pp. 120–140.

    Article  Google Scholar 

  • Tsygankov, A.A., Litvinovskii, B.A., Jahn, B.M., et al., Sequence of magmatic events in the late Paleozoic of Transbaikalia, Russia (U–Pb isotope data), Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 972–994.

    Article  Google Scholar 

  • Tsygankov, A.A., Udoratina O.V., Burmakina G.N., and Grove, M., New data on U–Pb dating of zircons and the problem of the duration of the Angara–Vitim granitoid batholith formation, Dokl. Earth Sci., 2012, vol. 447, no. 1, pp. 1273–1277.

    Article  Google Scholar 

  • Tsygankov, A.A., Udoratina, O.V., Burmakina, G.N., et al., The Early Paleozoic basite magmatism of Western Transbaikalia: composition, isotope age (U–Pb, SHRIMP RG), magma sources, and geodynamics, Petrology, 2016a, vol. 24, no. 4, pp. 367–391.

    Article  Google Scholar 

  • Tsygankov, A.A., Khubanov, V.B., Travin, A.V., et al., Late Paleozoic gabbroids of Western Transbaikalia: U–Pb and Ar–Ar isotopic ages, composition, and petrogenesis, Russ. Geol. Geophys., 2016b, vol. 57, no. 5, pp. 1005–1027.

    Google Scholar 

  • Turutanov, E.Kh., 3D model of the Angara–Vitim Batholith, in Geodinamicheskaya evolyutsiya litosfery Tsentral’no- Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu). Materialy soveshchan. (Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt: from an Ocean to Continent, Proceedings of Conference), 2007, vol. 5, no. 2, pp. 131–132.

    Google Scholar 

  • Valley, J.W., Kinny, P.D., Schulze, D.J., and Spicuzza, M.J., Zircon megacrysts from kimberlite: oxygen isotope heterogeneity among mantle melts, Contrib. Mineral. Petrol., 1998, vol. 133, pp. 1–11.

    Article  Google Scholar 

  • Whalen, J.B., Currie, K.L., and Chappell, B.W., A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol., 1987, vol. 95, pp. 407–419.

    Article  Google Scholar 

  • Whalen, J.B., McNicoll, V.J., van Staal, C.R., et al., Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism, Newfoundland Appalachians: an example of a rapidly evolving magmatic system related to slab break-off, Lithos, 2006, vol. 89, pp. 377–404.

    Article  Google Scholar 

  • Wickham, S.M., Litvinovsky, B.A., Zanvilevich, A.N., and Bindeman, I.N., Geochemical evolution of Phanerozoic magmatism in Transbaikalia, East Asia: a key constraint of the origin of K-rich silicic magmas and the process of cratonization, J. Geophys. Res., 1995, 100/B8, pp. 15641–15654.

    Article  Google Scholar 

  • Wiedenbeck, M., Allé, P., Corfu, F., et al., Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses, Geostand. Newslett., 1995, vol. 19, pp. 1–23.

    Article  Google Scholar 

  • Xu, Y.G., Wei, X., Luo, Z.Y., et al., The Early Permian Tarim large igneous province: main characteristics and a plume incubation model, Lithos, 2014, vol. 204, pp. 20–35.

    Article  Google Scholar 

  • Yarmolyuk V.V., Budnikov S.V., Kovalenko V.I. et al., Geochronology and geodynamic setting of the Angara–Vitim Batholith, Petrology, 1997, vol. 5, no. 5, pp. 401–414.

    Google Scholar 

  • Yarmolyuk, V.V., Kovalenko, V.I., Sal’nikova E.B., et al., Tectono-magmatic zoning, magma sources, and geodynamics of the Early Mesozoic Mongolia–Transbaikal Province, Geotectonics, 2002, vol. 36, no. 4, pp. 293–311.

    Google Scholar 

  • Yarmolyuk, V.V., Kuzmin, M.I., Kozlovsky, A.M., Late Paleozoic–Early Mesozoic within-plate magmatism in North Asia: traps, rifts, giant batholiths, and the geodynamics of their origin, Petrology, 2013, vol. 21, no. 2, pp. 101–126.

    Article  Google Scholar 

  • Yarmolyuk, V.V., Kuzmin, M.I., and Ernst, R.E., Late Paleozoic–Early Mesozoic within-plate magmatism in North Asia: traps, rifts, giant batholiths, and the geodynamics of their origin, J. Asian Earth Sci., 2014, vol. 93, pp. 101–126.

    Article  Google Scholar 

  • Yarmolyuk, V.V., Kozlovskii, A.M., and Kuzmin, M.I., Zoned magmatic areas and anorogenic batholiths formation in the Central Asian orogenic belt (by the example of the late Paleozoic Khangai magmatic area), Russ. Geol. Geophys., 2016, vol. 57, no. 3, pp. 457–475.

    Article  Google Scholar 

  • Zhao, X.-F., Zhou, M.L., Li, J.-W., and Wu, F.-Y., Association of Neoproterozoic A-type and I-type granites in south China: implications for generation of A-type granites in a subduction-related environment, Chem. Geol., 2008, vol. 257, pp. 1–15.

    Article  Google Scholar 

  • Zonenshain, L.P., Kuzmin M.I., Natapov, L.M., Tektonika litosfernykh plit territorii SSSR (Tectonics of Lithospheric Plates of the USSR Territory), Moscow: Nedra, 1990, vol. 1–2.

    Google Scholar 

  • Zorin, Yu.A., Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia, Tectonophysics, 1999, vol. 306, pp. 33–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tsygankov.

Additional information

Original Russian Text © A.A. Tsygankov, G.N. Burmakina, V.B. Khubanov, M.D. Buyantuev, 2017, published in Petrologiya, 2017, Vol. 25, No. 4, pp. 395–418.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsygankov, A.A., Burmakina, G.N., Khubanov, V.B. et al. Geodynamics of Late Paleozoic batholith-forming processes in western Transbaikalia. Petrology 25, 396–418 (2017). https://doi.org/10.1134/S0869591117030043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117030043

Navigation