Skip to main content
Log in

The role of brines in high-temperature metamorphism and granitization

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper discusses petrological effects related to interaction between rocks and concentrated aqueous salt fluids (brines) at lower crustal metamorphism. These effects arise mainly from the low H2O activity typical of brines, while preserving and even increasing transport properties relative to pure H2O or H2O–nonpolar gas fluids. The paper presents thermodynamic properties of the halogen-bearing end members of the biotite solid solution based on experimental data, and examples illustrating how they can be employed to calculate the activities (concentrations) of alkali halides in the fluid. Action of brines significantly changes conventional views on the solubility of several minerals and on the distribution of elements (including trace elements) between minerals, melts, and fluids. The specific role of brines is also in bringing to interaction zones not only water but also alkali metals and Ca, which results in numerous metasomatic net-transfer reactions involving mafic minerals and/or exchange reactions with feldspars that produce new mineral assemblages with lower melting temperature, i.e., cause granitization of rocks as defined by D.S. Korzhinskii. Brines also exert fine “tuning” of metasomatic and melting processes: even at equal pressure, temperature, and water activity values metasomatism may or may not trigger melting depending on the Na/K/Ca ratio in the fluid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta-Vigil, A., Barich, A., Bartoli, O., et al., The composition of nanogranitoids in migmatites overlying the Ronda peridotites (Betic Cordillera, S. Spain): the anatectic history of a polymetamorphic basement, Contrib. Mineral. Petrol., 2016, vol. 171, p. 24. doi 10.1007/s00410-016-1230-3

    Article  Google Scholar 

  • Aranovich L.Ya. Biotite-Grnet equilibria in metapelites: I. Thermodynamics of solid solutions and end member reactions, Ocherki fiziko-khimicheskoi petrologii (Contribution to Physicochemical Petrology), Zharikov, V.A., Eds., Moscow: Nauka, 1983, vol. 11, pp. 121–136.

  • Aranovich L.Ya. Mineral’nye ravnovesiya mnogokomponentnykh tverdykh rastvorov (Mineral Equilibria of Multicomponent Solid Solutions), Moscow: Nauka, 1991.

    Google Scholar 

  • Aranovich, L.Ya., Fluid–mineral equilibria and thermodynamic mixing properties of fluid systems, Petrology, 2013, vol. 21, no. 6, pp. 539–549.

    Article  Google Scholar 

  • Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite–periclase equilibrium, Contrib. Mineral. Petrol., 1996, vol. 125, pp. 200–212.

    Article  Google Scholar 

  • Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated KCl and KCl-NaCl solutions at high temperatures and pressures measured by the brucite–periclase equilibrium, Contrib. Mineral. Petrol., 1997, vol. 127, pp. 261–271.

    Article  Google Scholar 

  • Aranovich, L.Y. and Newton, R.C., Reversed determination of the reaction: phlogopite + quartz = enstatite + K-feldspar + H2O in the ranges 750–875°C and 2–12 kbar at low H2O activity with concentrated KCl solutions, Am. Mineral., 1998, vol. 83, pp. 193–204.

    Article  Google Scholar 

  • Aranovich, L.Y. and Newton, R.C., Experimental determination of CO2-H2O activity–concentration relations at 600–1000°C and 6–14 kbar by reversed decarbonation and dehydration reactions, Am. Mineral., 1999, vol. 84, pp. 1319–1332.

    Article  Google Scholar 

  • Aranovich, L.Y. and Novikova, M.A., Acid–base fractionation in the model Cl-bearing granite, Mineral. Mag., 2011, vol. 75, p. 448.

    Google Scholar 

  • Aranovich, L.Y. and Podlesskii, K.K., Geothermobarometry of high-grade metapelites: simultaneously operating reactions, Evolution of Metamorphic Belts, Yardley, B and Daily, S., Eds., Geol. Soc. Spec. Publ., 1989, vol. 42, pp. 14–37.

    Google Scholar 

  • Aranovich, L.Y. and Safonov, O.G., Halogens in highgrade metamorphism, in The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Harlov, D. and Aranovich, L.Y., Eds., New York: Springer, 2017 (in press).

    Google Scholar 

  • Aranovich, L.Y., Makhluf, A.R., Manning, C.E., and Newton, R.C., Dehydration melting and the relationship between granites and granulites, Precambrian Res., 2014, vol. 253, pp. 26–37.

    Article  Google Scholar 

  • Aranovich, L.Y., Newton, R.C., and Manning, C.E., Brineassisted anatexis: experimental melting in the system haplogranite-H2O-NaCl-KCl at deep-crustal conditions, Earth Planet. Sci. Lett., 2013, vol. 374, pp. 111–120.

    Article  Google Scholar 

  • Aranovich, L.Ya., Prokof’ev, V.Yu., Pertsev, A.N., et al., Composition and origin of a K2O-rich granite melt in the Mid-Atlantic Ridge, 13°34' N: evidence from the analysis of melt inclusions and minerals of the gabbro–plagiogranite association, Dokl. Earth Sci., 2015, vol. 460, pp. 174–178.

    Article  Google Scholar 

  • Aranovich, L.Ya., Shmulovich, K.I., and Fed’kin, V.V., H2O and CO2 regime during regional metamorphism, Ocherki fiziko-khimicheskoi petrologii (Contribution to Physicochemical Petrology) Zharikov, V.A., Eds., Moscow: Nauka, 1987, vol. 14, pp. 96–117.

  • Aranovich, L.Ya., Zinger, T.F., Bortnikov, N.S., et al., Zircon in gabbroids from the axial zone of the Mid-Atlantic Ridge, Markov Deep, 6° N: correlation of geochemical features with petrogenetic processes, Petrology, 2013, vol. 21, no. 1, pp. 1–16.

    Article  Google Scholar 

  • Azimov, P.Ya. and Bushmin, S.A., Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solutions of varying acidity: thermodynamic modeling at 400–800°C and 1–5 kbar, Geochem. Int., 2007, vol. 45, no. 12, pp. 1305–1330.

    Article  Google Scholar 

  • Berman, R.G., WinTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations, Geol. Surv. Canada Open File, 2007, no. 5462.

    Google Scholar 

  • Berman, R.G. and Aranovich, L.Y., Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2, Contrib. Mineral. Petrol., 1996, vol. 126, pp. 1–22.

    Article  Google Scholar 

  • Berman, R.G., Aranovich, L.Y., Rancourt, P., and Mercier, P.H.J., Reversed phase equilibrium constraints on the stability of Mg–Fe–Al biotite, Am. Mineral., 2007, vol. 92, pp. 139–150.

    Article  Google Scholar 

  • Bischoff, J.L., Rosenbauer, R.J., and Fournier, R.O., The generation of HCl in the system CaCl2-H2O: vapor–liquid relations from 380–500°C, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 7–16.

    Article  Google Scholar 

  • Chevychelov, V.Y. and Chevychelova, T.K., Partitioning of Pb, Zn, W, Mo, Cl, and major elements between aqueous fluid and melt in the systems granodiorite (granite, leucogranite)-H2O-NaCl-HCl, Neues Jahrb. Mineral. Abh., 1997, vol. 172, no. 1, pp. 101–115.

    Google Scholar 

  • Connolly, J.A.D., Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation, Earth Planet. Sci. Lett., 2005, vol. 236, pp. 524–541.

    Article  Google Scholar 

  • Dolgov, Yu.A., Tomilenko, A.A., and Chupin, V.P., Inclusions of salt melts–brines in quartz from deep-seated granites and pegmatites, Dokl. Akad. Nauk SSSR, 1976, vol. 226, no. 4, pp. 938–941.

    Google Scholar 

  • Duan, Z., Moller, N., and Weare, J.H., Equation of state for the NaCl-H2O-CO2 system: prediction of phase equilibria and volumetric properties, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 2869–2882.

    Article  Google Scholar 

  • Gibert, R., Guillame, D., and LaPorte, D., Importance of fluid immiscibility in the H2O-NaCl-CO2 system and selective CO2 entrapment in granulites: experimental phase diagram at 5–7 kbar, 900°C and wetting textures, Eur. J. Mineral., 1998, vol. 10, pp. 1109–1123.

    Article  Google Scholar 

  • Haefner, A., Aranovich, L.Y., Connolly, J.A.D., and Ulmer, P., H2O activity in H2O-N2 fluids at high pressure and temperature measured by the brucite–periclase equilibrium, Am. Mineral., 2002, vol. 87, pp. 822–828.

    Article  Google Scholar 

  • Hansen, E.C., Newton, R.C., Janardhan, A.S., et al., Differentiation of Late Archean crust in the eastern Dharwar Craton, South India, J. Geol., 1995, vol. 103, pp. 629–651.

    Article  Google Scholar 

  • Holland, H.D., Granites, solutions, and base metal deposits, Econ. Geol., 1972, vol. 67, pp. 281–301.

    Article  Google Scholar 

  • Holland, T.J.B. and Powell, R., An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 1998, vol. 16, pp. 309–343.

    Article  Google Scholar 

  • Iiyama, J.T., Influence des anions sur les equilibres d’echange dions Na-K dans les feldspaths alcalins a 600°C sous une pression de 1000 bars, Bull. Soc. Franc. Mineral. Cristallograph., 1965, vol. 88, pp. 618–622.

    Google Scholar 

  • Johannes, W., Beginning of melting in the granite system Qz-Or-Ab-An-H2O, Contrib. Mineral. Petrol., 1984, vol. 86, pp. 264–273.

    Article  Google Scholar 

  • Johannes, W. and Holtz, F., Formation and ascent of granitic magmas, Geol. Rundsch., 1991, vol. 80, pp. 225–231.

    Article  Google Scholar 

  • Johnson, E.L., Experimentally determined limits for H2O-CO2-NaCl immiscibility in granulites, Geology, 1991, vol. 19, pp. 925–928.

    Article  Google Scholar 

  • Keppler, H., Constraints from partitioning experiments on the composition of subduction-zone fluids, Nature, 1996, vol. 380, pp. 237–240.

    Article  Google Scholar 

  • Kerrick, D.M. and Jacobs, G.K., A modified Redlich–Kwong equation for H2O, CO2 and H2O–CO2 mixtures at elevated pressures and temperatures, Am. J. Sci., 1981, vol. 281, pp. 735–767.

    Article  Google Scholar 

  • Khodorevskaya, L.I. and Aranovich, L.Ya. Experimental study of amphibole interaction with H2O-NaCl Fluid at 900°C, 500 MPa: toward granulite facies melting and mass transfer, Petrology, 2016, vol. 24, no. 3, pp. 215–233.

    Article  Google Scholar 

  • Korikovsky, S.P. and Aranovich, L.Ya., Charnockitization and enderbitization of mafic granulites in the Porya Bay Area, Lapland Granulite Belt, southern Kola Peninsula: I. Petrology and geothermobarometry, Petrology, 2010, vol. 18, no. 4, pp. 320–349.

    Article  Google Scholar 

  • Korikovsky, S.P. and Aranovich, L.Ya., Charnockitization of feldspar-free orthopyroxene–clinopyroxene–phlogopite metaultramafite in the Lapland Granulite Belt, southern Kola Peninsula: compositional trends of rocks and minerals, P–T Parameters, and Fluid Regime, Petrology, 2015, vol. 23, no. 3, pp. 189–226.

    Article  Google Scholar 

  • Korzhinskii, D.S., Fizikokhimicheskie osnovy analiza paragenezisov (Physicochemical Principles of Paragenesis Analysis), Moscow: AN SSSR, 1957.

    Google Scholar 

  • Korzhinskii, D.S. The principle of alkali mobility during magmatic phenomena, in Akademiku D.S. Belyankinu k 70-letiyu so dnya rozhdeniya (On the 70th Anniversary of the Academician D.S. Belyankin), Moscow: AN SSSR, 1946, pp. 242–261.

    Google Scholar 

  • Korzhinskii, D.S., Role of alkalinity in the formation of charnockitic gneisses, in Geologiya i petrologiya dokembriya (obshchie i regional’nye problemy) (Precambrian Geology and Petrology: General and Regional Problems), Moscow: AN SSSR, 1961, pp. 50–60.

    Google Scholar 

  • Kotel’nikov, A.R. and Kotel’nikova, Z.A., Experimental study of phase state of the H2O-CO2-NaCl system using a method of synthetic fluid inclusions in quartz, Geokhimiya, 1990, vol. 4, no. 4, pp. 526–537.

    Google Scholar 

  • Kusebauch, C., John, T., Barnes, J.D., et al., Halogen element and stable chlorine isotope fractionation caused by fluid–rock interaction (Amble sector, SE Norway), J. Petrol., 2015, doi 10.1093/petrology/egv001

    Google Scholar 

  • Lamb, W.M. and Valley, J.W., Granulite facies amphibole and biotite equilibria, and calculated peak-metamorphic water activities, Contrib. Mineral. Petrol., 1988, vol. 100, pp. 349–360.

    Article  Google Scholar 

  • MacKenzie, J.M. and Canil, D., Fluid/melt partitioning of Re, Mo, W, Tl and Pb in the system haplobasalt–H2O–Cl and the volcanic degassing of trace metals, J. Volcanol. Geotherm. Res., 2011, vol. 204, pp. 57–65.

    Article  Google Scholar 

  • Manning, C.E. and Aranovich, L.Y., Brines at high pressure and temperature: thermodynamic, petrologic and geochemical effects, Precambrian Res., 2014, vol. 253, pp. 6–16.

    Article  Google Scholar 

  • Mantegazzi, D., Sanchez-Valle, C., and Driesner, T., Thermodynamic properties of aqueous NaCl solutions to 1073 K and 4.5 GPa, and implications for dehydration reactions in subducting slabs, Geochim. Cosmochim. Acta, 2013, vol. 121, pp. 263–290.

    Google Scholar 

  • Markl, G. and Bucher, K., Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks, Nature, 1998, vol. 391, pp. 781–783.

    Article  Google Scholar 

  • Markl, G., Ferry, J.M., and Bucher, K., Formation of saline brines and salt in the lower crust by hydration reactions in partially retrogressed granulites from the Lofoten Islands, Norway, Am. J. Sci., 1998, vol. 298, pp. 705–757.

    Article  Google Scholar 

  • Munoz, J.L., F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits, Micas, Bailey, S.W., Ed., Rev. Mineral., 1984, vol. 13, pp. 469–494.

  • Nehring, F., Foley, S.F., Holtta, P., and Van Den Kerkhof, A.M., Internal differentiation of the Archean continental crust: fluid-controlled partial melting of granulites and TTG–amphibolite associations in Central Finland, J. Petrol., 2009, vol. 50, pp. 3–35.

    Article  Google Scholar 

  • Newton, R.C., Aranovich, L.Y., Hansen, E.C., and Vandenheuvel, B.A., Hypersaline fluids in Precambrian deepcrustal metamorphism, Precambrian Res., 1998, vol. 38, pp. 21–34.

    Google Scholar 

  • Newton, R.C. and Manning, C.E., Role of saline fluids in deep-crustal and upper-mantle metasomatism: insights from experimental studies, Geofluids, 2010, vol. 10, pp. 58–72.

    Google Scholar 

  • Newton, R.C., Touret, J.L.R., and Aranovich, L.Y., Fluids and H2O activity at the onset of granulite facies metamorphism, Precambrian Res., 2014, vol. 253, pp. 17–25.

    Article  Google Scholar 

  • Orville, P.M., Alkali ion exchange between vapor and feldspar phases, Am. J. Sci., 1963, vol. 261, pp. 201–237.

    Article  Google Scholar 

  • Orville, P.M., Plagioclase cation exchange equilibria with aqueous chloride solution: results at 700°C and 2000 bars in the presence of quartz, Am. J. Sci., 1972, vol. 272, pp. 234–272.

    Article  Google Scholar 

  • Perchuk, L.L., Gerya, T.V., and Korsman, L., Model of charnockitization of gneissic complexes, Petrologiya, 1994, vol. 2, no. 5, pp. 451–479.

    Google Scholar 

  • Perchuk, L.L. and Gerya, T.V., The fluid regime of metamorphism and the charnockite reaction in granulites: a review, Int. Geol. Rev., 1992, vol. 34, pp. 1–58.

    Article  Google Scholar 

  • Perchuk, L.L. and Gerya, T.V., Fluid control of charnockitization, Chem. Geol., 1993, vol. 108, pp. 175–186.

    Article  Google Scholar 

  • Reed, M.J., Candela, P.A., and Piccoli, P.M., The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800°C and 200 MPa, Contrib. Mineral. Petrol., 2000, vol. 140, pp. 251–262.

    Article  Google Scholar 

  • Ryabchikov, I.D., Termodinamika flyuidnoi fazy granitoidnykh magm (Thermodynamics of Fluid Phase of Granitoid Magmas), Moscow: Nauka, 1975.

    Google Scholar 

  • Safonov, O.G. and Aranovich, L.Y., Alkali control of highgrade metamorphism and granitization, Geosci. Front., 2014, vol. 5, pp. 711–727.

    Article  Google Scholar 

  • Safonov, O.G., Kosova, S.A., and van Reenen, D. D., Interaction of biotite–amphibole gneiss with the H2O–CO2–(K,Na)Cl fluids at 550 MPa and 750 and 800°C: experimental study and applications to dehydration and partial melting in the middle crust, J. Petrol., 2014, vol. 55, pp. 2419–2456.

    Article  Google Scholar 

  • Shaposhnikov, V.V. and Aranovich L.Ya., Experimental study of model granite melting in the presence of alkali carbonate solutions at 400 MPa, Geochem Int., 2015, vol. 53, no. 9, pp. 838–844. doi 10.7868/S0016752515090071

    Article  Google Scholar 

  • Shmulovich, K.I. and Graham, C., Plagioclase–aqueous solution equilibrium: concentration dependence, Petrology, 2008, vol. 16, no. 2, pp. 177–192.

    Article  Google Scholar 

  • Shmulovich, K.I. and Graham, C.M., Melting of albite and dehydration of brucite in H2O-NaCl fluids to 9 kbar and 700–900°C: implications for partial melting and water activities during high pressure metamorphism, Contrib. Mineral. Petrol., 1996, vol. 124, pp. 370–382.

    Article  Google Scholar 

  • Shmulovich, K.I. and Graham, C.M., An experimental study of phase equilibria in the system H2O-CO2-NaCl at 800°C and 9 kbar, Contrib. Mineral. Petrol., 1999, vol. 136, pp. 247–257.

    Article  Google Scholar 

  • Shmulovich, K.I. and Graham, C.M., An experimental study of phase equilibria in the systems H2O-CO2-CaCl2 and H2O-CO2-NaCl at high pressures and temperatures (500–800°C, 0.5–0.9 GPa): geological and geophysical applications, Contrib. Mineral. Petrol., 2004, vol. 146, pp. 450–462.

    Article  Google Scholar 

  • Shmulovich, K.I., Tkachenko, S.I., and Plyasunova, N.V., Phase equilibria in fluid systems at high pressures and temperatures, in Fluids in the Crust, Shmulovich, K.I., Yardley, B.W.D., and Gonchar, G.G., Eds., London: Chapman and Hall, 1995, pp. 193–214.

  • Touret, J.L.R., Fluid regime in southern Norway, the record of fluid inclusions, The Deep Proterozoic Crust in the North Atlantic Provinces, Tobi, A.C. and Touret, J.L.R., Eds., Dordrecht: Reidel, 1985, pp. 517–549.

  • Touret, J.L.R. and Huizenga, J.M., Fluids in granulites, Mem. Geol. Soc. Amer., 2011, vol. 207, pp. 25–37.

    Article  Google Scholar 

  • Trommsdorff, V., Skippen, G., and Ulmer, P., Halite and sylvite as solid inclusions in high-grade metamorphic rocks, Contrib. Mineral. Petrol., 1985, vol. 89, pp. 24–29.

    Article  Google Scholar 

  • Tropper, P. and Manning, C.E., Paragonite stability at 700°C in the presence of H2O-NaCl fluids: constraints on H2O activity and implications for high-pressure metamorphism, Contrib. Mineral. Petrol., 2004, vol. 147, pp. 740–749.

    Article  Google Scholar 

  • Unsworth, M. and Rondenay, S., Mapping the distribution of fluids in the crust and lithospheric mantle utilizing geophysical methods, Metasomatism and the Chemical Transformation of Rock: the Role of Fluids in Terrestrial and Extraterrestrial Processes, Harlov, D.E. and Austrheim, H., Eds., Heidelberg: Springer, 2012, pp. 535–598.

  • Valley, J.W., Bohlen, S.R., Essene, E.J., et al., Metamorphism in the Adirondacks: II. The role of fluids, J. Petrol., 1990, vol. 31, pp. 555–596.

    Article  Google Scholar 

  • Wannamaker, P.E., Jiracek, G.R., Stodt, J.A., et al., Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, in ferred from magnetotelluric data // J. Geophys. Res. 2002. V. 107; http:// dx.doi.org/10.1029/2001JB000186

    Google Scholar 

  • Wannamaker, P.E., Johnston, J.M., Booker, J.R., and Stodt, J.A., Anatomy of the southern Cordilleran hingeline, Utah and Nevada, from deep resistivity profiling, Geophysics, 1997, vol. 62, pp. 1069–1086.

    Article  Google Scholar 

  • Webster, J.D., Vetere, F., Botcharnikov, R.E., et al., Experimental and modeled chlorine solubilities in aluminosilicate melts at 1 to 7000 bars and 700 to 1250°C: applications to magmas of Augustine volcano, Alaska, Am. Mineral., 2015, vol. 100, pp. 522–535.

    Article  Google Scholar 

  • White, R.W., Powell, R., and Holland, T.J.B., Progress relating to calculation of partial melting equilibria for metapelites, J. Metamorph. Geol., 2007, vol. 25, pp. 511–527.

    Article  Google Scholar 

  • Zhang, Y.G. and Frantz, J.D., Experimental determination of the compositional limits of immiscibility in the system CaCl2–H2O–CO2 at high temperatures and pressures using synthetic fluid inclusions, Chem. Geol., 1989, vol. 74, pp. 289–308.

    Article  Google Scholar 

  • Zhu, C. and Sverjensky, D.A., Partitioning of F-Cl-OH between minerals and hydrothermal fluids, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 1837–1858.

    Article  Google Scholar 

  • Zhu, C. and Sverjensky, D.A., F-Cl-OH partitioning between biotite and apatite, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 3435–3467.

    Article  Google Scholar 

  • Zhu, C., Xu, H., Ilton, E.S., et al., TEM-AEM observations of Cl-rich amphibole and biotite and possible petrologic implications, Am. Mineral., 1994, vol. 79, pp. 909–920.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ya. Aranovich.

Additional information

Original Russian Text © L.Ya. Aranovich, 2017, published in Petrologiya, 2017, Vol. 25, No. 5, pp. 491–503.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aranovich, L.Y. The role of brines in high-temperature metamorphism and granitization. Petrology 25, 486–497 (2017). https://doi.org/10.1134/S0869591117050022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117050022

Navigation