Skip to main content
Log in

Fahlore thermochemistry: Gaps inside the (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 cube

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Possible topologies of miscibility gaps in arsenian (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores are examined. These topologies are based on a thermodynamic model for fahlores whose calibration has been verified for (Cu,Ag)10(Fe,Zn)2Sb4S13 fahlores, and conform with experimental constraints on the incompatibility between As and Ag in (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores, and with experimental and natural constraints on the incompatibility between As and Zn and the nonideality of the As for Sb substitution in Cu10(Fe,Zn)2(Sb,As)4S13 fahlores. It is inferred that miscibility gaps in (Cu,Ag)10(Fe,Zn)2As4S13 fahlores have critical temperatures several °C below those established for their Sb counterparts (170 to 185°C). Depending on the structural role of Ag in arsenian fahlores, critical temperatures for (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores may vary from comparable to those inferred for (Cu,Ag)10(Fe,Zn)2As4S13 fahlores, if the As for Sb substitution stabilizes Ag in tetrahedral metal sites, to temperatures approaching 370°C, if the As for Sb substitution results in an increase in the site preference of Ag for trigonal-planar metal sites. The latter topology is more likely based on comparison of calculated miscibility gaps with compositions of fahlores from nature exhibiting the greatest departure from the Cu10(Fe,Zn)2(Sb,As)4S13 and (Cu,Ag)10(Fe,Zn)2Sb4S13 planes of the (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlore cube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balabin, A.I. and Sack, R.O., Thermodynamics of (Zn, Fe)S sphalerite: a CVM approach with large basis clusters, Mineral. Mag., 2000, vol. 64, pp. 923–943.

    Article  Google Scholar 

  • Breslovska, V. and Tarkian, M., Compositional variation in Bi-bearing fahlores, Neues Jahrb. Mineral., Monatsh., 1994, vol. 1994, pp. 230–240.

    Google Scholar 

  • Bushnell, S.E., Paragenesis and Zoning of the Cananea–Duluth breccia pipe, Sonora, Mexico: Ph. D. Thesis, Cambridge, Massachusetts: Harvard University, 1983.

    Google Scholar 

  • Cabri, L.J., New data on phase relations in the Cu–Fe–S system, Econ. Geol., 1973, vol. 68, pp. 443–454.

    Article  Google Scholar 

  • Charlat, M. and Levy, C., Substitutions multiples dans la serie tennantite-tetrahedrite, Bull. Soc. Fr. Mineral. Petrol., 1974, vol. 97, pp. 241–250.

    Google Scholar 

  • Charlat, M. and Levy, C., Influence principales sue le parametre cristallin dans la série tennantite-tétrahedrite, Bull. Soc. Fr. Mineral. Petrol., 1975, vol. 97, pp. 241–250.

    Google Scholar 

  • Charnock, J.M., Garner, C.D., Pattrick, R.A.D., and Vaughan, D.J., Investigation into the nature of copper and silver sites in Argentian tetrahedrite using EXAFS spectroscopy, Phys. Chem. Mineral., 1988, vol. 15, pp. 296–299.

    Article  Google Scholar 

  • Charnock, J.M., Garner, C.D., Pattrick, R.A.D., and Vaughan, D.J., Coordination sites of metals in tetrahedrite minerals determined by EXAFS, J. Solid State Chem., 1989, vol. 82, pp. 279–289.

    Article  Google Scholar 

  • Chinchilla, D., Ortega, L., Piña, R., et al., The Patricia Zn–Pb–Ag epithermal ore deposit: an uncommon type of mineralization in northeastern Chile, Ore Geol. Rev., 2016, vol. 73, pp. 104–126.

    Article  Google Scholar 

  • Chutas, N.I. and Sack, R.O., Ore genesis at La Colorada Ag–Zn–Pb deposit in Zacatecas, Mexico, Mineral. Mag., 2004, vol. 68, no. 6, pp. 923–937.

    Article  Google Scholar 

  • Chutas, N.I., Kress, V.C., Ghiorso, M.S., and Sack, R.O., A solution model for high-temperature PbS–AgSbS2–AgBiS2 galena, Am. Mineral., 2008, vol. 93, pp. 1630–1640.

    Article  Google Scholar 

  • Cronstedt, A.F., Försök til Mineralogie, Eller Mineral-Rikets Upställning, Stockholm, Wilde, 1758

  • Ebel, D.S. and Sack, R.O., Ag-Cu and As-Sb exchange energies in tetrahedrite–tennantite fahlores, Geochim. Cosmochim. Acta, 1989, vol. 53, pp. 2301–2309.

    Article  Google Scholar 

  • Ebel, D.S. and Sack, R.O., As–Ag incompatibility in fahlores, Mineral. Mag., 1991, vol. 55, pp. 521–528.

    Article  Google Scholar 

  • Engi, M., Equilibria involving Al–Cr spinel: Mg–Fe exchange with olivine. experiments, thermodynamic analysis, and consequences of geothermometry, Am. J. Sci., 1983, vol. 283A, pp. 29–71.

    Google Scholar 

  • Evans, B.W. and Frost, R.G., Chrome-spinel in progressive metamorphism–a preliminary analysis, Geochim. Cosmochim. Acta, 1975, vol. 39, pp. 959–972.

    Article  Google Scholar 

  • Gaines, R.V., Skinner, H.C.W., Foord, E.E., et al., Dana’s New Mineralogy, 8th ed, New York: John Wiley & Sons, 1997.

    Google Scholar 

  • Gamyanin, G.N., Bortnikov, N.S., Alpatov, V.V., et al., The Kupol’noe silver–tin deposit (Sakha Republic, Russia): an example of the evolution of an ore-magmatic system, Geol. Ore Deposits, 2001, vol. 43, no. 6, pp. 442–467.

    Google Scholar 

  • Ghiorso, M.S., The application of the Darken equation to mineral solid solutions with variable degrees of order-disorder, Am. Mineral., 1990, vol. 104, pp. 539–543.

    Google Scholar 

  • Ghosal, S. and Sack, R.O., As–Sb energetics in Argentian sulfosalts, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 3573–3579.

    Article  Google Scholar 

  • Ghosal, S. and Sack, R.O., Bi–Sb energetics in sulfosalts and sulfides, Mineral. Mag., 1999, vol. 63, pp. 723–733.

    Article  Google Scholar 

  • Goodell, P.C., Zoning and Paragenesis in the Julcani District, Peru: a Study of Metal Ratios: Ph. D. Thesis, Cambridge: Massachusetts: Harvard University, 1970.

    Google Scholar 

  • Hall, A.J., Substitution of Cu by Zn, Fe and Ag in synthetic tetrahedrite, Bull. Soc. Franc. Minéral. Petrol., 1972, vol. 95, pp. 583–594.

    Google Scholar 

  • Hammond, G.E., Lichtner, P.C., Mills, R.T., and Lu, C., Toward petascale computing in geosciences: application to the Hanford 300 Area, J. Phys. Conference Ser., 2008, vol. 125, pp. 1–10; 012051. doi 10.1088/1742-6596/125/1/012051

    Article  Google Scholar 

  • Harlov, D.E. and Sack, R.O., Thermochemistry of polybasite–pearceite solutions, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 4363–4375.

    Article  Google Scholar 

  • Hernández, A.N.G. and Akasaka, M., Silver-bearing and associated minerals in El Zancudo deposit, Antioquia, Colombia, Res. Geol., 2007, vol. 57, no. 4, pp. 386–399.

    Article  Google Scholar 

  • Hernández, A.N.G. and Akasaka, M., Ag-rich tetrahedrite in the El Zancudo deposit, Colombia: occurrence, chemical compositions and genetic temperatures, Res. Geol., 2010, vol. 60, no. 3, pp. 218–233.

    Article  Google Scholar 

  • Ixer, R.A. and Stanley, C.J., Silver mineralization at Sark’s Hope mine, Sark, Channel Islands, Mineral. Mag., 1983, vol. 47, pp. 539–545.

    Article  Google Scholar 

  • Johnson, M.L. and Burnham, C.W., Crystal structure refinement of an arsenic bearing Argentian tetrahedrite, Am. Mineral., 1985, vol. 70, pp. 165–170.

    Google Scholar 

  • Johnson, M.L. and Jeanloz, R.A., A Brillouin-zone model for compositional variation in tetrahedrite, Am. Mineral., 1983, vol. 68, pp. 220–226.

    Google Scholar 

  • Johnson, N.E. and Rimstidt, J.D., Compositional trends in tetrahedrite, Can. Mineral., 1986, vol. 24, pp. 385–397.

    Google Scholar 

  • Kalbskopf, R., Die koordination des quicksilbers im schwazit, Tschermaks Mineralogie und Petrographie Mittilungen, 1971, vol. 18, pp. 173–175.

    Article  Google Scholar 

  • Kalbskopf, R., Strukturverfeinerung des freibergs, Tschermaks Mineralogie und Petrographie Mitteilungen, 1972, vol. 19, pp. 147–155.

    Article  Google Scholar 

  • Kalbskopf, R., Synthese und kristallstrucktur von Cu12-xTe4S13, dem tellur-endglied der fahlerze, Tschermaks Mineralogie und Petrographie Mitteilungen, 1974, vol. 21, pp. 147–155.

    Google Scholar 

  • Karop-Møller, S. and Makovicky, E., Exploratory studies of substitutions in tetrahedrite–tennantite solid solutions. Part V: mercurian tetrahedrite, Neues Jahrb. Mineral. Abh., 2003, vol. 179, pp. 73–83.

    Article  Google Scholar 

  • Kase, K., Tellurium tennantite from the Besshi-type deposits of the Sambagawa metamorphic belt, Japan, Can. Mineral., 1986, vol. 24, pp. 399–404.

    Google Scholar 

  • Klünder-Hansen, M., Makovicky, E., and Karop-Møller, S., Exploratory studies of substitutions in tetrahedrite-tennantite solid solutions. Part IV. Substitution of germanium and tin, Neues Jahrb. Mineral. Abh., 2003, vol. 179, pp. 43–71.

    Article  Google Scholar 

  • Klünder-Hansen, M., Karop-Møller, S., and Makovicky, E., Exploratory studies of substitutions in tetrahedrite–tennantite solid solutions. Part III. The solubility of bismuth in tetrahedrite–tennantite containing iron and zinc, Neues Jahrb. Mineral. Mitteil., 2003b, vol. 2003, pp. 153–175.

    Article  Google Scholar 

  • Kovalenker, V.A., Troneva, N.V., and Dobronichenko, V.V., Unusual compositions of the main ore-forming minerals of the pipe-shaped ore deposit of Kochbulashk, Methods for the Investigation of Ore-Forming Sulfides and their Paragenesis, Moscow, 1980, pp. 140–164.

    Google Scholar 

  • Lichtner, P.C., Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems, Geochim. Cosmochim. Acta, 1985, vol. 49, pp. 779–800.

    Article  Google Scholar 

  • Lichtner, P.C., Kinetic rate laws invariant to scaling the mineral formula unit, Am. J. Sci., 2016, vol. 316, no. 5, pp. 437–469.

    Article  Google Scholar 

  • Lichtner, P.C., Oelkers, E.H., and Helgeson, H.C., Exact and numerical solutions to the moving boundary problem resulting from reversible heterogeneous reactions and aqueous diffusion in a porous medium, J. Geophys. Res., 1986a, vol. 91, pp. 7531–7544.

    Article  Google Scholar 

  • Lichtner, P.C., Oelkers, E.H., and Helgeson, H.C., Interdiffusion with multiple precipitation/dissolution reactions, Geochim. Cosmochim. Acta, 1986b, vol. 50, pp. 1951–1966.

    Article  Google Scholar 

  • Lichtner, P.C., Helgeson, H.C., and Murphy, W.M., Lagrangian and eulerian representations of metasomatic alteration of minerals, Chemical Transport in Metasomatic Process, Helgeson, H.C., Eds., Dordrecht: Reidel, 1987, 519–545.

    Chapter  Google Scholar 

  • Lu, C. and Lichtner, P.C., High resolution numerical investigation on the effect of convective instability on long term CO2 storage in saline aquifers, J. Phys. Conf. Ser, 2007, vol. 78, pp. 1–6; 012042. doi 10.1088/1742-6596/78/1/012042

    Article  Google Scholar 

  • Lynch, J.V.G., Large-scale hydrothermal zoning reflected in the tetrahedrite–freibergite solid solution, keno hill Ag–Pb–Zn district, Yukon, Can. Mineral., 1989, vol. 27, pp. 383–400.

    Google Scholar 

  • Makovicky, E., Crystal structures of sulfides and other chalcogenides, Sulfide Mineralogy and Geochemistry, Vaughan, D.J., Ed., Mineral. Soc. Amer. Rev. Mineral. Geochem., 2006, vol. 61, pp. 7–125.

    Google Scholar 

  • Makovicky, E. and Karop-Møller, S., Exploratory studies on substitution of minor elements in synthetic tetrahedrite. Part I: Substitution by Fe, Zn, Co, Ni, Mn, Cr, V, and Pb. Unit-cell parameter changes on substitution and the structural role of Cu2+, Neues Jahrb. Mineral. Abh., 1994, vol. 167, pp. 89–123.

    Google Scholar 

  • Makovicky, E. and Skinner, B.J., Studies of the sulfosalts of copper VI. Low-temperature exsolution in synthetic tetrahedrite solid solution, Cu12 + xSb4 + yS13, Can. Mineral., 1978, vol. 16, pp. 611–623.

    Google Scholar 

  • Makovicky, E. and Skinner, B.J., Studies of the sulfosalts of copper VII. Crystal structures of the exsolution products Cu12.3Sb4S13 and Cu13.8Sb4S13, Can. Mineral., 1979, vol. 17, pp. 619–634.

    Google Scholar 

  • Makovicky, E., Forcher, K., Lottermoser, W., and Amthauer, G., The role of Fe2+ and Fe3+ in synthetic Fe-substituted tetrahedrite, Mineral. Petrol., 1990, vol. 43, pp. 73–81.

    Article  Google Scholar 

  • Mills, R.T., Hammond, G.E., Lichtner, P.C., et al., Modeling subsurface reactive flows using leadership-class computing, J. Phys. Conf. Ser., 2009, vol. 180, pp. 1–10; 012062. doi 10.1088/1742-6596/180/1/012062

    Article  Google Scholar 

  • Mozgova, N.N. and Tsepin, A.I., Grey Ores: Aspects of Chemical Composition and Properties, Moscow: Nauka, 1983.

    Google Scholar 

  • O’Leary, M.J. and Sack, R.O., Fe–Zn exchange reaction between tetrahedrite and sphalerite in natural environments, Contrib. Mineral. Petrol., 1987, vol. 96, pp. 415–425.

    Article  Google Scholar 

  • Pattrick, R.A.D. and Hall, A.J., Silver substitution into synthetic zinc, cadmium and iron tetrahedrites, Mineral. Mag., 1983, vol. 47, pp. 441–445.

    Article  Google Scholar 

  • Pauling, L. and Newmann, E.W., The crystal structure of binnite (Cu, Fe)12As4S13 and the chemical composition of minerals of the tetrahedrite group, Zeitsch. Kristall., 1934, vol. 88, pp. 54–62.

    Google Scholar 

  • Plotinskaya, O.Yu., Rusinov, V.L., Kovalenker, V.A., and Seltmann, R., Oscillatory zoning in goldfieldite as a possible indicator of their formation conditions, Geochem. Mineral. Petrol., 2005a, vol. 43, pp. 142–147.

    Google Scholar 

  • Plotinskaya, O.Yu., Kovalenker, V.A., Rusinov, V.L., and Seltmann, R., Oscillatory zoning in goldfieldite from epithermal gold deposits, Dokl. Earth Sci, 2005b, vol. 304, no. 5, pp. 799–802.

    Google Scholar 

  • Raabe, K.C. and Sack, R.O., Growth zoning in tetrahedrite from the hock hocking mine, Can. Mineral., 1984, vol. 22, pp. 577–582.

    Google Scholar 

  • Reed, M.H. and Palandri, J., SOLTHERM: Data Base of Equilibrium Constants for Aqueous-Mineral-Gas Equilibria, University of Oregon, 2006.

    Google Scholar 

  • Ramdohr, P., The Ore Minerals and their Intergrowths, London: Pergamon, 1969.

    Google Scholar 

  • Ross, N.L. and Price, G.D., The Stability of Minerals, London: Chapman and Hall, 1992.

    Google Scholar 

  • Sack, R.O., Spinels as petrogenetic indicators: activitycomposition relations at low pressures, Contrib. Mineral. Petrol., 1982, vol. 79, pp. 169–182.

    Article  Google Scholar 

  • Sack, R.O., Thermochemistry of tetrahedrite-tennantite fahlores, The Stability of Minerals, Ross, N.L., and Price, G.D., Eds., London, Chapman and Hall, 1992, pp. 243–266.

    Google Scholar 

  • Sack, R.O., Internally consistent database for sulfides and sulfosalts in the system Ag2S–Cu2S–ZnS–Sb2S3–As2S3, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 3803–3812.

    Article  Google Scholar 

  • Sack, R.O., Note on “large-scale” hydrothermal zoning reflected in the tetrahedrite–freibergite solid solution, Keno Hill Ag–Pb–Zn district, “Yukon”, J.V. Gregory Lynch, Ed., Can. Mineral., 2002, vol. 40, pp. 1717–1719.

    Article  Google Scholar 

  • Sack, R.O., Internally consistent database for sulfides and sulfosalts in the system Ag2S–Cu2S–ZnS–FeS–Sb2S3–As2S3, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 1157–1164.

    Article  Google Scholar 

  • Sack, R.O., MgAl2O4–Al8/3O4 spinels. Formulation and calibration of the low-pressure thermodynamics of mixing, Am. J. Sci., 2014, vol. 314, no. 4, pp. 858–877.

    Article  Google Scholar 

  • Sack, R.O. and Brackebusch, F., Fahlore as an indicator of mineralization temperature and gold fineness, CIM Bull., 2004, vol. 97, pp. 78–83.

    Google Scholar 

  • Sack, R.O. and Ebel, D.S., As-Sb exchange energies in tetrahedrite- tennantite fahlores and bournonite-seligmannite solid solutions, Mineral. Mag., 1993, vol. 57, pp. 635–642.

    Article  Google Scholar 

  • Sack, R.O. and Ghiorso, M.S., An internally consistent model for the thermodynamic properties of Fe–Mg titanomagnetite–aluminate spinels, Contrib. Mineral. Petrol., 1991a, vol. 106, pp. 474–505.

    Article  Google Scholar 

  • Sack, R.O. and Ghiorso, M.S., Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications, Am. Mineral., 1991b, vol. 76, pp. 827–847.

    Google Scholar 

  • Sack, R.O. and Goodell, P.C., Retrograde reactions involving galena and Ag-sulfosalts in a zoned ore deposit, Julcani, Peru, Mineral. Mag., 2002, vol. 66, pp. 1043–1062.

    Article  Google Scholar 

  • Sack, R.O. and Lichtner, P.C., Constraining compositions of hydrothermal fluids in equilibrium with polymetallic oreforming sulfide assemblages, Econ. Geol., 2009, vol. 104, pp. 1249–1264.

    Article  Google Scholar 

  • Sack, R.O. and Lichtner, P.C., Econ. Geol., 2010, vol. 105, no. 1, p. 249. http://dx.doi.org/10.2113/gsecongeo. 105.1.249

    Article  Google Scholar 

  • Sack, R.O. and Loucks, R.R., Thermodynamic properties of tetrahedrite–tennantites. I. Constraints on the interdependencies of the Ag↔Cu, Fe↔Zn, Cu↔Fe, and As↔Sb exchange reactions, Am. Mineral., 1985, vol. 70, pp. 1270–1289.

    Google Scholar 

  • Sack, R.O., Ebel, D.S., and O’Leary, M.J., Tennahedrite thermochemistry and metal zoning, Chemical Transport in Metasomatic Processes, Helgeson, H.C., Ed., Dordrecht: Reidel, NATO Advanced Study Institute, 1987, pp. 701–731.

  • Sack, R.O., Kuehner, S.M., and Hardy, L.S., Retrograde Ag-enrichment in fahlores from the Coeur d’Alene mining district, Idaho, USA, Mineral. Mag., 2002, vol. 66, pp. 215–229.

    Article  Google Scholar 

  • Sack, R.O., Lynch, J.G.V., and Foit, F.F., Fahlore as a petrogenetic indicator: Keno Hill Ag–Pb–Zn district, Yukon, Canada, Mineral. Mag., 2003, vol. 67, pp. 1023–1038.

    Article  Google Scholar 

  • Sack, R.O., Fredericks, R.M., Hardy, L.S., and Ebel, D.S., Origin of high-silver fahlores from the Galena mine, Wallace, Idaho, USA, Am. Mineral., 2005, vol. 90, pp. 1000–1007.

    Article  Google Scholar 

  • Shimizu, M. and Stanley, C.J., Coupled substitutions in goldfieldite–tetrahedrite minerals from the Ikiri mine, Japan, Mineral. Mag., 1991, vol. 55, pp. 515–519.

    Article  Google Scholar 

  • Shock, E.L., et al., SLOP98.dat (computer data file), 1998. http://geopig.asu.edu/sites/default/files/slop98.dat.

    Google Scholar 

  • Spiridonov, E.M., Species and varieties of fahlore (tetrahedrite–tennantite) and their rational nomenclature, Dokl. Akad. Nauk SSSR, 1984, vol. 279, pp. 166–172.

    Google Scholar 

  • Spiridonov, E.M. and Okrugin, V.M., Selenium goldfieldite, a new fahlore variety, Dokl. Akad. Nauk SSSR, 1985, vol. 280, pp. 476–478.

    Google Scholar 

  • Sugaki, A., Shima, H., Kitakaze, A., and Harada, H., Isothermal phase relations in the system Cu–Fe–S under hydrothermal conditions at 350°C and 300°C, Econ. Geol., 1975, vol. 70, pp. 806–823.

    Article  Google Scholar 

  • Tatsuka, K. and Morimoto, N., Tetrahedrite stability relations in the Cu–Sb–S system, Econ. Geol., 1977a, vol. 72, pp. 258–270.

    Article  Google Scholar 

  • Tatsuka, K. and Morimoto, N., Tetrahedrite stability relations in the Cu–Fe–Sb–S system, Am. Mineral., 1977b, vol. 62, pp. 1101–1109.

    Google Scholar 

  • Thompson, J.B., Jr., Chemical reactions in crystals, Am. Mineral., 1969, vol. 54, pp. 341–375.

    Google Scholar 

  • Thompson, J.B., Jr., Chemical reactions in crystals. Corrections and clarifications, Am. Mineral., 1970, vol. 55, pp. 528–532.

    Google Scholar 

  • Trudu, A.G. and Knittel, U., Crystallography, mineral chemistry and chemical nomenclature of goldfieldite, the tellurian member of the tetrahedrite solid-solution series, Can. Mineral., 1998, vol. 36, pp. 1115–1137.

    Google Scholar 

  • White, J.L., Orr, R.L., and Hultgreen, R., The thermodynamic properties of gold–silver alloys, Acta Metall., 1957, vol. 5, pp. 747–760.

    Article  Google Scholar 

  • Wu, I. and Petersen, U., Geochemistry of tetrahedrite–tennantite at Casapalca, Peru, Econ. Geol., 1977, vol. 72, pp. 933–1016.

    Article  Google Scholar 

  • Wuensch, B.J., The crystal structure of tetrahedrite, Cu12Sb4S13, Zeitschrift fur Kristallographie, 1964, vol. 119, pp. 437–453.

    Article  Google Scholar 

  • Wuensch, B.J., Takeuchi, Y., and Nowack, W., Refinement of the crystal structure of binnite, Cu12As4S13, Zeitschrift fur Kristallographie, 1966, vol. 123, pp. 1–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Sack.

Additional information

Published in Russian in Petrologiya, 2017, Vol. 25, No. 5, pp. 504–522.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sack, R.O. Fahlore thermochemistry: Gaps inside the (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 cube. Petrology 25, 498–515 (2017). https://doi.org/10.1134/S0869591117050071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117050071

Navigation