Skip to main content
Log in

“Ultrahigh-temperature” metamorphism and titaniQ: Examples from eastern Siberia

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Titanium contents of quartz have been analyzed in samples of granulites from various metamorphic complexes of eastern Siberia (Sutam, Chogar, and Sharyzhalgai) that contain mineral assemblages conventionally regarded as indicative of “ultrahigh-temperature” metamorphism. The related TitaniQ temperature estimates (Wark and Watson, 2006) are consistent with those of other mineralogical geothermometers and are commonly much lower than “ultrahigh-temperature”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aranovich, L.Y. and Berman, R.G., Optimized standard state and solution properties of minerals. II. Comparisons, predictions, and applications, Contrib. Mineral. Petrol., 1996, vol. 126, pp. 25–37.

    Article  Google Scholar 

  • Aranovich, L.Y. and Podlesskii, K.K., Geothermobarometry of high-grade metapelites: simultaneously operating reactions, in Evolution of Metamorphic Belts, Cliff, R.A., Yardley, B.W.D., and Daly, J.S., Eds., Geol. Soc. London, Spec. Publ., 1989, vol. 43, pp. 41–65.

    Google Scholar 

  • Droop, G.T.R., A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria, Mineral. Mag., 1987, vol. 51, pp. 431–435.

    Article  Google Scholar 

  • Gerya, T.V., Perchuk, L.L., and Podlesskii, K.K., Data base and a “GEOPATH” program of mineral thermobarometry, Eksperimental’naya mineralogiya: nekotorye itogi na rubezhe stoletii (Experimental Mineralogy: Some Results on the turn of 21rst Century), Zharikov, V.A. and Fed’kin, V.V., Eds., Moscow: Nauka, 2004, vol. 2, pp. 188–206.

  • Harley, S.L., On the occurence and characterization of ultrahigh-temperature crustal metamorphism, What Drives Metamorphism and Metamorphic Reactions?, Treloar, P.J. and O’brien, P.J. Eds., Geol. Soc. London, Spec. Publ., 1998, vol. 138, pp. 81–107.

    Google Scholar 

  • Harley, S.L., Refining the P–T records of UHT crustal metamorphism, J. Metamorph. Geol., 2008, vol. 26, pp. 125–154.

    Article  Google Scholar 

  • Holland, T.J.B. and Powell, R., An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids, J. Metamorph. Geol., 2011, vol. 29, pp. 333–383.

    Article  Google Scholar 

  • Kelsey, D.E., On ultrahigh-temperature crustal metamorphism, Gondwana Res., 2008, vol. 13, pp. 1–29.

    Article  Google Scholar 

  • Kelsey, D.E. and Hand, M., On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings, Geosci. Front., 2015, vol. 6, pp. 311–356.

    Article  Google Scholar 

  • Newton, R.C., An experimental determination of the high pressure stability limits of magnesian cordierite under wet and dry conditions, J. Geol., 1972, vol. 80, pp. 398–420.

    Article  Google Scholar 

  • Perchuk, L.L., Aranovich, L.Y., Podlesskii, K.K., et al., Precambrian granulites of the Aldan Shield, eastern Siberia, USSR, J. Metamorph. Geol., 1985, vol. 3, pp. 265–310.

    Article  Google Scholar 

  • Podlesskii, K.K., Hypersthene in assemblage with sillimanite and quartz as an indicator of metamorphic conditions, Dokl. Earth Sci., 2003, vol. 389, pp. 248–251.

    Google Scholar 

  • Podlesskii, K.K., Stability of sapphirine-bearing mineral assemblages in the system FeO-MgO-Al2O3-SiO2 and metamorphic P–T parameters of aluminous granulites, Petrology, 2010, vol. 18, no. 4, pp. 350–368.

    Article  Google Scholar 

  • Podlesskii, K.K. and Kurdyukov, E.B., Sapphirine in association with quartz in the Chogar and Sharyzhalgai complexes (East Siberia), Izv. Aakad. Nauk SSSR, Ser. Geol., 1992, no. 5, pp. 62–67.

    Google Scholar 

  • Podlesskii, K.K., Aranovich, L.Y., Gerya, T.V., and Kosyakova, N.A., Sapphirine-bearing assemblages in the system MgO–Al2O3–SiO2: a continuing ambiguity, Eur. J. Mineral., 2008, vol. 20, pp. 721–734.

    Article  Google Scholar 

  • Reno, B.L., Brown, M., Kobayashi, K., et al., Eclogite–high-pressure granulite metamorphism records early collision in west Gondwana: new data from the southern Brasilia belt, Brazil, J. Geol. Soc. London, 2009, vol. 166, pp. 1013–1032.

    Article  Google Scholar 

  • Wark, D.A. and Watson, E.B., TitaniQ: a titanium-inquartz geothermometer, Contrib. Mineral. Petrol., 2006, vol. 152, pp. 743–754.

    Article  Google Scholar 

  • Wheller, C.J. and Powell, R., A new thermodynamic model for sapphirine: calculated phase equilibria in K2O–FeO–MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3, J. Metamorph. Geol., 2014, vol. 32, pp. 287–299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Podlesskii.

Additional information

Original Russian Text © K.K. Podlesskii, I.G. Griboedova, E.B. Kurdyukov, 2017, published in Petrologiya, 2017, Vol. 25, No. 5, pp. 523–532.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlesskii, K.K., Griboedova, I.G. & Kurdyukov, E.B. “Ultrahigh-temperature” metamorphism and titaniQ: Examples from eastern Siberia. Petrology 25, 516–525 (2017). https://doi.org/10.1134/S0869591117050058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117050058

Navigation