Skip to main content
Log in

Hydrosilicate liquids in the system rare-metal granite–Na2O–SiO2–H2O as accumulators of ore components at high pressure and temperature

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Experimental investigations in the system rare-metal granite–Na2O–SiO2–H2O with the addition of aqueous solutions containing Rb, Cs, Sn, W, Mo, and Zn at 600°C and 1.5 kbar showed that the typical elements of rare-metal granites (Li, Rb, Cs, Be, Nb, and Ta) are preferentially concentrated in hydrosilicate liquids coexisting with aqueous fluid. The same behavior is characteristic of Zn and Sn, the minerals of which are usually formed under hydrothermal conditions. In contrast, Mo and W are weakly extracted by hydrosilicate liquids and almost equally distributed between them and aqueous fluids. Liquids similar to those described in this paper are formed during the final stages of magmatic crystallization in granite and granitepegmatite systems. The formation of hydrosilicate liquids in late magmatic and postmagmatic processes will be an important factor controlling the redistribution of metal components between residual magmatic melts, minerals, and aqueous fluids and, consequently, the mobility of these components in fluid-saturated magmatic systems enriched in rare metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balitsky, V.S., Kurashige, M., Balitskaya, L.V., and Iwasaki, W., Study of quartz solubility and “heavy” phase formation under industrial synthetic quartz growth conditions, Joint ISHR&ICSTR, Kochi: Kochi University, 2000, pp. 318–321.

    Google Scholar 

  • Bureau, H. and Keppler, H., Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications, Earth Planet. Sci. Lett., 1999, vol. 165, no. 2, pp. 187–196.

    Article  Google Scholar 

  • Butuzov, V.P. and Bryatov, L.V., Study of phase equilibria of the part of the H2O–SiO2–Na2CO3 system at high temperatures and pressures, Kristallografiya, 1957, vol. 204, no. 4, pp. 944–947.

    Google Scholar 

  • Efremov, I.F., Periodicheskie kolloidnye struktury (Periodical Colloid Structures), Leningrad: Khimiya, 1971.

    Google Scholar 

  • Gershuni, G.Z. and Zhukhovitskii, E.M., Konvektivnaya ustoichivost’ neszhimaemoi zhidkosti (Convection Stability of Incompressible Liquid), Moscow: Nauka, 1972.

    Google Scholar 

  • Isuk, E. and Carman, J., The system Na2Si2O5–K2Si2O5–MoS2–H2O with implications for molybdenum transport in silicate melts, Econ. Geol., 1981, vol. 76, no. 8, pp. 2222–2235.

    Article  Google Scholar 

  • Jeffrey, P.G., Chemical Methods of Rock Analysis, Oxford: Pergamon Press, 1970.

    Google Scholar 

  • Kennedy, G.C., Wasserburg, G.J., Heard, H.C., and Newton, R.C., The upper three-phase region in the system SiO2–H2O, Am. J. Sci., 1962, vol. 260, pp. 501–521.

    Article  Google Scholar 

  • Kessel, R., Ulmer, P., Pettke, T., et al., The water–basalt system at 4 to 6 GPa: phase relations and second critical endpoint in K-free eclogite at 700 to 1400°C, Earth Planet. Sci. Lett., 2005, vol. 237, pp. 873–892.

    Article  Google Scholar 

  • Kotel’nikova, Z.A. and Kotel’nikov, A.R., Synthetic NaFbearing fluid inclusions, Geochem. Int., 2002, vol. 40, no. 6, pp. 594–600.

    Google Scholar 

  • Kotel’nikova, Z.A. and Kotel’nikov, A.R., NaF-bearing fluid inclusions in quartz synthesized at 450–500°C and P = 500–2000 bar, Geochem. Int. 2004, vol. 42, no. 8, pp. 794–798.

    Google Scholar 

  • Kotel’nikova, Z.A. and Kotel’nikov, A.R., Liquid separation in the presence of vapor in synthetic fluid inclusions obtained from Na2CO3 solutions, Dokl. Earth Sci., 2009, vol. 429, pp. 1533–1535.

    Article  Google Scholar 

  • Kotel’nikova, Z.A. and Kotel’nikov, A.R., Experimental study of heterogeneous fluid equilibria in silicate–salt–water systems, Geol. Ore Deposits, 2010, vol. 52, no. 2, pp. 171–185.

    Google Scholar 

  • Kotel’nikova, Z.A. and Kotel’nikov, A.R., Unusual phase transformations in synthetic NaF-bearing fluid inclusions in quartz, Dokl. Earth Sci., 2011a, vol. 439, no. 1, pp. 99–101.

    Google Scholar 

  • Kotel’nikova, Z.A. and Kotel’nikov, A.R., The phase state of NaF-containing fluid at 700°C and 1, 2, and 3 kbar (from the results of study of synthetic fluid inclusions in quartz), Russ. Geol. Geophys., 2011b, vol. 52, no. 11. pp. 1310–1318.

    Article  Google Scholar 

  • Kravchuk, K.G., Phase Equilibria in the SiO2–Na2O–H2O System within a Wide Temperature and Pressure Range, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow: IONKh RAN, 1979.

    Google Scholar 

  • Kravchuk, K.G. and Valyashko, V.M., Phase Diagram of the SiO2–Na2Si2O5–H2O System, Metody eksperimental’nogo issledovaniya gidrotermal’nykh ravnovesii (Methods of Experimental Study of Hydrothermal Equilibria), Godovikov, A.A., Ed., Novosibirsk: Nauka, 1979, pp. 105–117.

    Google Scholar 

  • Morey, G.W. and Fenner, C.N., The ternary system H2O–K2SiO3–SiO2, J. Am. Chem. Soc., 1917, vol. 39, pp. 1173–1229.

    Article  Google Scholar 

  • Mustart, D.A., Phase Relations in the Peralkaline Portion of the System Na2O–Al2O3–SiO2–H2O, PhD Thesis, Stanford: Stanford University, 1972.

    Google Scholar 

  • Peretyazhko, I.S. Genesis of mineralized cavities (miaroles) in granite pegmatites and granites, Petrology, 2010, vol. 18, no. 2, pp. 183–208.

    Article  Google Scholar 

  • Peretyazhko, I.S., Prokof’ev, V.Yu., Zagorskii, V.E., and Smirnov, S.Z., Role of boric acids in the formation of pegmatite and hydrothermal minerals: petrologic consequences of sassolite (H3BO3) discovery in fluid inclusions, Petrology, 2000, vol. 8, no. 3, pp. 214–237.

    Google Scholar 

  • Peretyazhko, I.S., Smirnov, S.Z., Thomas, V.G., and Zagorsky, V.Y., Gels and melt-like gels in endogenous mineral formation, Metallogeny of the Pacific North West: Tectonics, Magmatism and Metallogeny of Active Continental Margins, Khanchuk A.I., Gonevchuk G.A., Mitrokhin A.N. et al., Eds., Vladivostok: Dal’nauka, 2004a, pp. 306–309.

    Google Scholar 

  • Peretyazhko, I.S., Zagorsky, V.Y., Smirnov, S.Z., and Mikhailov, M.Y., Conditions of pocket formation in the Oktyabrskaya tourmaline-rich gem pegmatite (the Malkhan field, Central Transbaikalia, Russia), Chem. Geol., 2004b, vol. 210, nos. 1–4, pp. 91–111.

    Article  Google Scholar 

  • Peretyazhko, I.S., Smirnov, S.Z., Kotel’nikov, A.R., and Kotel’nikova, Z.A., Role of boric acids in the formation of pegmatite and hydrothermal minerals: petrologic consequences of sassolite (H3BO3) discovery in fluid inclusions, Russ. Geol. Geophys., 2010, vol. 51, no. 4, pp. 349–368.

    Article  Google Scholar 

  • Rumyantsev, V.N., Structure of crystal-forming environment and hydrothermal growth of quartz in NaOH aqueous solutions, IV mezhdunarodnaya konferentsiya “Kristally: rost, svoistva, real’naya struktura i primenenie” (4th International Conference on Crystals: Growth, Properties, Real Structure, and Application), Aleksandrov: VNIISIMS, TPU, 1999, vol. 1, pp. 16–38.

    Google Scholar 

  • Schmidt, M.W., Vielzeuf, D., and Auzennau, E., Melting and dissolution of subducting crust at high pressures: the key role of white mica, Earth Planet. Sci. Lett., 2004, vol. 228, pp. 65–84.

    Article  Google Scholar 

  • Smirnov, S.Z., The fluid regime of crystallization of watersaturated granitic and pegmatitic magmas: a physicochemical analysis, Russ. Geol. Geophys., 2015, vol. 56, no. 9, pp. 1643–1663.

    Article  Google Scholar 

  • Smirnov, S.Z., Peretyazhko, I.S., Prokof’ev, V.Yu., et al., First find of sassolite (H3BO3) in fluid inclusions in minerals, Geol. Geofiz., 2000, vol. 41, no. 2, pp. 194–206.

    Google Scholar 

  • Smirnov, S.Z., Peretyazhko, I.S., Zagorskii, V.E., and Mikhailov, M.Yu., Inclusions of unusual late magmatic melts in quartz from the Oktyabr’skaya pegmatite vein, Malkhan Field (Central Transbaikal Region), Dokl. Earth Sci., 2003, vol. 392, pp. 999–1003.

    Google Scholar 

  • Smirnov, S.Z., Thomas, V.G., Demin, S.P., and Drebushchak, V.A., Experimental study of boron solubility and speciation in the Na2O–B2O3–SiO2–H2O system, Chem. Geol., 2005, vol. 223, nos. 1–3, pp. 16–34.

    Article  Google Scholar 

  • Smirnov, S.Z., Thomas, V.G., Kamenetsky, V.S., et al., Hydrosilicate liquids in the system Na2O–SiO2–H2O with NaF, NaCl and Ta: evaluation of their role in ore and mineral formation at high T and P, Petrology, 2012, vol. 20, no. 3, pp. 271–285.

    Article  Google Scholar 

  • Sowerby, J.R. and Keppler, H., The effect of fluorine, boron and excess sodium on the critical curve in the albite–H2O system, Contrib. Mineral. Petrol., 2002, vol. 143, no. 1, pp. 32–37.

    Article  Google Scholar 

  • Thomas, R. and Davidson, P., Evidence of a water-rich silica gel state during the formation of a simple pegmatite, Mineral. Mag., 2012, vol. 76, no. 7, pp. 2785–2801.

    Article  Google Scholar 

  • Thomas, R., Webster, J.D., and Heinrich, W., Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluid at low pressure, Contrib. Mineral. Petrol., 2000, vol. 139, pp. 394–401.

    Article  Google Scholar 

  • Thomas, R., Forster, H.J., and Heinrich, W., The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study, Contrib. Mineral. Petrol., 2003, vol. 144, no. 4, pp. 457–472.

    Article  Google Scholar 

  • Thomas, R., Davidson, P., and Hahn, A., Ramanite-(Cs) and ramanite-(Rb): new cesium and rubidium pentaborate tetrahydrate minerals identified with Raman spectroscopy, Am. Mineral., 2008, vol. 93, no. 7, pp. 1034–1042.

    Article  Google Scholar 

  • Thomas, R., Davidson, P., and Schmidt, C., Extreme alkali bicarbonate- and carbonate-rich fluid inclusions in granite pegmatite from the Precambrian Ronne granite, Bornholm Island, Denmark, Contrib. Mineral. Petrol., 2011, vol. 161, no. 2, pp. 315–329.

    Article  Google Scholar 

  • Thomas, R., Davidson, P., and Badanina, E.V., Water- and boron-rich melt inclusions on quartz from the Malkhan pegmatite, Transbaikalia, Russia, Minerals, 2012, vol. 2, pp. 435–458.

    Article  Google Scholar 

  • Thomas V.G., Smirnov S.Z., Koz’menko O.A., et al., Formation and properties of hydrosilicate liquids in the systems Na2O–Al2O3–SiO2–H2O and granite–Na2O–SiO2–H2O at 600°C and 1.5 kbar, Petrology, 2014, vol. 22, no. 3, pp. 327–344.

    Article  Google Scholar 

  • Valyashko, V.M., Fazovye ravnovesiya i svoistva gidrotermal’nykh system (Phase Equilirbia and Properties of Hydrothermal Systems) Moscow: Nauka, 1990.

    Google Scholar 

  • Veksler, I.V., Liquid immiscibility and its role at the magmatic–hydrothermal transition: a summary of experimental studies, Chem. Geol., 2004, vol. 210, nos. 1–4, pp. 7–31.

    Article  Google Scholar 

  • Wilkinson, J.J., Nolan, J., and Rankin, A.H., Silicothermal fluid: a novel medium for mass transport in the lithosphere, Geology, 1996, vol. 24, no. 12, pp. 1059–1062.

    Article  Google Scholar 

  • Zagorsky, V.E., Mineralogy of pockets of the Malkhan tourmaline deposit (Transbaikalia): feldspars of the Sosedka Vein, Russ. Geol. Geophys., 2012, vol. 53, no. 6, pp. 522–534.

    Article  Google Scholar 

  • Zagorsky, V.E. and Peretyazhko, I.S., Pegmatity s samotsvetami Tsentral’nogo Zabaikal’ya (Pegmatites with Semiprecious Stones of Central Transbaikalia), Novosibirsk: Nauka, 1992.

    Google Scholar 

  • Zagorsky, V.E., Peretyazhko, I.S., and Shmakin, B.M., Granitnye pegmatity (Granite Pegmatites), Novosibirsk: Nauka, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Smirnov.

Additional information

Original Russian Text © S.Z. Smirnov, V.G. Thomas, V.S. Kamenetsky, O.A. Kozmenko, 2017, published in Petrologiya, 2017, Vol. 25, No. 6, pp. 646–658.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, S.Z., Thomas, V.G., Kamenetsky, V.S. et al. Hydrosilicate liquids in the system rare-metal granite–Na2O–SiO2–H2O as accumulators of ore components at high pressure and temperature. Petrology 25, 625–635 (2017). https://doi.org/10.1134/S0869591117060054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117060054

Navigation