Skip to main content
Log in

Petrographic-geochemical types of Triassic alkaline ultramafic rocks in the Northern Anabar province, Yakutia, Russia

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

A classification suggested for alkaline ultramafic rocks of the Ary-Mastakh and Staraya Rechka fields, Northern Anabar Shield, is based on the modal mineralogical composition of the rocks and the chemical compositions of their rock-forming and accessory minerals. Within the framework of this classification, the rocks are indentified as orangeite and alkaline ultramafic lamprophyres: aillikite and damtjernite. To estimate how much contamination with the host rocks has modified their composition when the diatremes were formed, the pyroclastic rocks were studied that abound in xenogenic material (which is rich in SiO2, Al2O3, K2O, Rb, Pb, and occasionally also Ba) at relatively low (La/Yb)PM, (La/Sm)PM, and not as much also (Sm/Zr)PM and (La/Nb)PM ratios. The isotopic composition of the rocks suggests that the very first melt portions were of asthenospheric nature. The distribution of trace elements and REE indicates that one of the leading factors that controlled the diversity of the mineralogical composition of the rocks and the broad variations in their isotopic–geochemical and geochemical characteristics was asthenosphere–lithosphere interaction when the melts of the alkaline ultramafic rocks were derived. The melting processes involved metasomatic vein-hosted assemblages of carbonate and potassic hydrous composition (of the MARID type). The alkaline ultramafic rocks whose geochemistry reflects the contributions of enriched vein assemblages to the lithospheric source material, occur in the northern Anabar Shield closer to the boundary between the Khapchan and Daldyn terranes. The evolution of the aillikite melts during their ascent through the lithospheric mantle could give rise to damtjernite generation and was associated with the separation of a C–H–O fluid phase. Our data allowed us to distinguish the evolutionary episodes of the magma-generating zone during the origin of the Triassic alkaline ultramafic rocks in the northern Anabar Shield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agashev, A.M., Orikhashi Yu., Watanabe, T., et al., Isotope- geochemical characteristics of kimberlites of the Siberian Platform in relation with problem of their origin, Geol. Geofiz., 2000, vol. 41, no. 1, pp. 90–99.

    Google Scholar 

  • Ashchepkov, I.V., Pokhilenko, N.P., Vladykin, N.V., et al., Tectonophysics structure and evolution of the lithospheric mantle beneath Siberian Craton, thermobarometric study, Tectonophysics, 2010, vol. 485, nos. 1–4, pp. 17–41.

    Article  Google Scholar 

  • Ashchepkov, I.V., Vladykin, N.N., Ntaflos, T., et al., Layering of the lithospheric mantle beneath the Siberian Craton: modeling using thermobarometry of mantle xenolith and xenocrysts, Tectonophysics, 2014, vol. 634, pp. 55–75.

    Article  Google Scholar 

  • Ashchepkov, I.V., Kuligin, S.S., Vladykin, N.V., et al., Comparison of mantle lithosphere beneath Early Triassic kimberlite fields in Siberian Craton reconstructed from deep-seated xenocrysts, Geosci. Front., 2015, doi 10.1016/j.gsf.2015.06.004

    Google Scholar 

  • Atlas-opredelitel’ porod i rud mestorozhdenii almazov kimberlitovogo tipa (Identificatiom Atlas of Rocks and Ores of the Kimberlite Type Diamonds), Moscow: Nedra, 1994.

  • Babushkina, S.A., Altukhova, Z.A., and Zaitsev, A.I. Chemical and isotope composition of rocks of the Zapretnaya pipe, Orto-Yarginskoe field, Yakutian diamond province, Rudy Met., 2012, vol. 5, pp. 63–67.

    Google Scholar 

  • Becker, M. and Le Roex, A.P., Geochemistry of South African on- and off-craton, group I and group II kimberlites: petrogenesis and source region evolution, J. Petrol., 2006, vol. 47, no. 4, pp. 673–703.

    Article  Google Scholar 

  • Bogatikov O.A., Kononova V.A., Golubeva, Yu.Yu., et al., Variations in chemical and isotopic compositions of the Yakutian kimberlites and their causes, Geochem. Int., 2004, vol. 42, no. 9, pp. 799–821.

    Google Scholar 

  • Burgess, S.R. and Harte, B., Tracing lithosphere evolution through the analysis of heterogeneous G9–G10 garnets in peridotite xenoliths, II: REE chemistry, J. Petrol., 2004, vol. 45, no. 3, pp. 609–633.

    Article  Google Scholar 

  • Carlson, R.W., Czamanske, G., Fedorenko, V., et al., A comparison of Siberian meimechites and kimberlites: implications for the source of high-Mg alkalic magmas and flood basalts, Geochem., Geophys., Geosyst., 2006, vol. 7, no. 11. doi 10.1029/2006GC001342

    Google Scholar 

  • Chakhmouradian, A.R., Reguir, E.P., Kamenetsky, V.S., et al., Trace-element partitioning in perovskite: implications for the geochemistry of kimberlites and other mantlederived undersaturated rocks, Chem. Geol., 2013, vol. 353, pp. 112–131.

    Article  Google Scholar 

  • Chalapathi Rao N.V., Kamde, G., Kale, H.S., et al., Petrogenesis of the Mesoproterozoic lamproites from the Krishna Valley, eastern Dharwar Craton, southern India, Precambrian Res., 2010, vol. 177, pp. 103–130.

    Article  Google Scholar 

  • Chalapathi Rao, N.V., Lehmann, B., Mainkar, D., et al., Petrogenesis of the end-Cretaceous diamondiferous Behradih orangeite pipe: implication for mantle plume-lithosphere interaction in the Bastar craton, Central India, Contrib. Mineral. Petrol., 2011, vol. 161, no. 5, pp. 721–742.

    Article  Google Scholar 

  • Chernysheva, E.A. and Kostrovitskii, S.I., Olivine melilitites of the kimberlite and carbonatite associations in dikes and diatremes of eastern Siberia, Geochem. Int., 1998, vol. 36, no. 12, pp. 1100–1108.

    Google Scholar 

  • Coe, N., Le Roex, A.P., Gurney, J.J., et al. Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole rock geochemistry, Contrib. Mineral. Petrol., 2008, vol. 156, no. 5, pp. 627–652.

    Article  Google Scholar 

  • Dasgupta, R., Hirschmann, M.M., McDonough, W.F., et al., Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa, Chem. Geol., 2009, vol. 262, pp. 57–77.

    Article  Google Scholar 

  • Foley, S., Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas, Lithos, 1992, vol. 28, nos. 3–6, pp. 435–453.

    Article  Google Scholar 

  • Foley, S.F., Musselwhite, D.S., and van der Laan, S.R., Melt compositions from ultramafic vein assemblages in the lithospheric mantle: a comparison of cratonic and non-cratonic settings, Proceedings of the VII-th International Kimberlite Conference, 1998, pp. 238–246.

    Google Scholar 

  • Fraser, K.J., Hawkesworth, C.J., Erlank, A.J., et al., Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites, Earth Planet. Sci. Lett., 1985, vol. 76, pp. 57–70.

    Article  Google Scholar 

  • Girnis, A.V., Bulatov, V.K., Brey, G.P., et al., Trace element partitioning between mantle minerals and silico-carbonate melts at 6–12 GPa and applications to mantle metasomatism and kimberlite genesis, Lithos, 2013, vol. 160–161, pp. 183–200.

    Article  Google Scholar 

  • Giuliani, A., Phillips, D., Woodhead, J.D., et al., Did diamond- bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?, Nat. Commun, 2015, vol. 6, No. 6837.

    Google Scholar 

  • Giuliani, A., Phillips, D., Kamenetsky, V.S., et al., Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths, Lithos, 2016, vol. 240–243, pp. 189–201.

    Article  Google Scholar 

  • Golubeva, Yu.Yu., Pervov, V.A., and Kononova, V.A., Petrogenesis of autoliths from kimberlitic breccias in the V. Grib Pipe (Arkhangelsk District), Dokl. Earth Sci., 2006, vol. 411, no. 8, pp. 1257–1262.

    Article  Google Scholar 

  • Golubkova, A., Experimental and Thermodynamic Modelling of Sediment-Melt Related Metasomatism in Mantle Wedges and Mantle Keels under Oxidizing and Strongly Reducing Conditions: PhD dissertation, ETH Zurich, 2014.

    Google Scholar 

  • Grakhanov, S.A. and Smelov, A.P., Age of Predicted bedrock sources of diamonds in northern Yakutia, Otechestvennaya Geol., 2011, vol. 5, pp. 56–63.

    Google Scholar 

  • Grakhanov, S.A., Smelov, A.P., Egorov, K.N., et al., Sedimentary–volcanogenic nature of the basement of the Carnian age–source of diamonds in northeastern Siberian Platform, Otechestvennaya Geol., 2010, vol. 5, nos. 3-1-2.

  • Grassi, D., Melting of Subducted Carbonated Pelites from 5 to 23 GPa: Alkali-Carbonatites, Mantle Metasomatism, and Element Recycling, PhD Dissertation, ETH Zurich, 2010.

    Google Scholar 

  • Gregoire, M., Bell, D., and Le Roex, A., Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited, Contrib. Mineral. Petrol., 2002, vol. 142, no. 5, pp. 603–625.

    Article  Google Scholar 

  • Gudfinnsson, G.H. and Presnall, D.C., Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa, J. Petrol., 2005, vol. 46, no. 8, pp. 1645–1659.

    Article  Google Scholar 

  • Ilupin, I.P., Vaganov, V.I., and Prokopchuk, B.I., Kimberlity: Spravochnik (Kimberlites: A Reference Book), Moscow: Nedra, 1990.

    Google Scholar 

  • Kamenetsky, V.S. and Yaxley, G.M., Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent, Geochim. Cosmochim. Acta, 2015, vol. 158, pp. 48–56.

    Article  Google Scholar 

  • Kargin, A.V., Geochemistry of mantle metasomatism related to formation of kimberlites in the northern East European Platform, Geol. Ore Deposits, 2014, vol. 56, no. 6, pp. 409–430.

    Article  Google Scholar 

  • Kargin, A.V., Golubeva, Yu.Yu., and Kononova, V.A., Kimberlites of the Daldyn–Alakit Region (Yakutia): Spatial Distribution of the Rocks with Different Chemical Characteristics, Petrology, 2011, vol. 19, no. 5, pp. 496–520.

    Article  Google Scholar 

  • Kargin, A.V., Nosova, A.A., Larionova, Yu.O., et al., Mesoproterozoic orangeites (kimberlites II) of West Karelia: mineralogy, geochemistry, and Sr–Nd isotope composition, Petrology, 2014, vol. 22, no. 2, pp. 151–183.

    Article  Google Scholar 

  • Kargin, A.V., Nosova, A.A., Postnikov, A.V., et al., Devonian ultramafic lamprophyre in the Irkineeva–Chadobets trough in the southwest of the Siberian Platform: age, composition, and implications for diamond potential prediction, Geol. Ore Deposits, 2016, vol. 58, no. 5, pp. 383–403.

    Article  Google Scholar 

  • Kononova, V.A., Golubeva, Yu.Yu., Bogatikov, O.A., et al., Geochemical diversity of Yakutian kimberlites: origin and diamond potential (ICP-MS Data and Sr, Nd, and Pb isotopy), Petrology, 2005, vol. 13, no. 3, pp. 205–228.

    Google Scholar 

  • Kononova, V.A., Golubeva, Yu.Yu., Bogatikov, O.A., et al., Diamond resource potential of kimberlites from the Zimny Bereg Field, Arkhangel’sk Oblast, Geol. Ore Deposits, 2007, vol. 49, no. 6, pp. 421–441.

    Article  Google Scholar 

  • Kornilova, V.P., Nikishov, K.N., Koval’skii, V.V., et al., Atlas tekstur i struktur kimberlitovykh porod (Atlas of Kimberlite Textures), Moscow: Nauka, 1983.

    Google Scholar 

  • Kostrovitsky, S.I., Morikiyo, T., Serov, I.V., et al., Isotopegeochemical systematics of kimberlites and related rocks from the Siberian craton, Russ. Geol. Geophys., 2007, vol. 48, no. 3, pp. 272–290.

    Article  Google Scholar 

  • Kostrovitsky, S.I., Skuzovatov, S.Y., Yakovlev, D.A., et al., Age of the Siberian Craton crust beneath the northern kimberlite fields: insights to the craton evolution, Gondwana Res., 2016, doi 10.1016/j.gr.2016.01.008

    Google Scholar 

  • Koval’skii, V.V., Nikishov, K.N., and Egorov, O.S., Kimberlitovye i karbonatitovye obrazovaniya vostochnogo i yugovostochnogo sklonov Anabarskoi anteklizy (Kimberlite and Varbonatite Complexes of the Eastern and Southeastern Slopes of the Anabar Anteclise), Moscow: Nauka, 1969.

    Google Scholar 

  • Lapin, A.V., On kimberlites of the Chadobets Uplift in relation with problem of formation–metallgenic analysis of the platform alkaline ultrabasic magmatites, Otechestvennaya Geol., 2001, no. 4, pp. 30–35.

    Google Scholar 

  • Lapin, A.V., Tolstov, A.V., and Antonov, A.V., Sr and Nd isotopic compositions of kimberlites and associated rocks of the Siberian Craton, Dokl. Earth Sci., 2007, vol. 414, pp. 557–560.

    Article  Google Scholar 

  • Larionova, Yu.O., Sazonova, L.V., Lebedeva, N.M., et al., Kimberlite age in the Arkhangelsk Province, Russia: isotopic geochronologic Rb–Sr and 40Ar/39Ar and mineralogical data on phlogopite, Petrology, 2016, vol. 24, pp. 562–593.

    Article  Google Scholar 

  • Le Maitre, R.W., Streckeisen, A., Zanettin, B., et al., Igneous Rocks: a Classification and Glossary of Terms: Recommendations, Cambridge: Cambridge University Press, 2002.

    Book  Google Scholar 

  • Le Roex, A.P., Bell, D.R., and Davis, P., Petrogenesis of group i kimberlites from kimberley, south africa: evidence from bulk-rock geochemistry, J. Petrol., 2003, vol. 44, pp. 2261–2286.

    Article  Google Scholar 

  • Martin, L.H.J., Schmidt, M.W., Mattsson, H.B., et al., Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1–3 GPa, J. Petrol., 2013, vol. 54, no. 11, pp. 2301–2338.

    Article  Google Scholar 

  • McDonough, W.F. and Sun, S.S., The composition of the earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  • Mitchell, R.H., Kimberlites: Mineralogy, Geochemistry, and Petrology, Boston: Springer, 1986.

    Book  Google Scholar 

  • Mitchell, R.H., Kimberlites, Orangeites and Related Rocks, New York: Plenium Press, 1995.

    Book  Google Scholar 

  • Nelson, D.R., Isotopic characteristics and petrogenesis of the lamproites and kimberlites of central West Greenland, Lithos, 1989, vol. 22, pp. 265–274.

    Article  Google Scholar 

  • Nowell, G.M., Pearson, D.G., Bell, D.R., et al., Hf isotope systematics of kimberlites and their megacrysts: new constraints on their source regions, J. Petrol., 2004, vol. 45, pp. 1583–1612.

    Article  Google Scholar 

  • O’Brien, H. and Tyni, M., Mineralogy and geochemistry of kimberlites and related rocks from Finland, Extended Abstracts of the 7th International Kimberlite Conference, Geol Surv. Finland, 1999, pp. 625–636.

    Google Scholar 

  • Parsadanyan, K.S., Kononova, V.A., and Bogatikov, O.A., Sources of Heterogeneous Magmatism of the Arkhangelsk Diamondiferous Province, Petrology, 1996, vol. 4, no. 5, pp. 460–479.

    Google Scholar 

  • Pervov, V.A., Larchenko, V.A., Stepanov, V.P., et al., Kimberlite sills along the Mela River (Arkhangel’sk diamond province): new data on age, and rock and mineral composition, Geologiya almaza: proshloe, nastoyashchee i budushchee (Geology of Diamond: Past, Present, and Future), Voronezh: VGU, 2005, pp. 558–570.

    Google Scholar 

  • Petrograficheskii kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya. Izdanie tret’e, ispravlennoe i dopolnennoe (Petrographic Code. Magmatic, Metamorphic, Metasomatic, and Impact Rocks. 3rd Ed.), Sankt-Petersburg: VSEGEI, 2009.

  • Pin, C. and Zalduegui, J.F.S., Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks, Anal. Chim. Acta, 1997, vol. 339, pp. 79–89.

    Article  Google Scholar 

  • Pokhilenko, N.P., Agashev, A.M., Litasov, K.D., et al., Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite–kimberlite magmatism, Russ. Geol. Geophys., 2015, vol. 56, no 1, pp. 280–295.

    Article  Google Scholar 

  • Prelevic, D., Foley, S.F., Romer, R.L., et al., Tertiary ultrapotassic volcanism in serbia: constraints on petrogenesis and mantle source characteristics, J. Petrol., 2005, vol. 46, no. 7, pp. 1443–1487.

    Article  Google Scholar 

  • Prelevic, D., Foley, S.F., Romer, R., et al., Mediterranean tertiary lamproites derived from multiple source components in postcollisional geodynamics, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 2125–2156.

    Article  Google Scholar 

  • Ringwood, A.E., Kesson, S.E., Hibberson, W., et al., Origin of kimberlites and related magmas, Earth Planet. Sci. Lett., 1992, vol. 113, no. 4, pp. 521–538.

    Article  Google Scholar 

  • Romu, K.R.I., Luttinen, A.V., and O’Brien, H.E., Lamproite- orangeite transition in 159 Ma dykes of Dronning Maud Land, Antarctica?, Extended Abstract of 9th International Kimberlite Conference, Frankfurt: 2008, No. 9IKC-A-00362.

    Google Scholar 

  • Rosen, O. M. Levsky, L. K. Zhuravlev, D. Z. et al., The Anabar collision system as an element of the Columbia Supercontinent: 600 Ma of compression (2.0–1.3 Ga), Dokl. Earth Sci. 2007, vol. 417, pp. 1355–1358.

    Article  Google Scholar 

  • Rosen, O.M., Serenko, V.P., and Spetsius, Z.V., Tectonics of the Yakutiankimberlite province: composition of crust and lithospheric mantle and problems of evolution, Problems of Predicton, Prospecting, and Study of Mineral Deposits at the Turning of 21th Century, Voronezh: Voronezhsk. Gos. Univ., 2003, pp. 332–338.

    Google Scholar 

  • Samsonov, A.V., Tretyachenko, V.V., Nosova, A.A., et al., Sutures in the Early Precambrian crust as a factor responsible for localization of diamondiferous kimberlites in the northern East European Platform, Abstracts of 10-th Int. Kimberlite Conf., 2012, p. 10IKC35.

    Google Scholar 

  • Scott Smitt, B.H., Nowicki, T.E., Russel, J.K., et al., Kimberlite terminology and classification, in Proceedings of 10th International Kimberlite Conference, Pearson. D.G., Grutter, H.S., Harris, J.W., et al., Eds., New Delhi: Springer, 2013, pp. 1–17.

    Google Scholar 

  • Smelov A.P., Biller A.Ya., and Zaitsev A.I., Relations of different crystallomorphological types of diamonds in the Carbian tuffites of the northeastern Yakutian kimberlite province, Otechestvennaya Geol., 2011, vol. 5, pp. 50–55.

    Google Scholar 

  • Smelov, A.P. and Timofeev, V.F., The age of the North Asian cratonic basement: an overview, Gondwana Res., 2007, vol. 12, pp. 279–288.

    Article  Google Scholar 

  • Solov’eva, L.V., Lavrent’ev, Yu.G., Egorov, K.N., et al., The genetic relationship of the deformed peridotites and garnet megacrysts from kimberlites with asthenospheric melts, Russ. Geol. Geophys., 2008, vol. 49, no. 4, pp. 207–224.

    Article  Google Scholar 

  • Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. London, Spec. Publ., 1989, vol. 42, no. 1, pp. 313–345.

    Article  Google Scholar 

  • Sun, J., Liu, C.Z., Tappe, S., et al., Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: insights from in situ U-Pb and Sr-Nd perovskite isotope analysis, Earth Planet. Sci. Lett., 2014, vol. 404, pp. 283–295.

    Article  Google Scholar 

  • Tappe, S., Foley, S.F., Jenner, G.A., and Kjarsgaard, B.A., Integrating ultramafic lamprophyres into the iugs classification of igneous rocks: rationale and implications, J. Petrol., 2005, vol. 46, no. 9, pp. 1893–1900.

    Article  Google Scholar 

  • Tappe, S., Foley, S.F., Jenner, G.A., et al., Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton, J. Petrol., 2006, vol. 47, no. 7, pp. 1261–1315.

    Article  Google Scholar 

  • Tappe, S., Foley, S.F., Stracke, A., et al., Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr- Nd-Hf-Pb isotope constraints from alkaline and carbonatite intrusives, Earth Planet. Sci. Lett., 2007, vol. 256, pp. 433–454.

    Article  Google Scholar 

  • Tappe, S., Foley, S.F., Kjarsgaard, B.A., et al., Between carbonatite and lamproite-diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes, Geochim. Cosmochim. Acta, 2008, vol. 72, no. 13, pp. 3258–3286.

    Article  Google Scholar 

  • Tappe, S., Steenfelt, A., Heaman, L.M., and Simonetti, A., The newly discovered Jurassic Tikiusaaq carbonatite–aillikite occurrence, west Greenland, and some remarks on carbonatite-kimberlite relationships, Lithos, 2009, vol. 112, pp. 385–399.

    Article  Google Scholar 

  • Tappe, S., Pearson, D.G., Nowell, G., et al., A fresh isotopic look at Greenland kimberlites: cratonic mantle lithosphere imprint on deep source signal, Earth Planet. Sci. Lett., 2011, vol. 305, pp. 235–248.

    Article  Google Scholar 

  • Tappe, S., Pearson, D.G., Kjarsgaard, B.A., et al., Mantle transition zone input to kimberlite magmatism near a subduction zone: origin of anomalous Nd-Hf isotope systematics at Lac de Gras, Canada, Earth Planet. Sci. Lett., 2013, vol. 371, pp. 235–251.

    Article  Google Scholar 

  • Tappe, S., Kjarsgaard, B.A., Kurszlaukis, S., et al., Petrology and Nd-Hf isotope geochemistry of the Neoproterozoic Amon kimberlite sills, Baffin Island (Canada): evidence for deep mantle magmatic activity linked to supercontinent cycles, J. Petrol., 2014, vol. 55, no. 10, pp. 2003–2042.

    Article  Google Scholar 

  • Taylor, W.R., Tompkins, L.A., and Haggerty, S.E., Comparative geochemistry of West African kimberlites: evidence for a micaceous kimberlite endmember of sublithospheric origin, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 19, pp. 4017–4037.

    Article  Google Scholar 

  • Thomsen, T.B. and Schmidt, M.W., Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle, Earth Planet. Sci. Lett., 2008, vol. 267, nos. 1–2, pp. 17–31.

    Article  Google Scholar 

  • Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, no. 1, pp. 185–187.

    Article  Google Scholar 

  • Woolley, A.R., Bergman, S.C., Edgar, A.D., et al., Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks, Can. Mineral., 1996, vol. 34, no. 2, pp. 175–186.

    Google Scholar 

  • Yamashita, H., Arima, M., and Ohtani, E., High pressure melting experiments on group ii kimberlite up to 8 GPa: implications form mantle metasomatism, Abstract of 6th Int. Kimberlite Conf., Novosibirsk, 1995, pp. 669–671.

    Google Scholar 

  • Zack, T. and Brumm, R., Ilmenite/liquid partition coefficients of 26 trace elements determined through ilmenite/ clinopyroxene partitioning in garnet pyroxenites, 7th Int. Kimerlite Conf., 1998, pp. 986–988.

    Google Scholar 

  • Zaitsev, A.I. and Smelov, A.P., Izotopnaya geokhronologiya porod kimberlitovoi formatsii Yakutskoi provintsii (Isotope Heochronology of the Kimberlite Formation of the Yakutian Province), Yakutsk: IGABM SORAN, 2010.

    Google Scholar 

  • Ziberna, L., Nimis, P., Zanetti, A., et al., Metasomatic processes in the central Siberian cratonic mantle: evidence from garnet xenocrysts from the Zagadochnaya kimberlite, J. Petrol., 2013, vol. 54, no. 11, pp. 2379–2409.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kargin.

Additional information

Original Russian Text © A.V. Kargin, Yu.Yu. Golubeva, E.I. Demonterova, E.V. Koval’chuk, 2017, published in Petrologiya, 2017, Vol. 25, No. 6, pp. 547–580.

Electronic supplementary material

11495_2017_7319_MOESM1_ESM.pdf

Supplementary data 1 Kargin et al. Petrography and geochemistry of Triassic alkaline-ultramafic rocks of Northern Anabar, Siberian craton, Russia

Table 2. Representative monticellite compositions (EMPA) from ultramafic-alkaline rocks from the Anabar region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kargin, A.V., Golubeva, Y.Y., Demonterova, E.I. et al. Petrographic-geochemical types of Triassic alkaline ultramafic rocks in the Northern Anabar province, Yakutia, Russia. Petrology 25, 535–565 (2017). https://doi.org/10.1134/S0869591117060030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117060030

Navigation