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Abstract. This paper describes and explores a new continuous-time stochastic cellular automaton model of hillslope evolu-

tion. The Grain Hill model provides a computational framework with which to study slope forms that arise from stochastic

disturbance and rock weathering events. The model operates on a hexagonal lattice, with cell states representing fluid, rock,

and grain aggregates that are either stationary or in a state of motion in one of the six cardinal lattice directions. The model can

reproduce a range of common slope forms, from fully soil mantled to rocky or partially mantled, and from convex-upward to5

planar shapes. An optional additional state represents large blocks that cannot be displaced upward by disturbance events. With

the addition of this state, the model captures the morphology of hogbacks, scarps, and similar features. In its simplest form, the

model has only three process parameters, which represent disturbance frequency, characteristic disturbance depth, and base-

level lowering rate, respectively. Incorporating physical weathering of rock adds one additional parameter, representing the

characteristic rock weathering rate. These parameters are not arbitrary but rather have a direct link with corresponding param-10

eters in continuum theory. Comparison between observed and modeled slope forms demonstrates that the model can reproduce

both the shape and scale of real hillslope profiles. Model experiments highlight the importance of regolith cover fraction in

governing both the downslope mass transport rate and the rate of physical weathering. Equilibrium rocky hillslope profiles are

possible even when the rate of baselevel lowering exceeds the nominal bare-rock weathering rate, because increases in both

slope gradient and roughness can allow for rock weathering rates that are greater than the flat-surface maximum. Examples of15

transient relaxation of steep, rocky slopes predict the formation of a regolith-mantled pediment that migrates headward through

time while maintaining a sharp slope break.

1 Introduction

Hillslopes take on a rich variety of forms. Their profile shapes may be convex-upward, concave-upward, planar, or some

combination of these. Some slopes are completely mantled with soil, whereas others are bare rock, and still others draped

in a discontinuous layer of mobile regolith. The processes understood to be responsible for shaping them are equally varied,

ranging from disturbance-driven creep to dissolution to large-scale mass movement events.5

Considerable research has been devoted to understanding the evolution of soil-mantled slopes that are primarily governed

by disturbance-driven creep, such as down-slope soil transport by biotic and abiotic soil-mixing processes. As a result, the
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geomorphology community has mathematical models that account well for observed slope forms and patterns of regolith

thickness (e.g., Roering, 2008). Furthermore, stochastic-transport theory provides a mechanistic link between the statistics of

particle motion, the resultant average rates of downslope transport, and the emergence of convex-upward, soil-mantled slope10

forms (Culling, 1963; Roering, 2004; Foufoula-Georgiou et al., 2010; Furbish et al., 2009; Furbish and Haff, 2010; Tucker and

Bradley, 2010).

One gap that remains, however, lies in understanding steep, rocky slopes (Figure 1). “Rocky” implies slopes that lack a

continuous soil cover (Howard and Selby, 1994); here, transport laws that assume the existence of such a cover no longer

apply. “Steep” implies angles approaching or exceeding the effective angle of repose for loose, granular material, so that ravel15

may be an important transport mode (e.g., Gabet, 2003; Roering and Gerber, 2005; Lamb et al., 2011; Gabet and Mendoza,

2012) and particles have the potential to fall as soon as they are released from bedrock. This type of relatively fast, long-distance

transport does not fit comfortably in the framework of standard diffusion-based models of hillslope soil transport, which derive

from an underlying assumption that the characteristic length scale of motion is short relative to the length of the slope.

Rocky slopes are rarely completely barren. More commonly, they have a patchy cover of loose material, which may either20

retard rock weathering by shielding the rock surface from moisture or temperature fluctuations, or enhance it by trapping water

and allowing limited plant growth. A discontinuous cover does not fit easily within the popular exponential-decay regolith-

production models (e.g., Heimsath et al., 2012; Lamb et al., 2013), which assume an essentially continuous soil mantle.

An additional issue, which pertains to both rocky and soil-mantled slopes, is the connection between sediment movement

at the scale of individual “motion events,” and the resulting longer-term average sediment flux, which forms the basis for25

continuum models of hillslope evolution. Recent theoretical and experiment work has begun to forge a mechanistic connection

between these scales (Culling, 1963, 1965; Furbish et al., 2009; Furbish and Haff, 2010; Tucker and Bradley, 2010; Gabet

and Mendoza, 2012; Lamb et al., 2013). However, the community’s resources for computational analysis of particle-level

dynamics remain limited, lagging behind developments in understanding sediment transport in coastal environments (Drake

and Calantoni, 2001) and rivers (McEwan and Heald, 2001; MacVicar et al., 2006; Furbish and Schmeeckle, 2013; Schmeeckle,30

2014).

To further our understanding of how grain-level weathering and transport processes translate into hillslope evolution, both

for hillslopes in general and rocky slopes in particular, it would be useful to have a computational framework with which

to conduct experiments. Ideally, such a framework should be sophisticated enough to capture the essence of weathering and

granular mechanics, while remaining simple enough to involve only a small number of parameters and provide reasonable

computational efficiency.

Our aim in this paper is to describe one such computational framework, test whether it is capable of reproducing commonly

observed hillslope-profile forms, and examine how its parameters relate to the bulk-behavior parameters used in conventional

continuum models of soil creep and regolith production. The model uses a pairwise, continuous-time stochastic (CTS) approach

to combine a Lattice Grain model with rules for stochastic bedrock-to-regolith conversion (“weathering”) and disturbance of

surface regolith particles. One goal of this event-based approach is to study how bulk behavior, such as the diffusion-like

net downslope transport of soil, can emerge from a large ensemble of stochastic events. In this paper, we present the “Grain

2

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2018-4
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 7 February 2018
c© Author(s) 2018. CC BY 4.0 License.



(b)(a)

(c) (d)

(e) (f)

Figure 1. Examples of rocky hillslopes, sometimes referred to as Richter slopes. (a) Chalk Cliffs, Colorado, USA. (b) Canadian Rockies. (c)

Grand Canyon, Arizona, USA. (d) Rocky Mountain National Park, Colorado, USA. (e) Guadeloupe Mountains, Texas, USA. (f) Waterton

Lakes National Park, Canada (photos by G.E. Tucker).

Hill” model, and examine its ability to reproduce three common types of slope profile: (1) convex-upward, soil-mantled slopes5

(Figure 2a,b), (2) quasi-planar rocky slopes (Figure 2c,d), and (3) cliff-rampart morphology in layered strata (Figure 2e,f).
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We begin with a description of the modeling technique. We then present results that illustrate the macroscopic behavior of

the model under a variety of boundary conditions, and define the relationship between the cellular model’s parameters and the

parameters of conventional continuum mechanics models for hillslope evolution.

2 Model Description10

The model combines a cellular automaton representation of granular mechanics with rules for weathering of rock to regolith

and for episodic disturbance of regolith. Cellular automata are widely used in the granular mechanics community, because they

can represent the essential physics of granular materials at a reasonably low computational cost. Because the principles are

often similar to those of lattice-gas automata in fluid dynamics (e.g., Chen and Doolen, 1998), cellular automata for granular

mechanics are sometimes referred to as Lattice Grain models (LGrMs) (Gutt and Haff, 1990; Peng and Herrmann, 1994;15

Alonso and Herrmann, 1996; Károlyi et al., 1998; Károlyi and Kertész, 1999, 1998; Martinez and Masson, 1998; Désérable,

2002; Cottenceau and Désérable, 2010; Désérable et al., 2011).

2.1 CTS Lattice Grain Model

Our approach starts with a two-dimensional (2D) continuous-time stochastic (“CTS”) Lattice Grain cellular automaton. A

cellular automaton can be broadly defined as a computational model that consists of a lattice of cells, with each cell taking20

on one of N discrete states. These states evolve over time according to a set of rules that describe transitions from one state

to another as a function of a particular cell’s immediate neighborhood. A continuous-time stochastic model is one in which

the timing of transitions is probabilistic rather than deterministic. Whereas transitions in traditional cellular automata occur in

discrete time steps, in a CTS model they are both stochastic and asynchronous.

The method we present here, which we will refer to as the Grain Hill model, is implemented in the Landlab modeling25

framework (Hobley et al., 2017). The Lattice Grain component, on which Grain Hill builds, is described in detail by Tucker

et al. (2016). Here we present only a brief overview of the Lattice Grain model’s rules and behavior. The framework is based

on the pairwise (“doublet”) method developed by Narteau and colleagues (Rozier and Narteau, 2014), which has been applied

to problems as diverse as eolian dune dynamics (Narteau et al., 2009; Zhang et al., 2010, 2012) and the core-mantle interface

(Narteau et al., 2001).30

In the basic CTS Lattice Grain model, the domain consists of a lattice of hexagonal cells. Each cell is assigned one of eight

states (Table 1, states 0–7). These states represents the nature and motion status of the material: state 0 represents fluid (an

“empty” cell into which a solid particle can move), states 1–6 represent a grain moving in one of the six lattice directions, and

state 7 indicates a stationary grain (or aggregate of grains, as discussed below). For purposes of modeling hillslope evolution,

we add an additional state (8) to represent rock, which is immobile until converted to granular material, representing regolith.

An optional additional state (9) is used to model large blocks, as described below. Figure 3 illustrates states 0–8, with an

example of a single transition in which a falling grain switches places with the fluid cell below it.5
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(a)     Soil-mantled, convex-upward slope (b)

(c)              Quasi-planar, rocky slope (d)

(e)                   Cliff-rampart slope (f)

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

Figure 2. Examples of three characteristic types of hillslope profile. Red line in mapview depicts hillslope profile location. (a, b) Soil-mantled,

convex-upward slope (Gabilan Mesa, California, USA). (c, d) Quasi-planar, thinly mantled slope (Yucaipa Ridge, California, USA). (e, f)

Cliff formed in resistant Tertiary laccolithic intrusive rocks overlying Jurassic sedimentary rocks (Cedar Mountain, Utah, USA).
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Table 1. States in the Grain Hill model.

State Description

0 Fluid

1 Grain moving upward

2 Grain moving up and right

3 Grain moving down and right

4 Grain moving down

5 Grain moving down and left

6 Grain moving up and left

7 Resting grain

8 Rock

(9) Block (optional)

FLUID

MOVING PARTICLE 
(arrow = direction) 

RESTING PARTICLE

ROCK

Figure 3. Example of a four-by-four lattice, illustrating the first nine states in the Grain Hill model and including an example transition in

which a falling grain trades places with the fluid cell below it.

Like other Lattice Grain models, the CTS Lattice Grain model is designed to represent, in a simple way, the motion and

interaction of an ensemble of grains in a gravitational field. The physics of the material are represented by a set of transition

rules, in which a given adjacent pair of states is assigned a certain probability per unit time of undergoing a transition to a

different pair. For example, consider a vertically aligned pair of cells in which the top cell has state 4 (moving downward) and

the bottom cell state 0 (empty/fluid) (Figure 3, left). Downward motion (falling) is represented by a transition in which the two10

states switch places (Figure 3, right).

We assume that biophysical disturbance events such as the growth of roots and burrowing by animals, and the settling

motions that follow, tend to impart low kinetic energy, with “low” defined as ballistic displacement lengths that are short relative

to hillslope length and comparable to or less than the characteristic disturbance-zone thickness. We consider such motions to

be dominated by frictional dissipation rather than by transfer of kinetic energy by elastic impacts. This view is similar to the

reasoning of Furbish et al. (2009) that the mean-free-path of mobile grains will typically be short relative to hillslope length,5
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1/2

1/2

FLUID

MOVING PARTICLE 
   (arrow = direction) 

RESTING PARTICLE

Figure 4. Rules for motion and frictional (inelastic) collisions, illustrated here for one of the six lattice directions.

scaling with the grain radius and particle concentration. For this reason, unlike the original Lattice Grain model of Tucker et al.

(2016), we consider here only inelastic collisions (Figure 4). These inelastic (frictional) collisions are represented by a set of

rules in which one or both colliding particles become stationary, representing loss of momentum and kinetic energy as a result

of the collision. Gravity is represented by transitions in which a rising grain decelerates to become stationary, a stationary grain

accelerates downward to become a falling particle, and a grain moving upward at an angle accelerates downward to move10

downward at an angle (Figure 5). An additional rule allows for acceleration of a particle resting on a slope: a stationary particle

adjacent to a fluid cell below it and to one side may transition to a moving particle (Figure 5, bottom row). Importantly for our

purposes, this latter rule effectively imposes an angle of repose at 30◦.

One limitation of the CTS Lattice Grain model is that falling grains do not accelerate through time; instead, they have a fixed

transition probability that implies a statistically uniform downward fall velocity. This treatment is obviously unrealistic for15

particles falling in a vacuum, though it is consistent with a terminal settling velocity for grains immersed in fluid. Consistent

with the above reasoning, the relatively short ballistic displacement lengths asserted for the modeled hillslopes also reduce the

importance of this assumption, as a particle would typically have little time to accelerate before impacting another particle.

Tests of the CTS Lattice Grain model show that it reproduces several basic aspects of granular behavior (Tucker et al.,

2016). For example, when gravity and friction are deactivated, the model conserves kinetic energy. When gravity and friction20

are active, the model reproduces some of the common behaviors observed with granular materials. For example, Figure 6

illustrates a simulation of the emptying of a silo to form an angle-of-repose grain pile. For our purposes, what matters most is

simply that the model captures, in a reasonable way, the response of particles on a slope to episodic disturbance events.

2.2 Weathering and Soil Creep

Weathering of rock to form mobile regolith is modeled with a transition rule: when a rock cell lies adjacent to a fluid cell (which

here is assumed to be air), there is a specified probability per unit time, w [1/T], of transition to a grain-air pair (Figure 7, top).5
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(any) (any)

(any) (any) (any) (any)

(any) (any) (any) (any)

Figure 5. Illustration of gravitational rules. The bottom row shows the “falling on a slope” rule, which effectively imposes a 30◦ angle of

repose. Modified from Tucker et al. (2016).

time = 40 time = 1000time = 500

Figure 6. Lattice Grain simulation of emptying of a silo. Light-shaded grains are stationary; darker-shaded ones are in motion. Black cells

are walls (rock). From Tucker et al. (2016).

This treatment means that the effective maximum weathering rate, in terms of the propagation of a weathering front, is cell

diameter, δ, times w. An indirect consequence of this approach is that the weathering rate declines with increasing regolith

thickness. As average regolith thickness increases, the fraction of the surface where rock is in contact with air diminishes, and

consequently so too does the average transition rate. A limitation of the approach is that when the rock is completely mantled,

no further weathering can take place. We explore the consequences of this rule below, and compare it with the behavior of

continuum regolith-production models.

Soil creep is modeled by a transition rule that mimics the process of episodic disturbance of the mobile regolith (which

we use here as a generic term that includes various forms of unconsolidated granular material, such as soil, colluvium, and5

scree). For each resting grain that is adjacent to an air cell, there is a specified probability per unit time, d [1/T], that the

regolith and air will exchange places, representing movement. The regolith cell is also converted from a stationary state to a

8
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WEATHERING

DISTURBANCE

Figure 7. Transitions representing rock-to-regolith transformation by weathering (top), and regolith disturbance (bottom), in which a station-

ary particle becomes mobile and switches position with a air cell. Illustration represents one of the six possible orientations.

state of motion (Figure 7, bottom). An advantage of this approach is that it mimics, in a general way, the effectively stochastic

disturbance processes that are understood to drive soil creep. Our definition of d is closely related to the activation rate, Na, in

the probabilistic theory for soil creep developed by Furbish et al. (2009). When combined with the Lattice Grain gravitational10

rules, the resulting cellular model captures both the scattering (disturbance) and settling (gravitational) behavior articulated by

Furbish et al. (2009). In the Grain Hill cellular model, as in their theory, downslope regolith flux arises because, on average,

scattering occurs normal to the local surface while setting is vertical. The Grain Hill model includes an additional element

not present in the Furbish et al. (2009) theory: an increase in (downward) scattering distance for particles on slopes steeper

than 30◦. This behavior, as illustrated below, promotes a nonlinear relationship between gradient and flux, and leads to the15

possibility of threshold slopes.

2.3 Cells as Grain Aggregates

Natural regolith disturbance events usually impact many grains at once. Raindrop impacts on bare sediment typically dislodge

several grains at once (Furbish et al., 2007). Excavation of an animal burrow disturbs a volume a grains equal to the volume of

the burrow, and the fall of a tree mobilizes a volume of regolith similar to the volume of the tree’s root mound. Observations

of such processes suggest that there may be a characteristic volume of disturbance that in some cases may be much larger than5

the volume of a single grain. For this reason, we envision regolith cells as being grain aggregates, with a length scale (width of

a cell) δ and a volume scale δ3.

9
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2.4 Boundary conditions

The 2D model domain consists of a cross-section of a hypothetical hillslope, on which particles move within the cross-sectional

plane. Any regolith cells that reach the model’s side or top boundaries disappear. This treatment is meant to represent the10

presence of a stream channel at the base of each side of the model hillslope; particles reaching these channels are assumed to

be eroded. Progressive lowering of baselevel at the two model boundaries is treated by moving the interior cells upward away

from the lower boundary, and adding a new row of rock or regolith cells along the bottom row. A new row of cells is added at

time intervals of τ .

2.5 Scaling and Nondimensionalization15

The basic model has four parameters: the disturbance rate, d [cells/T], weathering rate, w [cells/T], baselevel lowering interval,

τ [T], and width of domain, λ [cells]. The baselevel lowering timescale τ represents the time interval between episodes of

relative uplift in which the interior domain is lifted by one cell relative to its side boundaries. The domain width might properly

be considered a boundary condition rather than a parameter, but we include it here with an eye toward examining how slope

width impacts hillslope properties such as mean height. Once we define the width of a cell, δ [L], we can define versions of20

these four parameters that explicitly incorporate this length scale:

D = dδ, (1)

W = wδ, (2)

U = δ/τ, (3)

L= λδ. (4)25

Consider the case of dynamic equilibrium, in which the rate of baselevel lowering is balanced by the hillslope’s rate of erosion.

The mean height of this steady state hillslope, H , is a function of the above four parameters plus the characteristic length scale

δ, such that we end up with a total of six variables:

H = f(D,W,U,L,δ). (5)

Buckingham’s Pi Theorem dictates that these six variables, which collectively include dimensions of length and time, may be

grouped into four dimensionless quantities:

H

δ
= f

(
D

U
,
W

U
,
L

δ

)
(6)

The ratio d′ = dτ =D/U is a dimensionless disturbance rate. Similarly, w′ = wτ =W/U is a dimensionless weathering rate.

Noting the definitions above, equation (6) is equivalent to5

h= f (d′,w′,λ) , (7)

where h=H/δ is dimensionless hillslope height. Hence, we have a dimensionless property of the hillslope, h, that depends

uniquely on three other non-dimensional variables, representing disturbance rate, weathering rate, and length.
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One can similarly define a dimensionless regolith thickness, r =R/δ, where R is the dimensional equivalent; it too should

depend on the three dimensionless parameters that represent disturbance rate d′, weathering rate, w′, and hillslope length, λ,10

respectively. For a hillslope composed entirely of regolith, r and h depend solely on d′ and λ. Finally, we define a fractional

regolith cover Fr. In the Grain Hill model, Fr is calculated as the number of air-regolith cell pairs divided by the total number

of cell pairs that juxtapose air with either regolith or rock.

2.6 Blocks

The foregoing model is designed to represent regolith as grain aggregates composed of gravel-sized and finer grains: material15

fine enough that it is susceptible to being moved by processes such as animal burrowing, frost heave, tree throw, and so on.

Some hillslopes, however, are adorned with grains that are simply too large to be displaced significantly by such processes. For

example, Glade et al. (2017) presented a case study and model of slopes formed beneath a resistant rock unit that periodically

sheds meter-scale or larger blocks. On at least some of these types of slope, the distance between surface blocks and their

source unit is considerably greater than the distance that they could roll during an initial release event (Duszyński and Migoń,20

2015). This observation implies that the blocks are transported down slope by a process of repeated undermining. Glade et al.

(2017) hypothesized that erosion of soil beneath and immediately downhill can cause a block to topple, and hence move a

distance comparable to its own diameter in each such event.

We wish to capture this form of “too big to disturb” behavior in the Grain Hill model. The CTS approach, at least as it is

defined here, does not lend itself to variations in grain size or geometry. Instead, we introduce an additional type of particle25

that represents the behavior of blocks rather than treating their difference in size explicitly. In a sense, the approach can be

viewed as treating blocks as having greater density, rather than greater size, than other grains. A block particle differs from a

normal regolith cell in that it cannot be scattered upward by disturbance. Motion of a block particle can only occur under two

circumstances: when it lies directly above an air cell (in which case it falls vertically, trading places with the air cell), and when

it lies above and to the side of an air cell (in which case it falls downslope at a 30◦ angle, with probability per time d). These30

rules mimic the undermining process discussed by Glade et al. (2017).

As in the Glade et al. (2017) model, block particles can also undergo weathering. Here, weathering is again treated in a

probabilistic fashion: blocks form from weathering of bedrock, at probability per time w. Once created, a block can undergo

a conversion to normal regolith with probability w when it sits adjacent to an air cell. This treatment of blocks captures, in a

simple way, the weathering of blocks as they move down slope. For purposes of this paper, the block component is included

simply to test whether a cellular automaton treatment produces results that are qualitatively consistent with observations, and5

also consistent with the hybrid continuum-discrete model of Glade et al. (2017) and Glade and Anderson (2017).
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3 Results

3.1 Fully soil-mantled hillslope

We start by considering the case of fully soil-mantled hillslopes, in which the supply of mobile regolith is effectively unlimited

(Figure 2a,b). Under this condition, the Grain Hill model represents a testable mechanistic hypothesis: that a transport-limited,10

soil-mantled hillslope behaves essentially as a granular medium subject to periodic, quasi-random disturbance events. This

concept was also the essence of the acoustic-disturbance experiments by Roering et al. (2001). To test the hypothesis, we

run the Grain Hill model with a constant rate of material uplift relative to baselevel until the system reaches steady state, to

determine whether its steady form is smoothly convex upward (when the gradient is below the failure threshold) to planar

(when the gradient lies at or near the failure threshold). Model runs were performed using a 251-row by 580-column lattice.15

Disturbance rates were varied from 0.001 yr−1 to 0.1 yr−1 and intervals between relative-uplift events from 100 to 10,000 yr.

Results show that the Grain Hill model produces parabolic to planar hillslope forms, depending on the ratio of disturbance

to uplift rates, which is encapsulated in the dimensionless parameter d′ (Figure 8). At high d′ (frequent disturbance and/or slow

baselevel fall), hillslope relief is low and the form is smoothly convex upward (Figure 8, lower right panels). At somewhat

lower d′, the lower part of the slope approaches a threshold angle while the upper part remains smoothly convex (Figure 8,20

middle diagonal panels). At low d′, the form becomes predominantly planar and achieves a threshold relief that is insensitive

for further increases in d′ (Figure 8, upper left panels).

Scaling of mean height as a function of d′ is shown in Figure 9. The figure shows results for 125 model runs spanning two

orders of magnitude in each parameter (d, τ , and λ) in half-decade intervals. For any given hillslope length, there are three

regimes of behavior. Low d′ (upper left of graph) leads to threshold hillslopes, in which relief depends only on hillslope length.25

Under moderate d′, mean height scales inversely with d′, as expected from linear diffusion theory. At high d′, we have a finite-

size regime in which dimensionless hillslope mean height is comparable to the disturbance scale, δ (cell size in the model); in

other words, the hill is only one or a few cells high.

The behavior of the Grain Hill model in its simple, transport-limited configuration can be compared to diffusion theory,

which relates volumetric sediment flux per unit contour length, qs, to topographic gradient:30

qs =−Ds
∂η

∂x
(8)

where η is land-surface height, x is horizontal distance, and Ds is an effective transport coefficient. The Furbish et al. (2009)

probabilistic theory for transport due to particle scattering and settling formulates Ds as

Ds = krpRaNa

(
1− c

cm

)2

cos2 θ (9)

where k is a dimensionless coefficient, rp is particle radius, Ra is active regolith thickness, Na is the activation rate, θ is slope

angle, c is particle concentration, and cm is a maximum concentration. The over-bar denotes an average over the active regolith

thickness. For the Grain Hill model, Ra scales with the characteristic disturbance depth, δ. Further, because we treat grain
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interval between baselevel fall events (τ ). Fast basal incision and/or infrequent disturbance leads to planar threshold hillslopes; slow basal
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Figure 9. Dimensionless mean hillslope height, h, as a function of dimensionless disturbance rate d′ for a range of hillslope lengths.

Data points include 125 sensitivity analysis runs in which d ∈ [10−3,10−2.5,10−2,10−1.5,10−1], τ ∈ [102,102.5,103,103.5,104], and λ as

shown in the legend.

aggregates, we may also assume rp ∼ δ. Therefore, we have the prediction that

Ds = aδ2Na cos2 θ (10)5
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where a is a dimensionless proportionality constant.

The mean expected activation rate, Na, is closely related to the Grain Hill model’s disturbance frequency parameter, d. To

relate the two quantitatively, one needs to make a trivial lattice-geometry correction. A straight-as-possible cut through the hex

lattice exposes on average two faces per cell, both of which are susceptible to a disturbance event. Because d is the expected

disturbance frequency per cell face, and because independent Poisson events are additive, the resultant disturbance frequency10

for each cell exposed along a quasi-horizontal surface is Na = 2d.

A more important difference is that whereas Na is defined as activation rate per unit horizontal area, d represents the rate

per unit surface area regardless of orientation. For a given d, Na will increase with surface roughness (because there is more

exposed area of regolith-air contact), and with gradient (because the slope length increases).

An additional effect arises from the model’s effective 30◦ angle of repose. On slopes steeper than this, the expected dis-15

turbance rate increases substantially because gravitational dislodgement becomes activated (Figure 5, bottom row). Thus, the

Grain Hill model incorporates an additional nonlinear relationship between flux and gradient inasmuch as Na depends on

gradient.

We can derive an effective diffusivity, De, from the modeled topography by applying the expected relationship between

mean elevation and diffusivity. Here De is defined as that value which, if it were spatially uniform, would yield the same mean20

steady-state elevation as that produced by the particle model. Framing it this way allows us to interrogate how the effective

transport coefficient varies as a function of mean slope gradient. At steady state, mass balance implies that

qs = Ex (11)

where E is the rate of erosion—equal to the rate of material uplift relative to baselevel—and x is horizontal distance from the

ridge top. Substituting equation (8) and rearranging,25

dη

dx
=− E

Ds(x)
x≈− E

De
x (12)

Integrating and then averaging over x, we can solve for the average elevation, η:

η =
E

3De
L2
h (13)

where Lh = L/2 is the length of the slope from ridge top to base (in other words, half the total length of the domain). We can

then rearrange this to find De:30

De =
E

3η
L2
h (14)

To examine how De scales, we can define a dimensionless form, normalizing by the disturbance frequency, d, and the square

of active regolith thickness (equal to particle diameter), δ2:

D′e =
De

dδ2
=

EL2
h

3ηdδ2
(15)
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Noting that E = δ/τ , L= 2Lh, and L/δ = λ, this is equivalent to

D′e =
λ2

12hdτ
(16)5

where h is the mean hillslope height in particle diameters.

As expected, D′e increases with hillslope gradient (Figure 10). The effective diffusivity approaches an asymptote at 30◦

(slope gradient ≈0.6), representing an angle of repose. The pattern resembles the family of nonlinear flux-gradient curves in-

troduced by Andrews and Bucknam (1987) and explored further by Howard (1994) and Roering et al. (1999). At low gradients,

D′e approaches a value of about 60.10

The link between De and d provides a way to scale the Grain Hill model to field-derived estimates of Ds and Ra. Here

we equate the theoretical effective diffusivity, De, with the definition of the transport coefficient Ds of Furbish et al. (2009).

Noting that at low gradients, cos2 θ in equation (10) approaches unity, and using the prior relation Na = 2d, we may write Ds

for low slope angle as

Ds(θ→ 0) = 2aδ2d. (17)15

In the Grain Hill model, the fact that low-angleD′e ≈ 60 implies that the dimensional equivalentDe(θ→ 0)≈ 60δ2d. Equating

Ds (the transport coefficient derived by Furbish et al. (2009)) andDe (the effective transport coefficient derived from the Grain

Hill model),

Ds(θ→ 0)≈ 60δ2d. (18)

This relation can be used to scale the parameters in the Grain Hill model with field data. For example, if one were to assume an20

active regolith thickness of 0.4 m and a low-gradient transport coefficient of Ds = 0.01 m2/yr, and set δ to the active regolith

thickness, then

d=
Ds

60δ2
≈ 0.001y−1. (19)

Here, d represents the frequency with which a given exposed patch of regolith of width and depth δ is disturbed upward. With

the above values, the simulated hills in Figure 8 would be 232 m long (valley-to-valley) with height ranging from 1.6 to 57.6 m25

and baselevel lowering rate from 0.04–4 mm/yr.

3.2 Hillslope with regolith production from rock

Having established that the Grain Hill model reproduces classic soil-mantled hillslope forms and has parameters that can be

related to the parameters in commonly used continuum hillslope transport theories, we turn now to the case in which regolith

is generated from bedrock with a production rate that may (or may not) limit the rate of erosion. We explore the role of regolith

production with a series of model runs in which w′ varies from 0.4 to 40. The upper end of this range represents a condition in

which the potential maximum rate of regolith production greatly exceeds the rate of baselevel lowering. The lower end, 0.4, is
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Figure 10. Relationship between dimensionless diffusivity and mean hillslope gradient, from the series of 125 model runs of which a subset

are shown in Figure 8.
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Figure 11. Final equilibrium profiles from Grain Hill runs with rock and weathering. Domain size is 222 rows by 257 columns, and uplift

interval ranges from 100 to 10,000 years.

less than the rate of baselevel fall, and would seem to be insufficient to allow for equilibrium to occur, and yet nonetheless it

does. Examples of equilibrium hillslope forms found in this parameter space are shown in Figure 11.5

Relationships among mean gradient, fractional regolith cover, dimensionless disturbance rate d′, and dimensionless weath-

ering rate w′ are illustrated in Figure 12. For w′ > 1, the gradient-d′ relation (Figure 12a) has the same shape as in the purely

regolith models: a threshold regime at lower d′ transitioning to an inverse gradient-d′ relation at higher d′. This indicates that

when the maximum weathering rate (for a flat surface) is substantially greater than the rate of baselevel fall, we recapture
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Figure 12. Mean equilibrium gradient and regolith thickness for models with rock and weathering, as a function of d′ and w′. Data represent

125 runs with d ∈ [10−3,10−2.5,10−2,10−1.5,10−1] y−1, w′ ∈ [100,100.5,101,101.5,102], and τ ∈ [102,102.5,103,103.5,104] y.

transport-limited conditions. With w′ < 1, however, the hillslope achieves an equilibrium gradient that is greater than that for

the transport-limited case, and at lower d′, is greater than the threshold angle (Figures 12a,b).

We can also examine the fractional regolith cover, which is defined here as the number of rock-air cell pairs divided by5

the total number of cell pairs at which air meets either regolith or rock (Figures 12c,d). The fractional regolith cover shows

relatively little sensitivity to d′ (Figure 12c). The cover hovers around unity for high w′ and d′, but systematically declines with

w′ when w′ is below about 10. (Note that the data points representing d′ = 1000 and w′ > 1 have hillslope heights of only a

few particles, and are therefore sensitive to finite-size effects).

The models with w′ < 1 present a seeming paradox: how is it possible to achieve an equilibrium form when the maximum10

weathering rate appears to be lower than the rate of uplift relative to baselevel? The solution to the paradox lies in surface area.

The surface area of rock that is exposed to weathering is not fixed, but rather depends on the overall slope length, the terrain

roughness, and the fractional regolith cover. To appreciate the first effect, consider a planar slope at angle θ with no regolith

cover. If wδ represents the maximum slope-normal bedrock weathering rate, then the vertical rate is simply wδ/cosθ. All

else equal, increasing gradient will increase vertical weathering rate, thereby providing a feedback between gradient and rock15

lowering rate. A second feedback relates to topographic roughness: all else equal, a rougher surface will experience a greater

weathering rate because it provides more surface area. The third feedback, which is embedded in the depth-dependent regolith

production hypothesis (Ahnert, 1967) lies in regolith cover: the greater the exposure of rock (or the thinner the cover), the
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faster the average rate of rock-to-regolith conversion. In the Grain Hill model, this third feedback is represented by fractional

bedrock exposure (since weathering only occurs when rock cells are juxtaposed with air cells).

To test whether these are indeed the feedbacks responsible for equilibrium topography in the Grain Hill model, we can

compare the rate of material influx (uplift relative to baselevel) with the expected rate of rock-to-regolith conversion. In the5

Grain Hill model, the expected rate of regolith production, P , in cross-sectional area per time, is the product of weathering rate

per cell face, w, the cross-sectional area of a cell, A, and the number of rock-air cell faces, nra,

P = wAnra, (20)

The rate of material addition due to uplift relative to baselevel, U , again in cross-sectional area per time, is the area of a cell,

A, times the horizontal width of the domain in cells, nH , divided by the interval between uplift events, τ :10

U = nHA/τ. (21)

Equality between rock uplift and weathering can be expressed as:

1
τ

= w
nra
nH

. (22)

The ratio on the right side represents the surface-area effect, in the form of surface area exposed to weathering per unit

horizontal area. The balance is illustrated in Figure 13, which compares the left-hand and right-hand terms for each of the15

125 model runs with weathering. Each data point represents a single snapshot in time, and so scatter is to be expected. To

help diagnose the scatter around the 1:1 line, the data are divided into quintiles by fractional regolith cover, Fr. Many of the

points that fall off the 1:1 line, especially at the high end (higher 1/τ ), come from runs with Fr > 80%; with very few exposed

rock-air pairs, a small fluctuation in the nra can produce a relatively large change in predicted weathering rate. At the low

end, many of the points above the 1:1 line come from runs with a maximum height of only a few cells, which are subject to20

finite-size effects.

The main message of Figure 13 is that the Grain Hill model demonstrates an equilibrium adjustment between rock uplift

and rock weathering. The weathering rate does not have a fixed upper “speed limit,” but rather is set by the exposed surface

area, which in turn is a function of gradient, roughness, and regolith cover. Solutions with a discontinuous regolith cover are

indicative of this adjustment. Slopes can grow arbitrarily steep, with weathering and erosion increasingly attacking from the25

sides as the gradient rises.

3.3 Comparison between weathering rule and inverse-exponential model

The most popular function to describe regolith production from bedrock is the decaying exponential formula proposed by Ahn-

ert (1967), which has proved consistent with estimates of production rate obtained using cosmogenic radionuclides (Heimsath

et al., 1997; Small et al., 1999). The production rate is given by:30

P = P0 exp(−R/R∗) , (23)
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Figure 13. Comparison between rate of material input, 1/τ (cells/year), with effective rate of weathering, wnra/nH , from 125 model runs

(see text).

where P0 is the maximum (bare bedrock) production rate, R is regolith thickness, and R∗ is a depth-decay scale on the order

of decimeters. On a flat surface, assuming no erosion or deposition, the expected rate of change of R over time is:

dR

dt
=
ρr
ρs

(1−ω)P0 exp(−R/R∗) , (24)

where ρr and ρs are the bulk densities of parent material and regolith, respectively, and ω is the fraction of parent material

removed in solution upon weathering. Starting from a bare surface, and assuming isovolumetric weathering (in which case5

ρs = (1−ω)ρr), the expected regolith thickness as a function of time can be found by integrating equation (24):

R

R∗
= ln

[
P0

R∗
t+ 1

]
(25)

We can compare this with the behavior of the cellular weathering rule by running the case of a flat, initially bare-rock surface

from which weathered material may neither enter nor leave (Figure 14, case d/w = 0). When the disturbance rate is zero, the

cellular weathering model asymptotically approaches a steady regolith thickness of exactly one cell (thickness = δ). This is10

so because the model allows weathering to occur only when rock cells are exposed to air cells, and there is no disturbance

process that would juxtapose rock and air once the initial weathered layer has formed. When disturbance rate is nonzero,

however, regolith continues to form even after the mean thickness r exceeds unity (representing one characteristic disturbance

depth). Continuation of regolith production occurs because the disturbance process intermittently exposes rock, at which point

it becomes subject to weathering. The greater the disturbance rate, the more frequent the exposure and hence the more rapid15

weathering (Figure 14). For any ratio d/w, the model’s weathering behavior clearly differs from the logarithmic growth in
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Figure 14. Regolith thickness versus time, as predicted by inverse-exponential theory (log growth; solid cyan curve) and the Grain Hill model

with a range of ratios of disturbance rate (d) to weathering rate (w). Time (horizontal axis) is nondimensionalized by multiplying by w.

thickness predicted by exponential theory. This represents both a strength and a weakness in the Grain Hill model. On the one

hand, the model under its present configuration cannot account for rock-to-regolith conversion resulting from processes that

penetrate more than one characteristic disturbance depth δ into the subsurface. For example, the model neglects the possibility

that some plant roots may penetrate deeply and contribute to disaggregation, or that an unusually deep freezing front in a cold

winter might cause rock fracture and displacement of the resulting fragments (e.g., Anderson et al., 2012). On the other hand,5

the model honors the likelihood that soil disturbance and regolith production are closely linked processes, rather than being

independent: all else equal a greater disturbance rate will tend to produce faster rates of both regolith production and downslope

soil movement.

3.4 Rock collapse and vertical cliffs

Some rock slopes display a cliff-and-rampart morphology in which a vertical or near-vertical rock face stands above an in-10

clined, often sediment-mantled buttress (Figures 1 and 15). Although common in sedimentary rocks where a resistant unit

forms the cliff and a weaker unit the buttress, the same morphology is sometimes found in apparently homogeneous lithology

(Figure 15b). The cliff portion of such slopes suggests a process of undermining and collapse, with the cliff-forming material

being cohesive enough to maintain a vertical face but too weak to support overhangs.

To explore the origins of ramp-and-cliff morphology, we consider a version of the Grain Hill model that adds an extra rule to15

represent collapse: any rock particle that directly overlies air has the possibility to transition to a falling regolith particle, with
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(a)

(b)

Figure 15. Two examples of cliff-and-rampart morphology. (a) Near Palisade, Colorado, USA, after recent rock-fall event (photo courtesy

D.N. Bradley and D. Ward). (b) Colorado Plateau, Utah, USA. Note that contact between lower rampart and sub-vertical slopes, both of

which have formed in a gray shale unit, occurs without any apparent break in lithology.

the same rate as gravitational transition from resting to falling—in other words, as soon as a rock particle has been undermined,

it behaves like cohesionless material.

Under dynamic equilibrium, this rule produces a morphology with slopes that are roughly planar, with alternating vertical

and sloping sections and patchy regolith cover (Figure 16). With w′ ≤ 1, gradient and regolith cover depend strongly on w′

and show little or no sensitivity to d′. When w′� 1, the hillslope forms resemble pinnacles. These examples demonstrate two5
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(a) d' = 0.1, w' = 1 (b) d' = 1, w' = 1

(c) d' = 0.1, w' = 0.1 (d) d' = 1, w' = 0.1

Figure 16. Quasi-steady model hillslope profiles created using a collapse rule, under four different combinations of d′ and w′. Insets show

magnified views of a portion of each hillslope.

combined feedbacks between weathering and baselevel fall: the surface area susceptible to weathering, and the frequency and

magnitude of material collapse through undermining.

The case of transient evolution under a stable baselevel leads to the formation of a regolith-mantled, angle-of-repose ramp

(Figure 17). The slope break remains relatively sharp as it retreats headward. The ramp forms as a transport slope. The angle of

repose is an attractor state: if the angle were steeper, weathered material would be rapidly removed as a result of gravitational5

instability; if it were substantially lower, material would accumulate, because transport would be limited to the (much lower)

rate of disturbance-driven creep motions. Hence, the Grain Hill model predicts that formation of a sediment-mantled ramp

beneath a steeper, actively weathering rock slope is an expected outcome for a steep rock slope under stable baselevel.

3.5 Blocks

Weathering and erosion in landscapes underlain by relatively massive, fracture- or joint-bounded rock can sometimes produce10

large “blocks” of rock, defined here as clasts that are too large to be displaced upward by normal hillslope processes. The release

of blocks from dipping sedimentary or volcanic strata can alter both the shape and relief of hillslopes (Glade et al., 2017). When
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Figure 17. Time series showing transient erosion of a steep rock slope under a stable baselevel, highlighting formation of ramp-and-cliff

morphology. Simulation shows 20,000 years of slope evolution under d= w = 10−3 y−1. Nominal width, assuming δ = 0.1 m, is 12 m.

blocks are delivered to streams, they can influence the channel’s roughness, gradient, erosion rate, and longitudinal profile shape

(Shobe et al., 2016).

As discussed in Section 2.6, the Grain Hill model can be modified to honor blocks by defining an additional cell type that

represents blocks. The weathering process is modified such that a rock cell now weathers into a block, and the block in turn

may weather to form regolith. When a block is undermined directly from below, it will fall just as a normal regolith particle5

would. When a block particle lies adjacent to and above an air cell, a disturbance event may occur that causes the block to

shift downward on the slope. By these means, blocks in the model may move downward or downward-and-laterally, but never

upward. An implicit assumption in this treatment is that blocks do not roll long distances (further than their own diameter)

upon release.

We examine model runs in which a resistant rock layer is embedded in a weak sedimentary material that is soft enough to10

be treated as regolith (Figure 18). The modeled hillslopes are qualitatively consistent both with field observations and with

the mixed continuum-discrete model of Glade et al. (2017) and Glade and Anderson (2017) in that block-mantled slopes are

generally concave-upward, reflecting a downslope decrease in the flux of blocks as weathering progressively transmutes them

into regolith.

4 Comparison to field sites15

We perform a basic validation of the Grain Hill model by comparing its output to real field sites, testing whether the model

is capable of reproducing realistic hillslope forms at the correct spatial scale under known boundary conditions. Field sites

were chosen such that model boundary conditions could be derived from independent field estimates of rate parameters such

as Ds and the rate of baselevel fall. To perform this test, we consider two examples: a convex-upward, soil-mantled hillslope

in Gabilan Mesa, California, USA (Figure 2a,b), and a steep, quasi-planar, discontinuously mantled hillslope in the Yucaipa20

Ridge, California, USA (Figure 2c,d). For each of these two case studies, the hillslopes appear to be approximately at steady
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(a) (b)

(c) (d)

Figure 18. Examples of models that include blocks. Rock (black) weathers to blocks (dark red), which can only move downward or

downward-plus-laterally. Blocks in turn weather to regolith (light brown).

state, and independent estimates exist for the rate of baselevel fall, U (Binnie et al., 2007; Perron et al., 2009, 2012). We

estimated the effective transport coefficient, Ds, for the profiles shown in Figure 2a,c by measuring the second derivative of

the one-dimensional hillslope elevation profiles, ∂
2η
∂x2 , and solving for Ds using

Ds =− U
∂2η
∂x2

. (26)

For the Gabilan Mesa profile, we estimated the profile-averaged effective transport coefficient as 0.0345 m2y−1. The effective5

rate of baselevel lowering has been estimated at U ≈ 1.47×10−4 m y−1 (Perron et al., 2012). To construct a Grain Hill model

for the Gabilan profile, we begin by assuming a characteristic disturbance depth of δ = 1 m. This value was chosen to be

consistent with measured soil depths that typically range between 0.2 and 1.2 m (Johnstone et al., 2017). We treat the system

as transport-limited, consisting of mobile material, so that weathering is not explicitly modeled. The disturbance parameter,

d, is then calculated from the independently estimated value of Ds using equation (18). The interval between uplift events10

is τ = δ/U ≈ 6800 y. The resulting modeled equilibrium profile provides a reasonably good match to the observed Gabilan

profile, with a convex-upward shape and a hilltop height of about 45 m above the slope base (Figure 19a).

For Yucaipa Ridge, we estimated the transport coefficient at Ds ∼ 0.028 m2y−1 on the basis of hilltop curvature and an

estimated effective rate of baselevel lowering of ≈0.0027 my−1 (Binnie et al., 2007). Using equation (18), this equates to a

disturbance-rate parameter d= 0.00468 y−1 and an uplift interval of 370 y in the Grain Hill model. Bedrock outcrops are15

common on the Yucaipa Ridge hillslopes, implying a thin, discontinuous regolith cover. We therefore treat the system as
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Figure 19. State state models using parameters estimated from observed hillslope profiles. (a) Gabilan Mesa profile shown in Figure 2a,b.

(b) Yucaipa Ridge profile shown in Figure 2c,d.

consisting of bedrock that must be weathered before it can become mobile. Because we do not have independent information

on the effective maximum rock weathering rate, the Yucaipa case is a somewhat weaker test: we can only ask whether there

exists a geologically reasonable value of w such that the model reproduces the observed relief and shape of the slope profile.

Through trial and error, we find that with a weathering rate parameter w = 0.002 y−1 (which corresponds to a maximum

regolith production rate of 2 mm y−1), the model does a credible job of capturing the shape and size of the Yucaipa profile5

(compare Figure 2c with Figure 19b). Although this particular value was obtained through a simple calibration process, it is at

least both geologically reasonable and, as one might expect, somewhat lower than the rate of baselevel lowering.

These two examples demonstrate that the Grain Hill model parameters are not arbitrary, but instead can be linked through

straightforward reasoning to field estimates of transport efficiency and baselevel lowering. When one does so, the model

successfully reproduces both the shape and scale of observed slopes.10
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5 Discussion

With just three parameters—disturbance frequency (d), characteristic disturbance depth (δ), and baselevel fall frequency (u)—

the Grain Hill algorithm can reproduce the convex-upward to quasi-planar forms associated with soil-mantled hillslopes (Fig-

ure 8). With the addition of a parameter that represents rock-to-regolith conversion rate, the algorithm accommodates partly

mantled, rocky hillslopes (Figures 11, 16, 17). By adding a rule for detachment of blocks from resistant rock, the model5

reproduces hillslope forms associated with hogbacks and ledge-forming escarpments (Figure 18).

A common criticism of cellular automaton models is that they involve arbitrary rules and/or parameters that can neither be

measured nor verified in the real world. That is not the case for the Grain Hill model, for which the parameters are tied to

measurable physical quantities. For example, the disturbance frequency d is directly related to the frequency parameter Na in

statistical theory of soil transport developed by Furbish et al. (2009), and through that theory to the diffusion-like transport10

coefficient Ds that is commonly estimated in field studies. This connection between model parameters and field measurements

is illustrated by the model’s ability to reproduce the correct shape and scale of observed hillslope forms when estimates of

Ds and U are available (Figures 2, 19). In the transport-limited case, there are no tunable parameters: given independent

estimates of Ds and U , the correct morphology is recovered (Figure 2a, 19a). In the case where rock weathering appears to

play a role, and an independent estimate of P0 is not available, the model requires an estimation of maximum weathering15

rate w. Nonetheless, a plausible value of w (0.002 m y−1), somewhat smaller than the rate of baselevel fall (0.0027 m y−1),

reproduces the observed shape and relief in the Yucaipa Ridge case study.

The transport dynamics predicted by the Grain Hill model are consistent with continuum soil-transport theory, which treats

soil as a fluid with a downslope flow rate that depends on slope gradient. Like the popular Andrews-Bucknam nonlinear

transport law (e.g., Andrews and Bucknam, 1987; Howard, 1994; Roering et al., 1999), the transport-limited form of the Grain20

Hill model predicts diffusion-like behavior in which the effective diffusivity increases with slope gradient, with an asymptote at

a threshold angle (Figure 10). In one sense, the Grain Hill model is actually closer to the process level than fluid-like continuum

models, because net downslope mass flux arises from a sequence of stochastic disturbance events rather than being dictated by

a macroscopic transport law.

One limitation of the Grain Hill model is that its threshold-like behavior arises from the lattice geometry: regolith cells25

perched at a 30◦ angle above and to one side of an air cell are treated as unconditionally unstable. Whereas the timing of

motion is treated as a stochastic process, the occurrence of motion is inevitable (unless some other event occurs first). This

treatment neglects the possibility of frictional locking among noncohesive grains at angles somewhat above 30◦, as well as the

possibility of cohesion. This limitation could be overcome by introducing a probabilistic treatment of grain stability: a grain

aggregate will be stable with a given probability p, and unstable with probability 1− p. Such a treatment would introduce an30

additional parameter, but this parameter could in principle be estimated from physical experiments.

The inclusion of rock-to-regolith conversion enables the Grain Hill model to predict a continuum of slope forms from fully

soil mantled to intermittently covered to bare. However, there are several limitations in the treatment of regolith production that

could be improved on. The weathering rule assumes that regolith production can only occur when rock is exposed to air, which
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obviously neglects the role of shallow subsurface processes such as root or frost wedging. The effective weathering depth

scale is the same as the disturbance scale, and equal to the cell size. This assumption is probably reasonable if the processes

responsible for weathering and disturbance were one and the same, but not if they are distinct processes with different length

scales. The Grain Hill model also does not account explicitly for chemical weathering, which in some cases can extend well

below the surface. Finally, the model’s effective regolith-production behavior does not follow the log-growth curve predicted5

by inverse-exponential theory for a stable surface (Figure 14). With these caveats in mind, one advantage of the stochastic

model of regolith production is that it effectively treats the disturbance and regolith-production processes as being closely

linked: all else equal, the production rate is higher when disturbance is more frequent.

The popular inverse-exponential model for regolith production implies the existence of a speed limit to landscape evolution:

in the absence of rock landsliding, erosion rate cannot exceed the maximum rate of rock-to-regolith conversion. Moreover,10

the model implies the existence of a bare landscape once the rate of erosion exceeds the maximum rate of regolith production.

Heimsath et al. (2012) found evidence, however, that in fact there are additional stabilizing mechanisms, and that these manifest

in landscapes with thin, patchy soils. The Grain Hill model is consistent with these observations in that it predicts the natural

emergence of a discontinuous regolith cover, with the fractional cover exerting an influence on the average rate of weathering

and erosion. Furthermore, the model behavior highlights the importance of slope length and roughness in modulating the re-15

golith production rate: all else equal, steeper or rougher slopes allow higher production rates, leading to an additional feedback

between relief and erosion rate for rocky hillslopes. The possibility of rock collapse upon undermining by weathering provides

an additional feedback mechanism that may allow rates of erosion to exceed the flat-surface maximum regolith production rate

(Figure 16).

The Grain Hill model also provides insight into transient evolution of rocky slopes. Experiments on the relaxation of rocky20

slopes that are steeper than the threshold angle predict the formation of a regolith-mantled pediment at the angle of repose,

which extends upslope as the steep upper slope gradually recedes (Figure 17). This scarp-pediment morphology emerges

without any variation in material strength, requiring only a period of baselevel stability.

As a computational framework for exploring hillslope forms, the Grain Hill model has the advantage that it provides a

mechanistic link between events (disturbance and weathering) and long-term morphologic evolution, without the need to25

specify a flux law. The model has the further advantage of being fully two dimensional, allowing disturbance and weathering

events to initiate from the side as well as vertically. A further key element is that the model can mix timescales: a short timescale

associated with grain motion, an intermediate time scale associated with disturbance events, and a much longer timescale for

slope evolution. Mixing these disparate timescales in a single computer model is made possible by the fact that most of the time

grains are stationary: the algorithm operates on small (stochastic) time steps during those moments when grains are moving,30

and on much longer steps when no grains are in motion (for further information on the discrete-event algorithm behind the

model, see Tucker et al. (2016)).

The Grain Hill framework has several important limitations. It is not practical to simulate motion of individual grains unless

the spatial scale is quite limited (e.g., Figure 6) or the grains are unusually large (Figure 18). If one wished to model individual

grains (of order say 10−3 m) at the scale of a hillslope (of order 102 m), a much more efficient solution algorithm would be35
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needed. Furthermore, the nature of a cellular automaton is such that physical interactions are limited to adjacent cells only; long-

distance effects such as stress transmission cannot easily be represented. In one sense, the restriction to short-range influence

could be seen as an advantage, in that it forces one to think about how it is that mass or energy is actually transmitted in a

granular medium. But the restriction means that well-known principles such as solid-state stress cannot easily be represented.

On the other hand, the model does capture non-local transport, in which particles set in motion can travel a distance comparable5

to the slope length (Foufoula-Georgiou et al., 2010; Tucker and Bradley, 2010; Furbish and Roering, 2013). Nonlocal transport

emerges in the Grain Hill model when the slope angle is near or above 30◦, such that there is a high probability that a disturbed

particle will land in an unstable location and continue moving without the need for a second disturbance event.

A further limitation concerns the fixed cell size. Because the model is restricted to a fixed cell size, the Grain Hill framework

does not lend itself to treatment of multiple grain sizes (apart from the simple “aggregates and blocks” approach illustrated in10

Figure 18). Despite these limitations, the Grain Hill model provides a useful framework for exploring hillslope process and

form in the context of stochastic events.

6 Conclusions

A continuous-time stochastic cellular automaton model known as the Grain Hill model allows for computational simulation of

two-dimensional slope forms that arise from stochastic disturbance and (possibly) weathering events. The model operates on a15

hexagonal lattice, with cell states representing fluid, rock, and grain aggregates that are either stationary or in a state of motion

in one of the six cardinal lattice directions. An optional additional state represents unusually large grains (“blocks”) that cannot

be displaced upward by disturbance events.

The Grain Hill model is able to reproduce a range of common slope forms, from fully soil mantled to rocky and partially

mantled. The bestiary of forms that the model can produce includes convex-upward soil mantled slopes, planar slopes (bare,20

soil mantled, or in between), and cliffs with basal ramparts. When the model is configured to include a resistant rock layer

that decomposes into blocks, the model reproduces observed hogback-like slope forms and qualitatively matches the behavior

predicted by a recent continuum-discrete model (Glade et al., 2017; Glade and Anderson, 2017).

In its simplest guise, the model has only three process parameters, which represent disturbance frequency, characteristic

disturbance depth, and baselevel lowering rate, respectively. Incorporating physical weathering of rock adds one additional25

parameter, representing the characteristic rock weathering rate. These parameters are not arbitrary but rather have a direct link

with corresponding parameters in continuum theory. Comparison between observed and modeled slope forms demonstrates

that the model can reproduce both the shape and scale of real hillslope profiles.

Experiments with the Grain Hill model highlight the importance of regolith cover fraction in governing both the downslope

mass transport rate and the rate of physical weathering. Equilibrium rocky hillslope profiles are possible even when the rate30

of baselevel lowering exceeds the nominal bare-rock weathering rate, because increases in both slope gradient and roughness

can allow for rock weathering rates that are greater than the flat-surface maximum. Finally, experiments in transient relax-
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ation of steep, rocky slopes predict the formation of a regolith-mantled pediment that migrates headward through time while

maintaining a sharp slope break.
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