Skip to main content
Log in

Cubature formulae for nearly singular and highly oscillating integrals

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

The paper deals with the approximation of integrals of the type

$$\begin{aligned} I(f;{\mathbf {t}})=\int _{{\mathrm {D}}} f({\mathbf {x}}) {\mathbf {K}}({\mathbf {x}},{\mathbf {t}}) {\mathbf {w}}({\mathbf {x}}) d{\mathbf {x}},\quad \quad {\mathbf {x}}=(x_1,x_2),\quad {\mathbf {t}}\in \mathrm {T}\subseteq \mathbb {R}^p, \ p\in \{1,2\} \end{aligned}$$

where \({\mathrm {D}}=[-\,1,1]^2\), f is a function defined on \({\mathrm {D}}\) with possible algebraic singularities on \(\partial {\mathrm {D}}\), \({\mathbf {w}}\) is the product of two Jacobi weight functions, and the kernel \({\mathbf {K}}\) can be of different kinds. We propose two cubature rules determining conditions under which the rules are stable and convergent. Along the paper we diffusely treat the numerical approximation for kernels which can be nearly singular and/or highly oscillating, by using a bivariate dilation technique. Some numerical examples which confirm the theoretical estimates are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Caliari, M., De Marchi, S., Sommariva, A., Vianello, M.: Padua2DM: fast interpolation and cubature at the Padua points in Matlab/Octave. Numer. Algorithms 56(1), 45–60 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Computer Science and Applied Mathematics. Academic Press Inc, Orlando, FL (1984)

    MATH  Google Scholar 

  3. Da Fies, G., Sommariva, A., Vianello, M.: Algebraic cubature by linear blending of elliptical arcs. Appl. Numer. Math. 74, 49–61 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Bonis, M.C., Pastore, P.: A quadrature formula for integrals of highly oscillatory functions. Rend. Circ. Mat. Palermo (2) Suppl. 82, 279–303 (2010)

    MathSciNet  Google Scholar 

  5. Dobbelaere, D., Rogier, H., De Zutter, D.: Accurate 2.5-D boundary element method for conductive media. Radio Sci. 49, 389–399 (2014)

    Article  Google Scholar 

  6. Gautschi, W.: On the construction of Gaussian quadrature rules from modified moments. Math. Comput. 24, 245–260 (1970)

    MathSciNet  MATH  Google Scholar 

  7. Huybrechs, D., Vandewalle, S.: The construction of cubature rules for multivariate highly oscillatory integrals. Math. Comput. 76(260), 1955–1980 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Johnston, B.M., Johnston, P.R., Elliott, D.: A sinh transformation for evaluating two dimensional nearly singular boundary element integrals. Int. J. Numer. Methods Eng. 69, 1460–1479 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lewanowicz, S.: A fast algorithm for the construction of recurrence relations for modified moments, (English summary). Appl. Math. (Warsaw) 22(3), 359–372 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mastroianni, G., Milovanović, G.V.: Interpolation Processes. Basic Theory and Applications. Springer Monographs in Mathematics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  11. Mastroianni, G., Milovanović, G.V., Occorsio, D.: A Nyström method for two variables Fredholm integral equations on triangles. Appl. Math. Comput. 219, 7653–7662 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Mastronardi, N., Occorsio, D.: Product integration rules on the semiaxis. In: Proceedings of the Third International Conference on Functional Analysis and Approximation Theory, vol. II (Acquafredda di Maratea, 1996). Rend. Circ. Mat. Palermo (2) Suppl. No. 52, Vol. II 605–618 (1998)

  13. Monegato, G., Scuderi, L.: A polynomial collocation method for the numerical solution of weakly singular and singular integral equations on non-smooth boundaries. Int. J. Methods Eng. 58, 1985–2011 (2003)

    Article  MATH  Google Scholar 

  14. Nevai, P.: Mean convergence of Lagrange Interpolation. III. Trans. Am. Math. Soc. 282(2), 669–698 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Occorsio, D., Russo, M.G.: Numerical methods for Fredholm integral equations on the square. Appl. Math. Comput. 218, 2318–2333 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Pastore, P.: The numerical treatment of Love’s integral equation having very small parameter. J. Comput. Appl. Math. 236, 1267–1281 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Piessens, R.: Modified Clenshaw–Curtis integration and applications to numerical computation of integral transforms, Numerical integration (Halifax, N.S., 1986), NATO Advanced Science Institutes Series C, Mathematical and Physical Sciences, vol. 203, pp. 35–51. Reidel, Dordrecht (1987)

  18. Serafini, G.: Numerical approximation of weakly singular integrals on a triangle. In: AIP Conference Proceedings 1776, 070011. https://doi.org/10.1063/1.4965357 (2016)

  19. Sloan, I.H.: Polynomial interpolation and hyperinterpolation over general regions. J. Approx. Theory 83(2), 238–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Van Deun, J., Bultheel, A.: Modified moments and orthogonal rational functions. Appl. Numer. Anal. Comput. Math. 1(3), 455–468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, Y.: On Gauss–Lobatto integration on the triangle. SIAM J. Numer. Anal. 49(2), 541–548 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We want to thank the anonymous referee for the careful reading of the manuscript and for the valuable comments. We are also grateful to Professor G. Mastroianni for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatella Occorsio.

Additional information

The authors were partially supported by University of Basilicata (local funds) and by National Group of Computing Science GNCS–INDAM. The second author was supported in part by the CUC (Centro Universitario Cattolico). The Research has been accomplished within the RITA “Research ITalian network on Approximation”.

Appendix

Appendix

Now we derive the expression of the cubature rule (2). Recalling the settings

$$\begin{aligned}&\psi _k(z)=\left( \frac{z+1}{2}\right) d-\omega _1+(k-1)d,\quad k=1,2,\dots ,S\\&F_{i,j}({\mathbf {x}})=F\left( \frac{\psi _i(x_1)}{\omega _1},\frac{\psi _j(x_2)}{\omega _1}\right) ,\quad K_{i,j}({\mathbf {x}})={\mathbf {K}}\left( \frac{\psi _i(x_1)}{\omega _1},\frac{\psi _j(x_2)}{\omega _1},\omega \right) \\&w_{i,j}({\mathbf {x}})=w_1\left( \frac{\psi _i(x_1)}{\omega _1}\right) w_2\left( \frac{\psi _j(x_2)}{\omega _1}\right) , \end{aligned}$$

we get

$$\begin{aligned} \mathcal {I}(F,\omega )= & {} \frac{d^2\tau _0}{4}\sum _{i=1}^{S} \sum _{j=1}^{S} \int _{{\mathrm {D}}} F_{i,j}({\mathbf {x}})K_{i,j}({\mathbf {x}}) w_{i,j}({\mathbf {x}}) d{\mathbf {x}}\\= & {} \frac{d^2\tau _0}{4}\left\{ \tau _1\int _{{\mathrm {D}}} F_{1,1}({\mathbf {x}}) K_{1,1}({\mathbf {x}}) U_1({\mathbf {x}})u_2(x_1)u_4(x_2)\right. d{\mathbf {x}}\\&\quad + \tau _2 \int _{{\mathrm {D}}}F_{1,S}({\mathbf {x}})K_{1,S}({\mathbf {x}}) U_2({\mathbf {x}})u_2(x_1) u_3(x_2) d{\mathbf {x}}\\&\quad + \tau _3 \int _{{\mathrm {D}}} F_{S,1}({\mathbf {x}})K_{S,1}({\mathbf {x}}) U_3({\mathbf {x}})u_1(x_1) u_4(x_2) d{\mathbf {x}}\\&\quad + \tau _4 \int _{{\mathrm {D}}} F_{S,S}({\mathbf {x}})K_{S,S}({\mathbf {x}}) U_4({\mathbf {x}}) u_1(x_1) u_3(x_2) d{\mathbf {x}}\\&\quad + \tau _1 \sum _{j=2}^{S-1} \int _{{\mathrm {D}}} F_{1,j}({\mathbf {x}})K_{1,j}({\mathbf {x}}) U_{5,j}({\mathbf {x}}) u_2(x_1)d{\mathbf {x}}\\&\quad + \tau _2 \sum _{i=2}^{S-1} \int _{{\mathrm {D}}} F_{i,S}({\mathbf {x}})K_{i,S}({\mathbf {x}}) U_{6,i}({\mathbf {x}})u_3(x_2)d{\mathbf {x}}\\&\quad + \tau _1 \sum _{i=2}^{S-1} \int _{{\mathrm {D}}} F_{i,1}({\mathbf {x}})K_{i,1}({\mathbf {x}}) U_{7,i}({\mathbf {x}})u_4(x_2)d{\mathbf {x}}\\&\quad + \tau _3 \sum _{j=2}^{S-1} \int _{{\mathrm {D}}} F_{S,j}({\mathbf {x}})K_{S,j}({\mathbf {x}}) U_{8,j}({\mathbf {x}})u_1(x_1)d{\mathbf {x}}\\&+ \left. \tau _1 \sum _{i=2}^{S-1} \sum _{j=2}^{S-1} \int _{{\mathrm {D}}} F_{i,j}({\mathbf {x}})K_{i,j}({\mathbf {x}})U_{9,i,j}({\mathbf {x}}) d{\mathbf {x}}\right\} , \end{aligned}$$

where

$$\begin{aligned} U_1({\mathbf {x}})= & {} v^{\alpha _1,0}\left( \frac{\psi _1(x_1)}{\omega _1}\right) v^{\alpha _2,0}\left( \frac{\psi _1(x_2)}{\omega _1}\right) ,\\ U_2({\mathbf {x}})= & {} v^{\alpha _1,0}\left( \frac{\psi _1(x_1)}{\omega _1}\right) v^{0,\beta _2}\left( \frac{\psi _S(x_2)}{\omega _1}\right) , \\ U_3({\mathbf {x}})= & {} v^{0,\beta _1}\left( \frac{\psi _S(x_1)}{\omega _1}\right) v^{\alpha _2,0}\left( \frac{\psi _1(x_2)}{\omega _1}\right) ,\\ U_4({\mathbf {x}})= & {} v^{0,\beta _1}\left( \frac{\psi _S(x_1)}{\omega _1}\right) v^{0,\beta _2}\left( \frac{\psi _S(x_2)}{\omega _1}\right) ,\\ U_{5,j}({\mathbf {x}})= & {} v^{\alpha _1,0}\left( \frac{\psi _1(x_1)}{\omega _1}\right) w_2\left( \frac{\psi _j(x_2)}{\omega _1}\right) , \\ U_{6,i}({\mathbf {x}})= & {} v^{0,\beta _2}\left( \frac{\psi _S(x_2)}{\omega _1}\right) w_1\left( \frac{\psi _i(x_1)}{\omega _1}\right) ,\\ U_{7,i}({\mathbf {x}})= & {} v^{\alpha _2,0}\left( \frac{\psi _1(x_2)}{\omega _1}\right) w_1\left( \frac{\psi _i(x_1)}{\omega _1}\right) ,\\ U_{8,j}({\mathbf {x}})= & {} v^{0,\beta _1}\left( \frac{\psi _S(x_1)}{\omega _1}\right) w_2\left( \frac{\psi _j(x_2)}{\omega _1}\right) ,\\ U_{9,i,j}({\mathbf {x}})= & {} w_1\left( \frac{\psi _i(x_1)}{\omega _1}\right) w_2\left( \frac{\psi _j(x_2)}{\omega _1}\right) \end{aligned}$$

and

$$\begin{aligned}&\tau _1=\left( \frac{d}{2\omega _1}\right) ^{\beta _1+\beta _2}, \quad \tau _2=\left( \frac{d}{2\omega _1 }\right) ^{\beta _1+\alpha _2}, \quad \tau _3=\left( \frac{d}{2\omega _1 }\right) ^{\alpha _1+\beta _2}, \quad \tau _4=\left( \frac{d}{2\omega _1 }\right) ^{\alpha _1+\alpha _2}.\\&u_0=v^{0,0}, \quad u_1=v^{\alpha _1,0}, \quad u_2=v^{0,\beta _1}, \quad u_3=v^{\alpha _2,0}, \quad u_4=v^{0,\beta _2}. \end{aligned}$$

Then, approximating each integral by the proper Gauss–Jacobi rule depending on the couple of weight functions arising in the integral, according to the notation in (9), we get

$$\begin{aligned} \mathcal {I}(F,\omega )= & {} \frac{d^2\tau _0}{4}\left\{ \tau _1 \mathcal {G}_{m,m}^{(u_2,u_4)}\left( F_{1,1}K_{1,1} U_1\right) + \tau _2 \mathcal {G}_{m,m}^{(u_2,u_3)}\left( F_{1,S}K_{1,S}U_2\right) \right. \nonumber \\&\quad + \tau _3 \mathcal {G}_{m,m}^{(u_1,u_4)}\left( F_{S,1}K_{S,1} U_3\right) + \tau _4 \mathcal {G}_{m,m}^{(u_1,u_3)}\left( F_{S,S}K_{S,S} U_4\right) \nonumber \\&\quad + \tau _1 \sum _{j=2}^{S-1} \mathcal {G}_{m,m}^{(u_2,u_0)}\left( F_{1,j}K_{1,j} U_{5,j}\right) + \tau _2 \sum _{i=2}^{S-1} \mathcal {G}_{m,m}^{(u_0,u_3)}\left( F_{i,S}K_{i,S} U_{6,i} \right) \nonumber \\&\quad + \tau _1 \sum _{i=2}^{S-1} \mathcal {G}_{m,m}^{(u_0,u_4)}\left( F_{i,1}K_{i,1} U_{7,i}\right) + \tau _3 \sum _{j=2}^{S-1} \mathcal {G}_{m,m}^{(u_1,u_0)}\left( F_{S,j}K_{S,j} U_{8,j}\right) \nonumber \\&\quad + \left. \tau _1 \sum _{i=2}^{S-1} \sum _{j=2}^{S-1} \mathcal {G}_{m,m}^{(u_0,u_0)}\left( F_{i,j}K_{i,j} U_{9,i,j}\right) \right\} =:\varPsi _{m,m}(F,\omega )+\mathcal {R}^\varPsi _{m,m}(F,\omega ).\nonumber \\ \end{aligned}$$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Occorsio, D., Serafini, G. Cubature formulae for nearly singular and highly oscillating integrals. Calcolo 55, 4 (2018). https://doi.org/10.1007/s10092-018-0243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0243-x

Keywords

Mathematics Subject Classification

Navigation