Disentangling a complex genus Systematics, biogeography and bioactivity of the genus Phyllanthus L. and related genera of tribe Phyllantheae (Phyllanthaceae)

Disentangling a complex genus Systematics, biogeography and bioactivity of the genus Phyllanthus L. and related genera of tribe Phyllantheae (Phyllanthaceae)

Roderick Wiebe Bouman

Hortus botanicus Leiden \& Naturalis Biodiversity Center
Leiden University
2022

Roderick W. Bouman, 2022. Disentangling a complex genus: Systematics, biogeography and bioactivity of the genus Phyllanthus L. and related genera of tribe Phyllantheae (Phyllanthaceae).
PhD thesis, University of Leiden, The Netherlands

ISBN: 978-94-6469-129-0
Front cover: Phyllanthus emblica L., P. urinaria L., Glochidion sp., Breynia rostrata Merr., P. debilis J.G.Klein ex Willd., P. arbuscula (Sw.) J.F.Gmel, P. buxifolius Blume, Flueggea virosa (Roxb. ex Willd.) Royle [F. virosa by R.-Y. Yu, other photos by R.W. Bouman]
Back cover: P. buxifolius Blume, P. urinaria L., P. lamprophyllus Müll.Arg. [Photos by R.W. Bouman]

Layout and cover design by Roderick W. Bouman
All botanical illustrations drawn by E. Winkel
Printed by ProefschriftMaken

The separate chapters may differ from the original publications. This disseration is not to be considered as effectively published in the sense of Turland NJ et al. (eds) 2018, International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code), adopted by the nineteenth International Botanical Congress Shenzhen, China, July 2017. Article 30. Regnum Vegetabile 159.

This research was carried out at Hortus botanicus Leiden, Naturalis Biodiveristy and Institute of Biology Leiden at Leiden University.

Disentangling a complex genus Systematics, biogeography and bioactivity of the genus Phyllanthus L. and related genera of tribe Phyllantheae (Phyllanthaceae)

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof.dr.ir. H. Bijl, volgens besluit van het college voor promoties
te verdedigen op dinsdag 6 december 2022
klokke 13:45 uur
door

Roderick Wiebe Bouman
geboren te Hilversum, Nederland
in 1991

PROMOTIECOMMISSIE

Promotores:

Promotiecommissie:

Prof.dr. P.J.A. Keßler
Prof.dr. P.C. van Welzen

Prof.dr. G.P. van Wezel (voorzitter)

Prof.dr. E.F. Smets (secretaris)

Prof.dr. R.M.K. Saunders
Universiteit van Hong Kong
Prof.dr. T.R. van Andel

Dr. H.-J. Esser
Botanische Staatssammlung München

Prof.dr. H.P. Spaink

TABLE OF CONTENTS

Chapter 1 General introduction 11
Chapter 2 Phyllanthus rufuschaneyi: a new nickel 25
hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining
Chapter 3 Subgeneric delimitation of the plant genus Phyllanthus 43 (Phyllanthaceae)
Chapter 4 Revision of Phyllanthus subgenus Macraea 69 (Phyllanthaceae)
Chapter 5 Lectotypification and redescription of the Phyllanthus 127(Phyllanthaceae) species by Koorders from Sulawesi
Chapter 6 Metabolic variation of selected Phyllanthus species and 139their correlation with antimicrobial activity
Chapter 7 Molecular phylogenetics of Phyllanthus sensu lato 155
(Phyllanthaceae): towards coherent monophyletic taxa
Chapter 8 Revised phylogenetic classification of tribe Phyllantheae 203 (Phyllanthaceae)
Chapter 9 Multiple continental dispersal events and multiple 359 radiation events underlie the modern-day diversity of tribe Phyllantheae (Phyllanthaceae)
Chapter 10 Conclusions 413
References 421
Summary 475
Samenvatting 478
Curriculum vitae 482
List of publications 483
Acknowledgements 485

CHAPTER 1

General Introduction

Chapter 1

Background

Phyllanthaceae is a remarkable but understudied plant family that is classified in the Malpighiales, a difficult order often with families characterized by very small flowers, which has been the subject of several phylogenetic studies (Wurdack et al. 2004; Wurdack \& Davis 2009; Xi et al. 2012). The order comprises roughly 42 families, with almost no clear apomorphies per clade and the distinctions and relations between families are still under discussion (Xi et al. 2012). One of the more difficult member families is the Euphorbiaceae, which in the past was classified in five major subfamilies: Phyllanthoideae, Oldfieldioideae, Acalyphoideae, Crotonoideae and Euphorbioideae (Webster 1994, 2014; Radcliffe-Smith 2001).

Following the results of APG II (APG 2003), Euphorbiaceae was found to be non-monophyletic and it was subsequently divided into five families: Euphorbiacaeae s.s., Phyllanthaceae and Picrodendraceae (formerly subfamily Oldfieldioideae) (APG 2003; Wurdack et al. 2009), next to the non-related Pandaceae and Putranjivaceae. The most recent molecular study by Xi et al. (2012), identified a clade as the euphorbioids, which consists of the families Euphorbiaceae, Rafflesiaceae, Peraceae, Picrodendraceae, Phyllanthaceae, Linaceae and Ixonanthaceae). While support between the major clades varies between studies (see Xi et al. 2012; Sun et al. 2016), the Picrodendraceae and Phyllanthaceae are consistently retrieved as sister groups. Picrodendraceae and Phyllanthaceae represent what is commonly known as the phyllanthoids or bi-ovulate Euphorbiaceae and these families are still sometimes treated together with Euphorbiaceae (Webster 2014). Nevertheless, the phyllanthoids are an interesting clade and particularly the family Phyllanthaceae, which contains more than 2000 species (Hoffmann et al. 2006), characterized by unisexual flowers (with a few bisexual exceptions in Aporosa Blume), ecarunculate seeds (except in Glochidion J.R.Forst. \& G.Forst. and Margaritaria L.f.) and generally capsular fruits (Fig. 1-1).

The latest classification of Phyllanthaceae divides the family into two subfamilies and ten tribes (Fig. 1-2). A further division of Phyllanthaceae into several families seems unwarranted (but see Chakrabarty \& Balakrishnan 2018). Currently 58 genera are recognised and the majority of species are found in tribe Phyllantheae. The diversity of morphological characters within this tribe has caused several issues in its taxonomy, most notably in the species rich genus Phyllanthus L., which was found to be paraphyletic (Wurdack et al. 2004; Samuel et al. 2005; Kathriarachchi et al. 2006). Tribe Phyllantheae was originally defined by Dumort (1829) within the Euphorbiaceae (as Phylantheae) containing the genera Cluytia Steud. (now Euphorbiaceae), Xylophylla L., Phyllanthus, Kirganelia A.Juss., Cicca L., Andrachne L. and Bridelia Willd. Several genera in this classification were merged with Phyllanthus in the second half of the $19^{\text {th }}$ century (Müller 1863, 1865, 1866) and the classification

Figure 1-1. Examples of species of Phyllanthaceae: A. Flowers of Antidesma bunius (L.) Spreng., B. Fruits and flower of Actephila excels (Dalzell) Müll.Arg.; C. flowering branch of Bridelia sp.; D. close-up of a staminate flower of a Bridelia sp.; E. fruits of Baccaurea macrocarpa (Miq.) Müll.Arg.; F. pistillate flowers and fruits of Breynia androgyna (L.) Chakrab. \& N.P.Balakr. Photos: A, B, C, D, E by R.W.Bouman; F by R.-Y. Yu.

Chapter 1

Table 1-1. Genera included in tribe Phyllantheae by different authors.

Dumort $\mathbf{(1 8 2 9)}$	Hoffmann et al. (2006)	Van Welzen et al. (2014a)
Cluytia	Phyllanthus	Breynia
Andrachne	Flueggea	Flueggea
Bridelia	Phyllanthus	Glochidion
Cicca	Heterosavia	Heterosavia
	Lingelsheimia	Lingelsheimia
Kirganelia	Margaritaria	Margaritaria
Xylophylla	Plagiocladus	Plagiocladus
Phyllanthus	Phyllanthus	Phyllanthus
	Phyllanthus	Synostemon

has changed considerably (Table 1-1). Phyllanthus was defined as a broad genus with more than 40 sections (Müller 1863, 1865, 1866). Subsequent changes reinstated Glochidion (Kurz 1873) and Margaritaria (Webster 1957, 1979) as distinct genera. In the phylogenetic classification by Hoffmann et al. (2006), tribe Phyllantheae was divided into a limited number of genera and the authors recommended to combine a paraphyletic Phyllanthus with the genera Breynia J.R.Forst. \& G.Forst., Sauropus Blume and Glochidion. However, some feel that this would push taxonomic problems with Phyllanthus to the subgeneric level while still not resolving them (Pruesapan et al. 2012; van Welzen et al. 2014a).

Phyllanthus represents an interesting paraphyletic taxon with a rich taxonomical history, divergent morphology and practically unknown ecology. In this thesis I hope to address several interesting questions in Phyllanthus while exploring the evolution of this diverse genus. Coincidentally, problems in the classification of Phyllanthus is not limited to only plants as it was also the name of a genus of birds (Cibois et al. 2018)). This monospecific genus has been recently subsumed (Cibois et al. 2018) in the larger (formerly paraphyletic) genus Turdoides Cretzschmar 1826 (Leiothrichidae). While problems are probably not attached to the name itself, it remains a peculiar coincidence.

Figure 1-2. Molecular phylogeny of Phyllanthaceae resulting from Bayesian and Maximum likelihood analysis on the dataset of Kathriarachchi et al. (2005). Subtribes, tribes and subfamilies follow Hoffmann et al. (2006) but genera of tribe Poranthereae incorporate changes from Vorontsova \& Hoffmann (2008). The paraphyly of Phyllanthus is highlighted in red and polyphyly of Cleistanthus is highlighted in green. Figure shown on adjacent page.

Chapter 1

Morphological diversity

With over 800 species (Chapter 3) originating from several evolutionary lineages, the genus Phyllanthus displays an enormous diversity of morphological characters (Fig. 1-3). Important characters within the genus and the rest of the tribe are the habit, branching system, flowers, fruits, seeds and pollen morphology.

The majority of species of Phyllanthus are woody plants varying from trees to shrubs, however herbaceousness has evolved several times independently (Chapter 7). Some well-known herbaceous species of Phyllanthus like P. amarus Schumach. \& Thonn. and P. urinaria L. are often difficult to identify, which is complicated even more as a number of species have wide distributions and are invasive in many countries. By comparison, species of Breynia and Glochidion are usually shrubs to trees, while species of Synostemon F.Muell. are usually lower sprawling shrubs.

About 80% of the species of Phyllanthus exhibit a specialized branching system, which was coined by Webster (1956) as phyllanthoid branching. In this system, plagiotropic ultimate axes (side branches) resemble pinnate leaves, because they are deciduous and have a limited growth. These lateral branchlets are floriferous and bear laminate leaves while they are subtended by a scale-like leaf (cataphyll) and two cataphyllary stipules. Orthotropic axes typically only display laminate leaves in the first few nodes and switch to reduced leaves subtending the lateral axes in the upper nodes. Phyllanthoid branching is not present in Phyllanthus subgenera Isocladus G.L.Webster, Macraea (Wight) Jean F.Brunel and Ceramanthus (Hassk.) Jean F.Brunel, which are sister to the other clades in the genus (Kathriarachchi et al. 2006; Falcón Hidalgo et al. 2020) and it has been independently lost in several taxa (Chapter 6/7).

Inflorescences in Phyllanthus are generally axillary fascicles, unisexual or bisexual, with a varying number of flowers. Some taxa have more elaborate inflorescence structures like racemes (e.g. Phyllanthus subgenus Gomphidium (Baill.) G.L.Webster section Nymania (K.Schum.) J.J.Sm.) or thyrses (e.g. Phyllanthus subgenus Xylophylla section Epistylium (Sw.) Griseb.). The flowers show a relatively remarkable variation in form even though they consist of only a few elements. Flowers of Phyllanthus are characterized by two whorls of tepals (with some discussion on the differentiation of sepals and petals, see Gama et al. 2016), a (nectar) disc and either the andro- or gynoecium. The sepal number often differs between staminate and pistillate flowers and varies per subgenus. Pistillate discs are usually entire (with exceptions) and variable in size, while staminate discs are more often segmented with varying shapes. No studies have focused on the nectar production of these flowers and how the sugar composition looks like.

Micromorphological characters have had a large influence on the classification of Phyllanthus. Webster's $(1956,1957,1958)$ seminal work on the

Figure 1-3. Examples of various species of Phyllanthus: A. Phyllanthus juglandifolius Willd. in fruit: B. Phyllanthus Tenellus Roxb.; C. fruits of Phyllanthus emblica L.; D. Phyllanthus pulcher Wall. ex Müll.Arg. in flower; E. Phyllanthus arbuscula (Sw.) J.F.Gmel. showing its characteristic phylloclades with flowers along the margins. Photos by R.W.Bouman.
infrageneric classification of Phyllanthus was expanded upon and complemented with a series of palynological studies from various authors (e.g. Punt 1967, 1972, 1975, 1980; 1987; Brunel 1987; Lobreau-Callen et al. 1988; Webster \& Carpenter 2002, 2008; Sagun \& van der Ham 2003; Santiago et al. 2004; Chen et al. 2009; Wu et al. 2016).

Similar to other taxa in Phyllanthaceae and Euphorbiaceae, most species of Phyllanthus are characterized by small schizocarpic fruits. Ornamentation and number of locules may be differentiative characters between species, but often the fruit morphology is similar between species. Drupaceous fruits have evolved independently in a few taxa and are mainly found in Phyllanthus subgenus Kirganelia, while some species are also cultivated for their edible fruits (e.g. P. acidus (L.) Skeels and P. emblica L.). The seeds are usually trigonal, but show differences between subgenera in their ornamentation.

Chapter 1

Ecology and geography

Phyllanthus species can be found in a wide range of areas from a few desert species to the tropics. Only some invasive species are recorded in Mediterranean climate. The distribution of Phyllanthus and related genera has not been studied in detail. Early investigations based on the subgeneric classification from Webster $(1956,1957,1958)$ indicated multiple dispersal events between continents (Holm-Nielsen 1979), but these have not been studied in a phylogenetic context. Similarly, while elevation or substrate is sometimes noted on collection labels, this has not been correlated between species or to specific distributions. Some well known calciferous species are known, but for example the amount of rheophytes is probably highly underestimated.

With the remarkable diversity in floral characters such as flower shape (open and disc-like to more closed and tube-shaped), disc shape and the variation in fusion and numbers of stamens and sepals, the cause could be inferred from pollination. Various systems are found and the ancestral system has been hypothesized based on observations in Flueggea (basal in the phylogeny) to be generalist bees or flies (Kawakita 2010). Kato et al. (2003) discovered a fascinating pollination system in Glochidion, which involves a mutualism with parasitic moths of the genus Epicephala Meyrick 1880. The female moths actively gather pollen from staminate flowers and visit pistillate flowers to pollinate them, afterwards they lay an egg in the flower and the developing larvae consume a portion of the seeds and receive protection from the plant. Host specificity and a close relation between plant and moth species are hypothesized to have caused a rapid co-evolution in Glochidion (see also Hembrey et al. 2013, 2018) and variations on this system are found in Breynia (Kawakita \& Kato 2004b; Zhang et al. 2012) and various clades in Phyllanthus (Kawakita et al. 2009, 2019; Luo et al. 2011b; Kawakita \& Kato 2017). This area of study is being further explored in terms of floral scent (Svensson et al. 2010), flower abortion (Goto et al. 2010), sharing and selection of hosts (Zhang et al. 2012) and seems to explain part of the rapid speciation of Glochidion. Similarly, in Phyllanthus this system has been related to the high species number found in subgenus Gomphidium (>100) which occurs mainly in New Caledonia, Australia and Papua New Guinea (Kawakita \& Kato 2004a). However, comparable species numbers are not found in every clade associated with Epicephala moths and other factors should probably be included (Chapter 8).

As most species of Phyllanthus are characterized by schizocarpic fruits, the seeds are mostly dispersed autochorously. However, this mechanism and the distances traveled by seeds have not been studied for Phyllanthus. There are some indications that small fruits can disperse seeds about one to two meters (personal observation), but this has not been appropriately tested in the lab or the field. Similarly, dormancy of seeds has been a neglected study within the genus, but the presence of several
invasive species suggests they can establish readily with an appropriate travel vector. Fleshy fruits have evolved several times independently within tribe Phyllantheae (Chapter7) and these are probably mostly dispersed by birds. Observations of bird dispersal have been sporadic in Flueggea, but has not been published for Phyllanthus. Similarly in Glochidion, the fruits dehisce to expose seeds with a brightly colored sarcotesta that is probably attractive to avian dispersers.

An interesting facet of a few species is their adaptation to areas with high metal concentrations in the ground. Recent studies in the biological accumulation of metals in plants have identified several species of Phyllanthus (Van der Ent et al. 2013; Nkrumah et al. 2016), which occur in ultramafic areas.

Genetics

Molecular systematics of Phyllanthus have mostly focused on resolving the relation between various taxa both at or above species level. First indications of paraphyly were found by Wurdack et al. (2004) and were subsequently confirmed by Samuel et al. (2005) and Kathriarachchi et al. (2006). Hoffmann et al. (2006) based an updated classification of Phyllanthaceae on the phylogeny from these previous studies. A molecular study of tribe Poranthereae and subsequent changes in classification on the groupings resulted in the recognition of eight genera (Vorontsova et al. 2007; Vorontsova \& Hoffmann 2009). Pruesapan et al. $(2008,2012)$ argued that the classification of Hoffmann et al. (2006) would push taxonomic problems only to subgeneric levels while in turn creating a giant heterogeneous Phyllanthus. Increased sampling efforts of tribe Phyllantheae with a focus on Breynia and Sauropus, suggested that they should be combined, but could be kept separate from Phyllanthus while also reinstating the genus Synostemon. Full plastome sequences are only available for four taxa of tribe Phyllantheae: Glochidion chodoense C.S.Lee \& Im(Cheon et al. 2019), Flueggea virosa (Roxb. ex Willd.) Baill. (Wang et al. 2020), Breynia fruticosa (L.) Müll. Arg. (Zhou et al. 2020) and P. emblica (record NC_047477.1 on Genbank). There are some indications of a possible genome duplication occurring in tribe Phyllantheae, but data on chromosomal numbers or genome sizes are severely lacking for many taxa (see Webster \& Ellis 1962). Sampling of Phyllanthus has previously covered about 10% of the genus, but some subgenera and sections have not yet been included. A more thorough sampling could investigate the relationship between major lineages of Phyllanthus and test the monophyly of the current classification of subgenera and (sub) sections within the genus.

Medicinal effects and metabolites

Two species are common in cultivation because they are renowned for their edible fruits (P. acidus and P. emblica), which are high in vitamin C (Liu et al. 2008). Aside

Chapter 1

from their nutritional value, a long list of species are also used in traditional medicine or hunting practices (Unander et al. 1990, 1991, 1992, 1995), however only a small number of species have been included in studies towards bioactive compounds. This is where botanical gardens, which harbour an enormous diversity of plant species, provide an opportunity to study more species.

Outline and aims of this thesis

Several gaps in knowledge have been highlighted in the introduction above, the largest of which is the current paraphyly of the genus Phyllanthus. With this thesis, I aim to expand our knowledge of Phyllanthus and discuss broader evolutionary patterns in the context of their morphology and phylogenetics. To begin studying the diversity within Phyllanthus, which has been described across hundreds of papers, this information needed to be summarized and the system of subgenera and sections was an ideal candidate that needed to be applied to the rest of Phyllanthus (Chapter $2 \& 3$). From this review, several taxonomic problems were identified and some subsequently treated (Chapter 4 \& 5). With the rising use of Phyllanthus in traditional medicine, we wished to test several lineages for their bioactive compounds, to identify possible further interesting groups (Chapter 6). As the classification was based on morphology, we wanted to expand the current sampling for phylogenetic studies of Phyllanthus to see whether all groups were monophyletic (Chapter 7). The phylogeny allowed us to map broad distribution patterns of various clades and study where Phyllanthus originated and how it dispersed to the rest of the world (Chapter 8). Finally, a decision needed to be made on the paraphyly of Phyllanthus, which will have taxonomic consequences for an enormous amount of species (Chapters 9).

Chapter 2

In the preparation of this thesis, several new species of Phyllanthus were discovered through herbarium or molecular work. Phyllanthus rufuschaneyi Welzen, R.W.Bouman \& Ent is the first to be described (Bouman et al. 2018a) and its general affinities are discussed. What makes this species all the more interesting, is the fact that it was grown at Kinabalu parks (Sabah, N. Borneo) for several years and studied for its extraordinary accumulation of metals. Therefore, this species is a strong candidate for its use in the upcoming field of agromining, which aims to use plants for the collection of metals from contaminated soils or those naturally rich in heavy metals.

Chapter 3

Breynia, Synostemon and Glochidion were found to be nested within Phyllanthus, but the genera were upheld by van Welzen et al. (2014a). Phyllanthus is therefore a
paraphyletic genus and to explore whether it is possible to split the genus, each species needs to be placed in a morphological and phylogenetic framework. In chapter 3, a table is presented that summarizes the taxonomic history of Phyllanthus and updates the classification system to cover all accepted species(Bouman et al. 2018b). Several taxonomic problems are highlighted for future study and a provisional key to the subgeneric classification of Phyllanthus is provided.

Chapter 4

One of the remaining taxonomical anomalies presented in chapter 3 concerns Phyllanthus subgenus Isocladus and its originally broad treatment by Webster (1956). Following his treatment would result in a polyphyletic subgroup, but the alternative, a classification by Brunel (1987) has often been ignored. Subgenus Macraea was originally placed in subgenus Isocladus, but was shown to be phylogenetically distinct (Kathriarachchi et al. 2006). This group of plants is here revised over its entire distribution and its taxonomic rank and affinity are discussed extensively to highlight morphological (dis)similarities with other plants of the genus Phyllanthus.

Chapter 5

Due to a lack of material and incomplete descriptions, not all species could be confidently assigned in chapter 3 to a specific subgeneric group. Two species were described by Koorders (1904) for the island of Sulawesi (Indonesia), but the initial description only mentioned the habit and which species it resembled. With no mention of the morphology of the flowers, the affinity of these species was initially unknown. During a recent trip during a Flora Malesiana Symposium in the region, I had the chance to see type material collected by Koorders himself that is currently stored at the herbarium of Bogor (BO) in Cibinong (Java, Indonesia). In a short revision, which includes flower descriptions, these species are assigned to Phyllanthus subgenus Erioccous and their closest affinity seems to be to species that occur in the Philippines. The biogeographical implications are discussed and a key to the species of Phyllanthus on Sulawesi is presented. As Sulawesi remains drastically understudied, this small contribution opens the path to finding new species.

Chapter 6

To further explore the medicinal effects of various species of Phyllanthus, I sampled material from the living collections of the Hortus botanicus Leiden and studied their antimicrobial and antifungal effects in correlation with their metabolite content. Some species were found to have antimicrobial effects, but we could not determine which compounds were responsible for this.

Chapter 1

Chapter 7

As past morphological work resulted in classifications that were not strictly monophyletic, the framework presented in chapter 3 needs to be complemented with a phylogeny with adequate sampling. The previous phylogenetic study that focused on Phyllanthus (Kathriarachchi et al. 2006) included about 10% of the whole genus. Increased sampling efforts by Pruesapan et al. $(2008,2012)$ already elucidated the structure of the genus Breynia (with Sauropus found to be nested within). Here, I increased the sampling efforts for the genus Phyllanthus itself in an attempt to include the majority of morphological variation and to add some understudied areas such as Australia. With increased sampling, I hope to confirm how Phyllanthus can be split in monophyletic genera and how they can be morphologically recognized.

Chapter 8

Most of the work on this thesis has been geared towards the goal of creating a new classification for the genus Phyllanthus. Here together with experts of different floras, we incorporate the results from all previous chapters into a new classification of tribe Phyllantheae. In this chapter I reinstate several genera to create a new classification of monophyletic taxa, some with a more restricted distribution. This new classification shows that Phyllanthus is restricted to the neotropics with only some cultivated species more widely distributed. With this, we propose a possible solution to the problem of paraphyly within the tribe.

Chapter 9

Now turning from taxonomy to its distribution, another aspect of why Phyllanthus is so remarkable is studied in this chapter. Phyllanthus occurs in all tropics and subtropics with a few species reaching temperate areas. However, how this distribution came to be has never been explored extensively. Initial surveys that incorporated older subgeneric classifications were minimal and only an extensive discussion existed for Africa, which did not incorporate any phylogenetics. By using the phylogeny of chapter 7 in conjunction with an expanded dataset of the distribution of included species and a dataset of fossil findings, we calibrate the phylogeny to determine how old the nodes on the phylogenetic tree are and reconstruct how the group might have reached its current distribution. By analysing this, I hope to correlate this with known events of plate tectonics and environmental conditions that could have allowed for the dispersal and colonization of new areas by the genus through time.

Chapter 10 General conclusions

In the last chapter of this book, I discuss the knowledge gained on tribe Phyllantheae

General Introduction

and its evolution and diversification. New problems are still created and several areas remain poorly studied for this interesting group of species. With a new appreciation of each individual clade and its new constituent genera, new problems are highlighted that offer interesting case studies for several evolutionary subjects. Some considerations are presented that would serve as a continuation of this work.

CHAPTER 2

Phyllanthus rufuschaneyi: a new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining

Roderick W. Bouman, Peter C. van Welzen, Sukaibin Sumail, Guillaume Echevarria, Peter D. Erskine and Antony van der Ent

Published in Botanical Studies 59 (9):1-12. 2018
https://doi.org/10.1186/s40529-018-0225-y

Chapter 2

Phyllanthus rufuschaneyi: a new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining

Short title: A new nickel hyperaccumulator from Sabah

Roderick W. Bouman ${ }^{1,2,3}$, Peter C. van Welzen ${ }^{1,3}$, Sukaibin Sumail ${ }^{4}$, Guillaume Echevarria ${ }^{5}$, Peter D. Erskine ${ }^{6}$ and Antony van der Ent ${ }^{5}, 6 *$
${ }^{1}$ Naturalis Biodiversity Center, Botany 2300 RA, The Netherlands.
${ }^{2}$ Hortus botanicus, Leiden University, Leiden 2311 GJ, The Netherlands.
${ }^{3}$ Institute of Biology Leiden, Leiden University, Leiden 2300 RA, The Netherlands.
${ }^{4}$ Herbarium, Sabah Parks, Kota Kinabalu, Sabah, Malaysia.
${ }^{5}$ Laboratoire Sols et Environnement, Université de Lorraine, INRA, Nancy 54000, France.
${ }^{6}$ Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, QLD 4072, Australia.

Abstract

Nickel hyperaccumulator plants are of much interest for their evolution and unique ecophysiology, and also for potential applications in agromining-a novel technology that uses plants to extract valuable metals from soil. The majority of nickel hyperaccumulators are known from ultramafic soils in tropical regions (Cuba, New Caledonia and Southeast Asia), and one genus, Phyllanthus (Phyllanthaceae), is globally the most represented taxonomic entity. A number of tropical Phyllanthus-species have the potential to be used as 'metal crops' in agromining operations mainly because of their ease in cultivation and their ability to attain high nickel concentrations and biomass yields. One of the most promising species globally for agromining, is the here newly described species Phyllanthus rufuschaneyi. This species can be classified in subgenus Gomphidium on account of its staminate nectar disc and pistillate entire style and represents the most western species of this diverse group. The flower structure indicates that this species is probably pollinated by Epicephala moths. Phyllanthus rufuschaneyi is an extremely rare taxon in the wild, restricted to Lompoyou Hill near Kinabalu Park in Sabah, Malaysia. Its utilization in agromining will be a mechanism for conservation of the taxon, and highlights the importance of habitat and germplasm preservation if rare species are to be used in novel green technologies.

Keywords: Epicephala pollination, Nickel hyperaccumulation, Phyllanthaceae, Phyllanthus subgenus Gomphidium, Sabah

Introduction

Whereas the great majority of plants growing on naturally nickel (Ni) rich ultramafic soils exclude it from uptake and translocation, a minority of plants display a highly unusual response with enhanced uptake and transfer to the shoots (Reeves 2003; Van der Ent et al. 2013a). These plants are called 'hyperaccumulators' and they have the ability to accumulate trace elements to extreme concentrations in their living tissues (Jaffré et al. 1976; Van der Ent et al. 2013a). The Ni concentrations in some species can reach up to $16.9 \mathrm{Wt} \%$ in the phloem sap (Van der Ent and Mulligan 2015). Although there are over 400 known Ni hyperaccumulators species ($>0.1 \mathrm{Wt} \%$ shoot dry weight), there are just ca. 50 hypernickelophores (e.g. hyperaccumulator species with $>1 \mathrm{Wt} \% \mathrm{Ni}$ shoot dry weight) known globally (Reeves 2003; Reeves et al. 2017). Hyperaccumulator plants can be used as 'metal crops' in agromining (phytomining) operations to generate metal-rich biomass for commercial gain (Chaney et al. 1998; Van der Ent et al. 2015a). This innovative approach enables access to resources not accessible by conventional mining techniques such as abundant lowgrade sources of valuable elements (Li et al. 2003; Van der Ent et al. 2015a). Agromining can also benefit local communities, by providing new income opportunities for farmers in developing countries (Bani et al. 2015; Chaney et al. 2018). The greatest potential for agromining is in tropical regions (Cuba, New Caledonia and Southeast Asia) where some of the world's largest low-grade nickel sources are located (Van der Ent et al. 2013b).

On a global scale, Ni hyperaccumulation occurs most frequently in the order Malpighiales, particularly in the families Dichapetalaceae, Phyllanthaceae, Salicaceae and Violaceae.

The Phyllanthaceae has the greatest numbers of hyperaccumulators with representatives in the genera Actephila Blume, Antidesma L., Breynia J.R.Forst. \& G.Forst., Cleistanthus Hook.f. ex Planch., Glochidion J.R.Forst. \& G.Forst. and Phyllanthus L. The latter is pantropical and the most speciose genus of the family with over 800 species globally (Govaerts et al. 2000; Kathriarachchi et al. 2006; Bouman et al. under review). Due to its great diversity in morphology, Phyllanthus is currently classified in many subgenera and (sub)sections, which were often former separate genera. The genus is characterized by its unisexual flowers, the absence of petals and a characteristic branching system called phyllanthoid branching (see Fig. 2-2a; Webster 1956). Species with this particular type of branching have deciduous, plagiotropic branchlets that are subtended by reduced scale-like leaves (cataphylls) (Webster 1956). Normal leaves and flowers are only found on the plagiotropic branchlets. This branching system has been lost several times (Kathriarachchi et al. 2006) and in species with non-phyllanthoid branching, leaves can be found on all axes and the branchlets are not deciduous and subtended by normal leaves. The genus Phyllanthus is currently paraphyletic with the genera

Chapter 2

Breynia, Glochidion and Synostemon F.Muell. nested within (Kathriarachchi et al. 2006; Pruesapan et al. 2012). Discussions on how to resolve the paraphyly of the genus Phyllanthus are still ongoing (see Hoffmann et al. 2006; Van Welzen et al. 2014a). One of the most speciose subgenera is subgenus Gomphidium (Baill.) G.L.Webster. Species in the subgenus are characterised by phyllanthoid branching in combination with flowers with biseriate sepals, stamens with free filaments (but connate in one section) and three duplex nectar glands (sometimes divided and then 6 or absent). The phylogenetic position of subgenus Gomphidium was not consistent between the markers used in the study of Kathriarachchi et al. (2006) and requires further study.

Major centres of diversity for Phyllanthus are in New Caledonia with over 100 species of which 15 species are Ni hyperaccumulators (Kersten et al. 1979; Schmid 1991; Jaffré et al. 2013), in Cuba with at least 40 species of which 17 species are Ni hyperaccumulators (Leon and Alain 1953; Reeves et al 1996), and in the Malesian Region about 100 species of which 5 species are Ni hyperaccumulators (Van der Ent et al. 2015a, b, c; Wu et al. 2016; Galey et al. 2017).

A number of taxa in the genus Phyllanthus are among the most promising 'metal crops' due to their fast growth and other favourable growth characteristics, including easy propagation and pest resistance (Nkrumah et al. 2016). Some Phyllanthus-species also reach some of the highest Ni concentrations known in any hyperaccumulator plants, with $3.8 \mathrm{Wt} \%$ in the leaves of P. serpentinus S.Moore from New Caledonia (Jaffré 1977; Kersten et al. 1979; as P. favieri M.Schmid), 3.9 Wt\% in the leaves of Phyllanthus insulae-japen Airy Shaw from Indonesia (Reeves 2003), and $6 \mathrm{Wt} \%$ in the leaves $P . \times$ pallidus C.Wright ex Griseb. from Cuba (Reeves et al. 1996).

Further study of other genera within the Phyllanthaceae continues to yield new Ni hyperaccumulator records, such as in the genus Antidesma (Nkrumah et al. 2018), and even new species that are hyperaccumulators, such as the recently described Actephila alanbakeri Welzen \& Ent (Van der Ent et al. 2016a). Kinabalu Park is the world's most species-rich hotspot with over 5000 species in 1000 genera and 200 families recorded to date (Beaman and Beaman 1990; Beaman 2005) of which 2542 plant species have been found on the ultramafic soils inside the Park (Van der Ent et al. 2015c). In Sabah, a total of 8 species of Phyllanthus occur, of which two are known Ni hyperaccumulators: P. balgooyi Petra Hoffm. \& A.J.M.Baker which can accumulate up to $1.6 \mathrm{Wt} \% \mathrm{Ni}$ in the leaves and up to 16.9 $\mathrm{Wt} \% \mathrm{Ni}$ in the phloem sap and the here newly described Phyllanthus rufuschaneyi (Hoffmann et al. 2008; Van der Ent and Mulligan 2015; Mesjasz-Przybylowicz et al. 2016). Phyllanthus balgooyi, also occurs in the Philippines, in addition to Phyllanthus securinegioides Merr. (which can accumulate up to $3.5 \mathrm{Wt} \%$ in the leaves), and a third Ni hyperaccumulator species from the genus, P. erythrotrichus C.B.Rob. which can accumulate up to $1.1 \mathrm{Wt} \% \mathrm{Ni}$ in the leaves (Baker et al. 1992; Quimado et al. 2015). The extreme levels of Ni accumulation in these species
poses important questions about the ways in which these plants take up, transport and store Ni , while avoiding the potential effects of metabolic toxicity. In leaves, Ni appears to be associated mainly with organic acids, such as citrate, malate and malonate (Kersten et al. 1980; Homer 1991; Montargès- Pelletier et al. 2008; Van der Ent et al. 2017).

In early 2013, a hitherto unknown species of Phyllanthus was planted in the local garden by staff at the Monggis substation of Kinabalu Park. Spottesting with dimethyl-glyoxime-impregnated paper revealed it to be a strong Ni hyperaccumulator, which was subsequently confirmed through Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) on acid-digested samples of leaves in the laboratory (first reported in Van der Ent et al. 2013c). The plant was collected from an unknown location near the Kinabalu Park boundary and could not be re-collected at the time. In 2015, the taxon was 're-discovered' during fieldwork on Lompoyou Hill, approximately 12 km from Monggis substation, where it was locally abundant (Fig. 2-1). The taxon is of significant scientific interest because of the extremely high levels of Ni accumulation, reaching up to $2.8 \mathrm{Wt} \%$

Figure 2-1. Different aspects of the habitat of P. rufuschaneyi in Sabah, Malaysia. A. Lompoyou Hill seen from Nalumad village; B. Garas-the eastern end of Lompoyou Hill, the outcropping ultramafic (serpentinite) bedrock is clearly visible in the road cuts; C. Phyllanthus rufuschaneyi growing in situ on Lompoyou Hill; D. the summit of Lompoyou Hill with secondary scrub and dead standing trees after forest fires. Photos by A. van der Ent.

Chapter 2

Ni in leaves and $1.8 \mathrm{Wt} \%$ in the phloem tissue (Van der Ent and Mulligan 2015). Following its discovery, the ecophysiology was studied in detail, which revealed that Ni is mainly concentrated in the phloem in roots and stems, and in the leaves in the epidermis (Van der Ent et al. 2017). Apart from scientific interest, the taxon has great potential for agromining, which was studied in a pioneering nursery pot experiment and field trial (Nkrumah et al. 2016). This experimental work demonstrated that P. rufuschaneyi has advantageous characteristics for utilization as a 'metal crop' including fast growth rate, easy re-growth after coppicing, tolerance for exposed conditions on eroded soils and high Ni accumulation in its whole biomass. Taken together, P. rufuschaneyi has the best combination of characteristics of any tropical 'metal crop' presently known. The bio-ore (e.g. ashed biomass) of P. rufuschaneyi contains up to $12.7 \mathrm{Wt} \% \mathrm{Ni}$ and the extractive hydrometallurgy of this material was studied for producing high-purity Ni salts for the electrochemical industry (Vaughan et al. 2017). At first, this plant was only known as Phyllanthus cf. securinegioides Merr. (and reported as such in Van der Ent et al. 2015b, 2016b, 2017), because of its superficial resemblance to this species from the Philippines. However, after examination of the literature and other specimens, we conclude that it is a new species that is of great interest for its taxonomic position and its qualities as a hyperaccumulator. Here we describe this taxon and provide information about its taxonomic relations, distribution, ecology, hyperaccumulation properties, and conservation status.

Figure 2-2. Detail of P. rufuschaneyi plants. A. inflorescences of P. rufuschaneyi, note the difference between main stem and side stem with at the base small structures that signal phyllanthoid branching; B. fruit capsules of P. rufuschaneyi. Photos by A. van der Ent.

Methods

Taxonomical investigation
The material studied comprised of herbarium specimens loaned from the Sabah Parks Herbarium (SNP) in Sabah, Malaysia. Descriptions were made using standard taxonomical techniques and morphological terminology follows Beentje (2016).

The IUCN conservation status was assessed applying the IUCN Red List Categories (IUCN 2001) that considers (i) extent of occurrence (EOO), and (ii) area of occurrence (AOO) in order to generate applicable IUCN threat categories.

Collection of plant samples for chemical analysis

Plant tissue samples (leaves, wood, bark, flowers) for bulk chemical analysis were collected in the habitat ($6^{\circ} 06^{\prime} 29.6^{\prime \prime} \mathrm{N} 116^{\circ} 47^{\prime} 36.7^{\prime \prime} \mathrm{E}$) near Kinabalu Park in Sabah, Malaysia. These samples were dried at $70^{\circ} \mathrm{C}$ for 5 days in a drying oven and subsequently packed for transport to Australia and gamma irradiated at Steritech Pty. Ltd. In Brisbane following Quarantine Regulations in Australia. The dried plant tissue samples were subsequently ground and digested using $4 \mathrm{mLHNO} \mathrm{H}_{3}$ (70%) and $1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$ in a microwave oven (Milestone Start D) for a $45-\mathrm{min}$ programme and diluted to 30 mL with ultrapure water (Millipore $18.2 \mathrm{M} \Omega \mathrm{cm}$ at $25^{\circ} \mathrm{C}$) before analysis with ICP-AES (Varian Vista Pro II) (Huang et al. 2004). The elemental concentrations originate from previously reported data (Van der Ent and Mulligan 2015; Van der Ent et al. 2015b, 2017) augmented with new data from plant tissue samples collected for this study.

Results

Taxonomic treatment
Phyllanthus rufuschaneyi Welzen, R.W.Bouman and Ent, sp. nov.-TYPE:
MALAYSIA. Sabah, near Kampong Nalumad, eastern boundary Kinabalu Park, Lompoyou Hill, Antony Van der Ent et al. SNP 32987! (holo SNP; iso L). Paratype: SNP 22039!, Lompoyou Hill, Sabah, Malaysia (Figs. 2-2, 2-3, 2-4).

This species is most similar to P. securinegoides from the Philippines, from which it can be distinguished by its smaller leaves, staminate flowers with connate filaments and pistillate flowers with connate tubular stigmas.

Shrub to tree(let), up to 6 m high, monoecious, phyllanthoid branching present, main branches often hollow. Indument generally absent, on some parts asperities (stiff, short, papillae-like hairs) on orthotropic and plagiotropic branches and sometimes petioles and pedicels. Plagiotropic branches 1-1.5 mm wide, not flattened, with 2 narrow longitudinal wings, to 0.3 mm wide, asperities usually present between wings. Stipules ovate, 1.5-6 by $0.8^{-1} \mathrm{~mm}$, persistent, becoming brown when dry, basally eared, ears sometimes elongated. Leaves distichous, simple, dimorphous (reduced on orthotropic branch to cataphylls (scale leaves), not reduced on plagiotropic branches). Cataphylls on main trunk below branches, stipule-like, ovate to triangular, c. 3 mm long, early caducous. Leaves on plagiotropic

Chapter 2

branches petiole more or less dorsoventrally flattened, $1-1.5 \mathrm{~mm}$ long, glabrous or with asperities, transversely wrinkled when dry; blade ovate to elliptic, 1.6-3.7 (without mucro) by $0.5-1.2 \mathrm{~cm}, 2.2-3.7$ times longer than wide, coriaceous, base attenuate, asymmetric, margin entire, somewhat thickened, slightly revolute, apex rounded to acuminate, mucronate up to 5.2 mm , mucron usually breaking off, upper and lower surface glabrous, smooth, lower surface glaucous; venation pinnate, above hardly visible, slightly raised underneath, secondary veins 6-8 per side, looped and closed near margin, higher order veins reticulate. Inflorescences consisting of unisexual or bisexual fascicles, flowers 1-4 per node; staminate flowers single or a few, generally in lower axils but sometimes at end of branches, usually together with a single pistillate flower; latter also single in upper axils. Staminate flowers $1.4-2 \mathrm{~mm}$ diameter, remaining closed, actinomorphic; pedicel slender, $6.7-12 \mathrm{~mm}$ long, apically somewhat thickened; sepals 6 , upright, tightly packed, margin entire, apex rounded; outer three smaller (when young) to slightly longer than inner ones, $1.9-2$ by $0.9-1 \mathrm{~mm}$, central part thickened, pink, margins and upper half thin, white to whitish pink; inner 3 1.4-2.3 by 1.3-1.4 mm, lower part almost naillike, central midrib area thickened and darker coloured, basal central part inside attached to androphore via a \wedge-like structure; disc lobes 6 , paired, vertical, kidneylike, c. 0.6 mm long, greyish blue when dry, attached to broad part of flower receptacle, smooth; stamens 3, filaments connate, c. 1 mm high, broadly cone-shaped, apically with erect anthers, these elliptic, c. 0.7 by 0.4 mm , opening extrorse via lengthwise slits, apically on connective a c. 0.3 mm long slender appendix. Pistillate flowers $1.4-1.6 \mathrm{~mm}$ diameter, actinomorphic; pedicel 1-2 mm long, round, glabrous or with asperities; sepals 6 , tight to ovary in flower, spreading in fruit, base very thickened, attached to receptacle, margin entire, outer 3 slightly smaller than inner 3 , elliptic, $1.7-2$ by c. 1 mm , apex truncate to erose, inner 3 elliptic, c. 2 by $1.2-1.6 \mathrm{~mm}$, apex rounded; disc lobes 6 , small, globose, less than 0.2 mm in diameter; gynophore c. 0.3 mm high, ovary ovoid, c. 1.3 by $1.1-1.3 \mathrm{~mm}$, 3-locular, 2 ovules per locule, smooth, glabrous, three stigmas united into a cone of $0.8-1 \mathrm{~mm}$ high, apically somewhat erose (slightly split stigmas) and hollow inside. Fruits c. 7.5 mm in diameter, c. 4.5 mm high, opening completely septicidal and partly to completely loculicidal, exocarp separating from meso- and endocarp, wall thin, woody when dry, smooth, glabrous; columella broadly triangular, 2-2.3 mm high. Seeds ovoidtriangular, c. 2.8 by 1.8 mm , brown, smooth, not seen mature.

Etymology

The specific epithet "rufuschaneyi" honours Dr. Rufus L. Chaney (b. 1942), an agronomist who is widely credited for inventing phytomining (agromining) (Chaney 1983), leading to the technology being patented (Chaney et al. 1998). Dr. Chaney has worked for 47 years at the USDA Agricultural Research Service (USA) on risk assessment for metals in soils and crops, and the food-chain transfer and bioavailability of soil and crop metals to humans. He published over 490

Figure 2-3. Phyllanthus rufuschaneyi Welzen, R.W.Bouman \& Ent: A. a branch with only scars of cataphylls and cataphyllary stipules present at the base of branchlets as these are caducous (drawn from herbarium specimen with leaves glued sideways and staminate flowers sometimes upright instead of hanging); B. detail of sidebranch with leaves and staminate flowers in natural position; C. staminate flower; D. staminate flower with part of sepals removed showing disc glands and androecium; E. pistillate flower; F. pistillate flower with part of sepals removed showing disc glands and ovary; G. fruit (A, C, D Daim Endau 225; B Lomudin Tadon g257; E, F SNP 32987; G Lomudin Tadon 257; all SNP). Drawing by Esmée Winkel (2017).

Chapter 2

publications and won the Gordon Award for Lifetime Achievement and Excellence in Phytoremediation Research. The fact that P. rufuschaneyi is the most promising tropical Ni 'metal crop' presently known, makes this recognition fitting.

Phenology and pollination

The species flowers and fruits all year round. Especially young plants growing in open habitats flower profusely on many branches. Flowering is less frequent when plants grow under more shaded conditions in developing forest. Many Phyllanthus species are pollinated by moths of the genus Epicephala Meyrick. Females of these moths actively pollinate the flowers and then deposit eggs into the floral ovaries, after which the larvae consume some of the developing seeds (Kawakita 2010). Phyllanthus rufuschaneyi, like all other species in subgenus Gomphidium, is likely pollinated by Epicephala moths (Kato and Kawakita 2017) as the staminate flowers are highly closed (inner sepals even grown together with the broad androphore) and possess vertical anthers, the pistillate flowers have grown together, cone-like, non-opening stigmas. Although pollination has not been specifically studied in this species, Epicephala larvae were observed in the fruit capsules of P. rufuschaneyi in the field. The similarity with Glochidion flowers, also pollinated by Epicephala moths, is remarkable. The co-evolution and high specificity for Epicephala-species for Phyllanthus-species has been linked to the extensive diversification of this genus in New Caledonia (Kawakita and Kato 2004a).

Distribution, habitat and ecology of Phyllanthus rufuschaneyi

Phyllanthus rufuschaneyi is known only from two populations; one (very small) population at the foot of Bukit Hampuan, and another larger population on Lompoyou Hill approximately 5 km from the first population. The habitat in both localities is open secondary scrub that has been affected by recurring forest fires (Fig. 2-1). Lompoyou Hill is close to the villages of Nalumad and Pahu. The hill (400 m asl) has been burnt at least once as a result of an uncontrolled forest fire in 1998. Prior to burning, the site was already disturbed by logging. The area has a short and open scrub community (dominated by shrubs $1-3 \mathrm{~m}$ tall) with pioneer species such as Macaranga kinabaluensis Airy Shaw (Euphorbiaceae). In this habitat type several other Ni hyperaccumulator plant species occur, including Phyllanthus balgooyi, Actephila alanbakeri, Mischocarpus sundaicus Blume (Sapindaceae), and Xylosma luzonensis Clos (Salicaceae). The local conditions are xeric, and the soils are shallow and heavily eroded with limited amounts of organic matter. In pot experiments P. rufuschaneyi responded negatively to increasing organic matter amendments (Nkrumah et al. 2017). Phyllanthus rufuschaneyi occurs exclusively on these young eroded soils (hypermagnesian Cambisols) that occur at low elevation (700 m asl) on strongly serpentinised bedrock. These soils have extremely high magnesium (Mg) to calcium (Ca), circum-neutral pH , and high available Ni as a result of the disintegration of phyllosilicates and re-sorption onto secondary iron (Fe)- oxides

Figure 2-4. Elemental concentration in various plant parts of P. rufuschaneyi. Data from Tables 2-1 and 2-2.
or high-charge clays (Echevarria 2018). In Sabah, Ni hyperaccumulator plant species are restricted to these soils with a $\mathrm{pH}>6.3$ and relatively high total soil Ni concentrations $>630 \mu \mathrm{~g}$ g-1 (Van der Ent et al. 2016b).

Elemental concentrations in the plant tissues

Bulk elemental concentrations of macro-elements (mainly essential nutrients) are given in Table 1; Fig. 2-4. Aluminium (Al) concentrations are uniformly low in all plant parts, but highest in the flowers (up to $370 \mu \mathrm{~g} \mathrm{~g}$). Calcium is high to extremely high in many parts of the plant, especially in the old leaves (up to $1.09 \mathrm{Wt} \%$), in the bark (up to $2.34 \mathrm{Wt} \%$) and in the twigs (up to $2.59 \mathrm{Wt} \%$). Potassium (K) concentrations are remarkably high for a plant species growing on severely K-deficient soils. The highest K concentrations are in the old leaves (up to $1.34 \mathrm{Wt} \%$) and twigs (up to $1.37 \mathrm{Wt} \%$), and the lowest in the roots ($53 \mu \mathrm{~g} \mathrm{~g} \mathrm{~g}^{-1}$). Magnesium concentrations are particularly high in the immature seeds (mean of $4931 \mu \mathrm{~g} \mathrm{~g}^{-1}$). Sodium (Na) concentrations are unremarkable, but highest in the young leaves with up to $2325 \mu \mathrm{~g} \mathrm{~g}^{-1}$ (mean is $390 \mu \mathrm{~g} \mathrm{~g}^{-1}$). Finally, sulfur (S) concentrations vary widely with the lowest concentrations in the roots $\left(81 \mu \mathrm{~g} \mathrm{~g}^{-1}\right)$ and the highest in the immature seeds (up to $3290 \mu \mathrm{~g} \mathrm{~g}{ }^{-1}$).
Bulk elemental concentrations of trace-elements (transition group elements) are
Table 2-1. Elemental concentration (macro elements: $\mathrm{Al}, \mathrm{Ca}, \mathrm{K}, \mathrm{Mg}, \mathrm{Na}, \mathrm{P}, \mathrm{S}$) ranges and means in parentheses.

Plant part	N samples	Al	Ca	K	Mg	Na	P	S
Flowers	2	$\begin{gathered} 20-370 \\ {[195]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 1020-3330 \\ {[2180]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 431-4600 \\ {[2520]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 2810-3630 \\ {[3220]} \\ \hline \end{gathered}$	$\begin{gathered} 65-301 \\ {[183]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 392-1070 \\ {[732]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 347-904 \\ {[625]} \\ \hline \end{gathered}$
Seed capsule	5	$\begin{array}{c\|} \hline 9.0-70 \\ {[27]} \\ \hline \end{array}$	$\begin{gathered} \hline 672-4160 \\ {[2410]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 2700-5920 \\ {[4600]} \\ \hline \end{gathered}$	$\begin{gathered} 563-1800 \\ {[1080]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 38-305 \\ {[123]} \\ \hline \end{array}$	$\begin{gathered} 191-1240 \\ {[738]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 757-1390 \\ {[972]} \\ \hline \end{gathered}$
Immature seeds	2	$\begin{gathered} 26-296 \\ {[161]} \\ \hline \end{gathered}$	$\begin{gathered} 4340-4480 \\ {[4410]} \\ \hline \end{gathered}$	$\begin{gathered} 6010-6090 \\ {[6050]} \\ \hline \end{gathered}$	$\begin{gathered} 2740-7120 \\ {[4930]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 70-661 \\ {[365]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 3330-3880 \\ {[3610]} \\ \hline \end{gathered}$	$\begin{gathered} 1940-3290 \\ {[2610]} \\ \hline \end{gathered}$
Ripe seeds	1	85	9460	4570	4104	603	1856	2380
Young leaves	12	$\begin{gathered} 1.0-52 \\ {[20]} \\ \hline \end{gathered}$	$\begin{gathered} 124-12200 \\ {[4100]} \\ \hline \end{gathered}$	$\begin{gathered} 89-19500 \\ {[7250]} \\ \hline \end{gathered}$	$\begin{gathered} 352-6900 \\ {[3020]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.9- \\ 2320 \\ {[390]} \\ \hline \end{gathered}$	$\begin{gathered} 34-5180 \\ {[1010]} \\ \hline \end{gathered}$	$\begin{gathered} 152-3610 \\ {[1440]} \\ \hline \end{gathered}$
Old leaves	21	$\begin{gathered} 12-69 \\ {[30]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 2416-10900 \\ {[4730]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 3101-13400 \\ {[5760]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 1060-5500 \\ {[3140]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 30-525 \\ {[120]} \\ \hline \end{gathered}$	$\begin{gathered} 430-3220 \\ {[789]} \\ \hline \end{gathered}$	$\begin{gathered} 1140-3100 \\ {[1660]} \\ \hline \end{gathered}$
Bark	7	$\begin{gathered} 14-71 \\ {[43]} \end{gathered}$	$\begin{gathered} 92-23405 \\ {[10870]} \\ \hline \end{gathered}$	$\begin{gathered} 45-6239 \\ {[3750]} \\ \hline \end{gathered}$	$\begin{gathered} 361-2160 \\ {[728]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 19-530 \\ {[213]} \\ \hline \end{gathered}$	$\begin{gathered} 16-505 \\ {[332]} \\ \hline \end{gathered}$	$\begin{gathered} 108-1127 \\ {[749]} \\ \hline \end{gathered}$
		29-95	129-36400	84-8420	13-1360	26-384	30-339	152-1100
Phloem tissue	3	[51]	[16500]	[4970]	[975]	[222]	[180]	[735]
Twigs	14	$\begin{gathered} 1.0-71 \\ {[21]} \\ \hline \end{gathered}$	$\begin{gathered} 130-25900 \\ {[5200]} \\ \hline \end{gathered}$	$\begin{gathered} 246-13700 \\ {[5520]} \\ \hline \end{gathered}$	$\begin{gathered} 109-5280 \\ {[966]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.8-856 \\ {[313]} \\ \hline \end{gathered}$	$\begin{gathered} 16-1730 \\ {[539]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 53-1720 \\ {[610]} \\ \hline \end{gathered}$
Wood	7	$\begin{array}{\|c\|} \hline 2.8-23 \\ {[14]} \\ \hline \end{array}$	$\begin{gathered} \hline 125-1296 \\ {[762]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 78-2725 \\ {[1585]} \\ \hline \end{gathered}$	$\begin{gathered} 85-249 \\ {[150]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.0-483 \\ {[200]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 23-791 \\ {[359]} \\ \hline \end{gathered}$	$\begin{gathered} 48-506 \\ {[306]} \\ \hline \end{gathered}$
Roots	1	91	125	53	382	31	40	81
All values provided in $\mu \mathrm{g} \mathrm{g}^{-1}$								

A new nickel hyperaccumulator from Sabah
All values provided in $\mu \mathrm{g} \mathrm{g}^{-1}$

Chapter 2

given in Table 2. Cobalt (Co) concentrations are the highest in the young leaves with up to $198 \mu \mathrm{~g} \mathrm{~g}{ }^{-1}$, but are comparatively low in relation to Ni concentrations. The mean Co:Ni quotient is $1: 532$, evidencing highly selective uptake of Ni over Co, compared to soil concentrations of these elements (generally 10:1 Ni to Co). Chromium (Cr) concentrations are universally low, and this element is clearly excluded from uptake. Copper (Cu) concentrations have a narrow range between $0.7-17 \mu \mathrm{~g} \mathrm{~g}$-1 , with mean values of 6.7 and $4.7 \mu \mathrm{~g} \mathrm{~g}$ - in young and old leaves respectively. Iron concentrations are more variable, but generally low (maximum of $564 \mu \mathrm{~g} \mathrm{~g}$ - in the phloem tissue). Manganese (Mn) concentrations too are low in all plant parts, with the highest concentrations on the old leaves (up to $461 \mu \mathrm{~g}$ g^{-1}). Nickel concentrations are the highest in the old leaves with up to $2.50 \mathrm{Wt} \%$ (mean of $1.65 \mathrm{Wt} \%$) and somewhat lower in the young leaves (up to $1.08 \mathrm{Wt} \%$ and a mean of $5390 \mu \mathrm{~g} \mathrm{~g}^{-1}$). Nickel concentrations are also high in the twigs (up to $1.23 \mathrm{Wt} \%$) and in the phloem tissue (up to $0.93 \mathrm{Wt} \%$). It is remarkable that the reproductive organs (flowers, fruit capsule and seeds) are highly Ni-enriched. The seeds contain $1.76 \mathrm{Wt} \% \mathrm{Ni}$ and the flowers on average $0.43 \mathrm{Wt} \% \mathrm{Ni}$. The elemental fractionation of Ni in the different plant parts is depicted in Fig. 2-5. Finally, zinc (Zn) concentrations are unremarkable with on average $85 \mu \mathrm{~g} \mathrm{~g}$ in the old leaves.

Conservation status

The habitat of P. rufuschaneyi is outside any protected areas, in patches of remaining scrub in an area devastated by recurring forest fires. The restriction of this species to just one main population (the second population is very small) and the small area of occupancy ($<10 \mathrm{~km} 2$) means that this species is sensitive to disturbances which could ultimately lead to its extinction. Therefore, the species can be classified as Critically Endangered (CR) on the basis of IUCN Red List Criteria (Version 3.1: IUCN 2001) considering Criterion B. Geographic range; B2. Area of occupancy estimated to be less than 10 km 2 , and a. Severely fragmented or known to exist at only a single location; b. Continuing decline in (i) extent of occurrence; and (iii) area, extent and/or quality of habitat.

Discussion

The taxonomic position of P. rufuschaneyi is noteworthy as it represents the most western species of its subgenus. It is placed in Phyllanthus subgenus Gomphidium section Nymania (K.Schum) J.J.Sm. on account of its three paired staminate disc glands and its connate stamens (Fig. 2-3c). Section Nymania is mainly distributed in Papua New Guinea, but a few species also occur in the Philippines. Phyllanthus rufuschaneyi is most similar to P. securinegioides, however, it differs in its significantly smaller leaves, its smaller fascicled inflorescences with pinkish flowers (Fig. 2-1a; vs larger fascicles with yellow flowers in P. securinegioides), the completely fused anther filaments (Fig. 2-3c) and the fused style (Fig. 2-3e). The other Philippine species of Gomphidium, P. apiculatus Merr., P. ramosii Quisumb.,

Figure 2-5. Agromining growth trials using P. rufuschaneyi in Sabah, Malaysia: A. Mass propagation of P. rufuschaneyi using cutting grown in perlite; B. Phyllanthus rufuschaneyi shrubs planted out in the 'Hyperaccumulator Botanic Garden' of Sabah Parks; C. plant nutrition growth experiment using P. rufuschaneyi at Monggis substation; D. full-scale (1.5 ha) agromining field trial using P. rufuschaneyi near Pahu village 6 months after planting.
P. glochidioides Elmer and P. cordatulus Rob., all have staminate flowers with free stamens. Though P. cordatulus has a similarly fused style of $c .1 .3 \mathrm{~mm}$ long, it is spreading for about the same distance, whereas the style of P. rufuschaneyi is only fused for up to 1 mm and slightly erose at the end. The style is quite prominent and emerges out of the pistillate flowers (Fig. 2-3d, e). The other species of Phyllanthus occurring in Borneo are from other subgenera and differ either in their branching system (e.g. phyllanthoid vs non-phyllanthoid in subgenus Macraea (Wight) Jean F.Brunel) or in the morphology of their flowers (e.g. no difference between inner and outer sepals in subgenera Emblica (Gaertn.) Kurz, Kirganelia (A.Juss.) Kurz and Eriococcus (Hassk.) Croizat \& Metcalf). The structure on top of the anther connective is slightly reminiscent of the apiculate anthers in subgenus Phyllanthodendron (Hemsl.) G.L.Webster. However, P. rufuschaneyi does not have the characteristic ligulate nectar disc and apiculate anthers that are also found in subgenus Gomphidium. Nickel hyperaccumulators are found in several subgenera within the genus Phyllanthus, which suggests that it evolved several times.

The restricted distribution of P. rufuschaneyi cannot be easily explained. In Sabah, Ni hyperaccumulators are restricted to circum-neutral soils with relatively

Chapter 2

high phytoavailable calcium, magnesium and Ni concentrations with at least $20 \mu \mathrm{~g}$ g^{-1} carboxylic acid extractable Ni or $630 \mu \mathrm{~g} \mathrm{~g}$-1 total nickel, and a soil $\mathrm{pH}>6.3$ (Van der Ent et al. 2016b). However, these types of Cambisols derived from serpentinized bedrock are relatively widespread in Sabah, but P. rufuschaneyi has not been found elsewhere despite extensive fieldwork on all major ultramafic outcrops in Sabah (Van der Ent et al. 2015b). Although some Ni hyperaccumulators are comparatively common (P. balgooyi, Psychotria sarmentosa Blume, Rubiaceae, Xylosma luzonensis) on several ultramafic outcrops in Sabah, the situation of P. rufuschaneyi mirrors that of Actephila alanbakeri, which is also restricted to a single site at the same location (Van der Ent et al. 2016a). Experience in cultivation shows that P. rufuschaneyi is highly shade-intolerant and requires exposed conditions with minimal light competition (Fig. 2-5). It suffers from fungal infections when grown under shaded and moist conditions, and stops flowering. The dependence on a specific pollinator that is characteristic for the Phyllanthus-Epicephala mutualism and limited dispersal capabilities might be possible explanations why this species is not more widespread in Borneo. Phyllanthus rufuschaneyi has particularly attractive characteristics for cultivation as 'metal crop' in agromining operations. These favourable properties include its multi-stemmed habit, the rapid re-growth after coppicing, and high Ni concentrations in woody parts of the biomass. Other Phyllanthus-species, such as P. balgooyi, albeit having equally high foliar Ni concentrations, have lower growth rates and do not tolerate open and exposed conditions on bare soils. A major uncertainty currently pertains to the effective mass-propagation of P. rufuschaneyi, however, and the specialised pollination strategy of this species presents a challenge for using seed stock. More than any other species, obligate hyperaccumulator plants that have a restricted distribution on isolated ultramafic outcrops are susceptible to habitat degradation (Galey et al. 2017). Phyllanthus rufuschaneyi is known only from a site that has been severely affected by over-logging and (man-made) forest fires for clearing of agricultural land, and neither the area nor the species has statutory protection. The current expansion of oil palm plantations on Lompoyou Hill cast a further shadow over its continued existence in the wild. As such, the case of P. rufuschaneyi highlights the importance of habitat and germplasm preservation if rare species are to be used in green technologies such as agromining. Therefore, concerted efforts must be made to screen for hyperaccumulator species (Whiting et al. 2004), followed by appropriate methods for conserving them both in and ex situ (Erskine et al. 2012). The utilization of P. rufuschaneyi in agromining operations means that there are now likely to be more plants in cultivation than in the wild, and this will for now safeguard its future survival.

Authors' contributions

AvdE, PE and GE conducted the fieldwork and collected the plant specimens in Sabah. RB and PvW carried out the taxonomical study. AvdE undertook the laboratory analyses. All authors read and approved the final manuscript.

Acknowledgements

We thank Rimi Repin, Rositti Karim (Sabah Parks) and Postar Miun (Sabah Forestry Department) for their help during the fieldwork in Malaysia.

Ethics approval and consent to participate

The Sabah Biodiversity Council issued research permits for conducting research in Sabah, and Sabah Parks granted permission to conduct research in Kinabalu Park.

Funding

The French National Research Agency through the national "Investissements d' avenir" program (ANR-10-LABX-21, LABEX RESSOURCES21) and through the ANR-14-CE04-0005 Project "Agromine" is acknowledged for funding support to G. Echevarria and A. van der Ent. A. van der Ent is the recipient of a Discovery Early Career Researcher Award (DE160100429) from the Australian Research Council.

CHAPTER 3

Subgeneric delimitation of the plant genus Phyllanthus (Phyllanthaceae)

Roderick W. Bouman, Paul J.A. Keßler, Ian R.H. Telford, Jeremy J. Bruhl and Peter C. van Welzen

Published in Blumea 63: 167-198. 2018
https://doi.org/10.3767/blumea.2018.63.02.14

Chapter 3

Subgeneric delimitation of the plant genus Phyllanthus (Phyllanthaceae)

Short title: Subgeneric delimitation of Phyllanthus

Roderick W. Bouman ${ }^{1,2,4}$, Paul J.A. Keßler ${ }^{1,4}$, Ian R.H. Telford ${ }^{3}$, Jeremy J. Bruhl ${ }^{3}$, Peter C. van Welzen ${ }^{2,4}$
${ }^{1}$ Hortus botanicus Leiden, Leiden University, P.O. Box 9500, 2300 RA Leiden, The Netherlands; corresponding author e-mail: roderick.bouman@naturalis.nl.
${ }^{2}$ Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands.
${ }^{3}$ Botany and N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
${ }^{4}$ Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands.

Abstract

Over two centuries of taxonomic studies on the species rich genus Phyllanthus have culminated in a broad and complicated classification with many subgenera and (sub)sections. Past taxonomic work has only focused on local revisions, mostly because of the size of the genus. In this study we aim to summarize most of the taxonomic work in a list containing the infrageneric delimitations of Phyllanthus. This work will serve as a reference, placing most currently recognized species in subgenera and if possible, in sections for further study. Here we recognize 880 species of Phyllanthus, classified in 18 subgenera, 70 sections and 14 subsections. A few taxonomic changes are necessary to reconcile published phylogenetic data with the current classification. Subsections Callidisci and Odontadenii are raised to sectional rank, while section Eleutherogynium and section Physoglochidion are reduced to subsections and P. oxycarpus is transferred to the genus Glochidion. A provisional key for the subgeneric classification of Phyllanthus is provided.

Key words: infrageneric taxonomy, pantropical, paraphyletic, Phyllanthaceae, Phyllanthus

Introduction

With almost 900 species, the mostly pantropical Phyllanthus L. is the largest genus in the family Phyllanthaceae (Govaerts et al. 2000). When considering all vegetative and reproductive organs, Phyllanthus is one of the most diverse groups in the Angiosperms (Webster 1956). This diversity is exemplified by the multitude of subgenera and (sub)sections defined within the genus. In the past, most of these
subgenera and some sections were treated at generic rank (Jussieu 1824, Baillon 1858), but were eventually all subsumed in a broad genus concept of Phyllanthus with numerous sections (Müller 1863, 1865, 1866). The last major changes to this concept at genus level have been the segregation of the genera Glochidion J.R.Forst. \& G.Forst. (Kurz 1873) and Margaritaria L.f. (Webster 1957, 1979). The infrageneric structure of Phyllanthus was improved with the creation of several subgenera in a monographic work on the Phyllanthus species of the West Indies by Webster (1956, 1957, 1958). Subsequent revisionary work followed Webster's outline of subgenera and sections to illustrate the relations among groups within Phyllanthus (e.g. Bancilhon 1971; Webster \& Airy Shaw 1971; Punt 1972; Airy Shaw 1975, 1980a; Brunel 1987; Rossignol et al. 1987; Santiago et al. 2006; Ralimanana \& Hoffmann 2011, 2014; Ralimanana et al. 2013). Regional work on Phyllanthus (Merrill 1920, 1926; Pax \& Hoffmann 1922; Beille 1925, 1927; Croizat 1942a, 1943b; Leandri 1958; Airy Shaw 1963, 1969, 1972, 1975, 1976, 1980a, 1980b, 1982; Webster 1986; Chantaranothai 2005; Silva \& Sales 2006, 2008) and morphological studies (Punt 1967, 1972, 1973, 1980, 1986; Lobreau-Callen et al. 1988; Stuppy 1995; Chen et al. 2009; Jangid \& Gupta 2016; Wu et al. 2016) extended the infrageneric groupings to create a working classification for most Phyllanthus species.

However, recent phylogenetic studies showed that several subgenera were polyphyletic and even Phyllanthus itself proved to be paraphyletic (Kathriarachchi et al. 2006). In the following taxonomic revisions some of the polyphyletic subgenera were divided in new monophyletic subgenera (Ralimanana \& Hoffmann 2011, 2014a; Ralimanana et al. 2013), but discussion remained whether Breynia J.R.Forst. \& G.Forst., Glochidion and Sauropus Blume should be subsumed into Phyllanthus. One solution is to subsume these genera in Phyllanthus to create a giant genus (Hoffmann et al. 2006, followed by Chakrabarty \& Balakrishnan 2009b; Wagner \& Lorence 2011; Kurosawa 2016) and the other is to split Phyllanthus into smaller, morphologically recognizable, monophyletic groups (Pruesapan et al. 2012; van Welzen et al. 2014a; Telford et al. 2016, followed by Chakrabarty \& Balakrishnan 2012). A more exhaustive phylogenetic study with higher sampling presented the case to maintain Breynia (including Sauropus), Synostemon F.Muell. and Glochidion as monophyletic and morphologically recognizable genera (Pruesapan et al. 2008, 2012; van Welzen et al. 2014a), still leaving the rest of Phyllanthus in its current state, a paraphyletic genus. If Phyllanthus would be split, a larger phylogenetic study, which includes all subgenera and the majority of sections, is needed to prove which groups are monophyletic.

Phyllanthus is currently classified in about 18 subgenera with numerous sections by past revision work. The most notable revisions of Phyllanthus are those for the neotropics (Webster 2001b, 2002a, 2002b, 2004), Asia (Airy Shaw 1960, 1975, 1980, 1981; Webster \& Airy Shaw 1971; Schmid 1991) and tropical Africa and Madagascar (Brunel 1987; Brunel \& Roux 1975, 1976, 1977, 1981, 1984, 1985; Leandri 1958; Radcliffe-Smith 1974, 1996b; Ralimanana \& Hoffmann 2011,

Chapter 3

2014, Ralimanana et al. 2013). There is some discussion regarding the validity as publication of Brunel's thesis (1987). The thesis covers a large amount of work on the Phyllanthus species of Madagascar and Africa with many notes on subgenera and sections. Because it is a thesis, this work was treated as not validly published based on article 32 of the International Code of Botanical Nomenclature (McNeill et al. 2012) by Kathriarachchi et al. (2006). However, the thesis contains the name of a printing company and numbered copies have been distributed to several institutes, which is all in agreement with article 30.8, making it a validly published book. As such it is used in this publication. Several of the decisions in Brunel's thesis were accepted in recent revisions of Phyllanthus in Madagascar (Ralimanana \& Hoffmann 2011, 2014, Ralimanana et al. 2013).
The checklist by Govaerts et al. (2000) is often used to estimate the number of species within Phyllanthus, but it does not contain an infrageneric division. An attempted synopsis of all the subgenera and sections was published by Kathriarachchi et al. (2006). However, only the species included in the phylogenetic study were mentioned and a complete taxonomic treatment of the genus is still wanting. We hope that this list may serve as a framework for future studies. If Phyllanthus should ever be split into various genera, this list can serve as a recommendation for the species to include.

Methods

In this study, we record 881 species, which are divided into 18 subgenera, 69 sections and 15 subsections (Appendix 3-1). Govaerts et al. (2000) recorded 833 species and the difference is mainly caused by the acceptance of Brunel (1987) and the addition of newly published species after their work. Based on a combination of morphological descriptions, classifications in literature and published phylogenetic work (e.g., Samuel et al. 2005; Kathriarachchi et al. 2006; Pruesapan et al. 2008, 2012; Manissorn et al. 2010; Challen et al. 2011; Luo et al. 2011a), we propose the current list for the subgeneric classification of Phyllanthus, in which we assign as many species as possible to subgenera and sections. Some placements are adopted from and are now validly published from Webster's unfinished manuscripts, which are available online (http://herbarium.ucdavis.edu/webster_manuscripts.html). For those species that were unplaced, we studied the distribution and morphological descriptions (mainly branching type and the morphology of the staminate flower), which allowed us to place them at least in subgenera. A synoptic key is provided by which most species can be placed in the appropriate subgenera and/or sections. However, sections and the species included have often not been the subject of recent taxonomic revisions or are based solely on palynological differences. This complicates the creation of a key that can accommodate all species of Phyllanthus. The most important literature is cited after each species, which either provides a direct placement or a morphological description. Hybrid species and infraspecific taxa were not included. Some combinations, partly required by changes in level, are
published here, but only to solve nomenclatural anomalies (e.g., subsections that cannot be classified anymore in a section due to splitting of sections and changes in the taxonomic level of the taxa).

Taxonomy listing of Phyllanthus

We could assign 837 of the 880 species to a particular subgenus or (sub)section (Appendix 3-2), with some only listed as formerly in subgenus Isocladus or the synonymized section Paraphyllanthus Müll.Arg. One species of subgenus Isocladus G.L.Webster, P. maderasatensis L., was designated as the lectotype of the whole genus Phyllanthus by Ralimanana \& Hoffmann (2011). However, Phyllanthus niruri L. was already designated as the lectotype of the genus Phyllanthus by Small (1913) and later independently confirmed by Webster (1956). Unfortunately, the remaining 43 species could not be assigned due to either incomplete descriptions, destroyed type specimens, or lack of collections. We have opted to place these species incertae sedis as their true relations need further detailed study.

The classification of several subgenera from Webster's original monographs (1956, 1957, 1958) has changed drastically. Subsequent palynological (e.g., Punt 1967, 1972, 1973, 1980, 1986; Lobreau-Callen et al. 1988) and phylogenetic studies (Kathriarachchi et al. 2006) have led to many new combinations and necessary transfers, some of which are discussed below.

Subgenus Isocladus Webster was created to include about 60 species with non-phyllanthoid branching (leaves on main stem not reduced to scales and lateral axes not deciduous) and consisted of originally four sections, Loxopodium G.L.Webster, Anisolobium Müll.Arg., Macraea (Wight) Baill. and Paraphyllanthus Müll.Arg. (Webster 1956). However, subsequent studies (Brunel 1987, Webster 2002b) have reduced the size of this subgenus considerably. The sections Macraea and Ceramanthus (Hassk.) Baill. (the latter with section Anisolobium merged with it; Punt 1972) were raised to subgeneric level by Brunel (1987). Section Loxopodium has been transferred to subgenus Phyllanthus on the basis of pollen characteristics and section Paraphyllanthus was placed in the synonymy of section Isocladus (Brunel 1987). Webster did create a new section in subgenus Isocladus, Antipodanthus G.L.Webster, which contained several neotropical and Australian species (Webster 2002a), but the Australian species appear to be better placed in section Lysiandra (F. Muell.) G.L.Webster of subgenus Phyllanthus (Bouman, unpublished data). Phylogenetic studies have confirmed the distinctness of subgenera Macraea and Ceramanthus from Loxopodium (Kathriararchchi et al. 2006). For section Antipodanthus, only one Australian species, P. calycinus Labill., and no neotropical species were included in the phylogeny by Kathriararchchi et al. (2006), in which the group appeared to be distinct from subgenus Isocladus. However, to elucidate the relationship between sections Antipodanthus and Lysiandra it is necessary to include more species in a phylogenetic study. Therefore section Antipodanthus is here maintained with no formal subgeneric placement.

Chapter 3

Ralimanana \& Hoffmann (2011) made the remainder of subgenus Isocladus (including former section Paraphyllanthus) monotypic, to only include P. maderaspatensis L., leaving some species unplaced and in need of revision. All small shrubs and herbaceous Phyllanthus species were originally placed in subgenus Phyllanthus. The subgenus was shown to be polyphyletic (Kathriarachchi et al. 2006) and several subgenera are now recognized separately: subgenus Swartziani (G.L.Webster) Ralim. \& Petra Hoffm., containing the neotropical herbaceous species of subsection Swartziani; subgenus Afroswartziani Ralim. \& Petra Hoffm., comprising the palaeotropical species of former subsection Swartziani (largely comparable with section Anthophyllus Jean F.Brunel (Brunel 1987)), subgenus Tenellanthus Jean F.Brunel and subgenus Phyllanthus. Subgenus Phyllanthus now only contains sections Almadenses G.L.Webster, Choretropsis Müll. Arg., Loxopodium G.L.Webster, Lysiandra, Phyllanthus and Salviniopsis Holm-Niels. ex Jean F.Brunel. Section Praephyllanthus Jean F.Brunel was found to be closely related to the species of subgenus Afroswartziani (Kathriarachchi et al. 2006) and is transferred here to subgenus Afroswartziani. The type of section Anthophyllus was placed in subgenus Swartziani, but all other palaeotropical species, including subsections Callidisci Jean F.Brunel, Fluitantoides Jean F.Brunel and Odontadenii Jean F.Brunel \& Roux (here raised to section level) are better placed in subgenus Afroswartziani. These two subgenera are closely related (see Kathriarachchi et al. 2006) and mostly distinguished by the inflorescences (unisexual in Afroswartziani, bisexual in Swartziani) (Ralimanana et al. 2013). The species in sections Odontadenii, Fluitantoides and Callidisci have unisexual inflorescences and are tentatively placed in subgenus Afroswartziani.

Subgenus Kirganelia (A.Juss.) Kurz is polyphyletic (Kathirarachchi et al. 2006) and currently consists of eight sections: Anisonema (A.Juss.) Griseb., Brazzeani Jean F.Brunel \& Roux, Chorisandra (Wight) Müll.Arg., Cicca (L.) Müll. Arg., Hemicicca (Bail.) Müll.Arg., Omphacodopsis Jean F.Brunel, Polyanthi Jean F.Brunel and Pseudomenarda Müll.Arg. As noted by Ralimanana \& Hoffmann (2011), the type species for subgenus Kirganelia is P. casticum P.Willemet, but P. reticulatus Poir. is the type species for the type section Anisonema. Some African and Madagascan species, originally attributed to this subgenus, were shown to be phylogenetically separate and placed in subgenus Anesonemoides (Jean F.Brunel) Ralim. \& Petra Hoffm. (Ralimanana \& Hoffmann 2014). Subgenus Anesonemoides differs from subgenus Kirganelia in fruit morphology (dehiscent in subgenus Anesonemoides versus baccate in subgenus Kirganelia), a lack of brachyblasts in some species of subgenus Anesonemoides, pollen with colpi bordered by parallel muri and the androecium (free or centrally fused stamens in subgenus Anesonemoides versus two sets of stamens (one fused, one free) in subgenus Kirganelia) (Ralimanana \& Hoffmann 2014). Subgenus Kirganelia sections Cicca and Chorisandra were also shown to be in a clade separate from section Anisonema (Kathriarachchi et al. 2006), but no nomenclatural changes have yet been published.

The sections Omphacodopsis, Polyanthi and Brazzeani have not yet been included in any phylogenetic studies. Section Brazzeani was originally placed in subgenus Conami (Aubl.) G.L.Webster based on pollen characters (Brunel \& Roux 1977), but these seem to have arisen through convergence and Brazzeani is better placed in subgenus Kirganelia (Meeuwis \& Punt 1983). The stamen in the staminate flowers of section Brazzeanii are arranged in two sets, similarly to subgenus Kirganelia section Anisonema. Though still used in Kathriarachchi et al. (2006) and Ralimanana \& Hoffmann (2011), section Floribundi Pax \& K.Hoffm. was reorganized by Brunel (1987) into two new sections Polyanthi and Omphacodopsis, while the type species of section Floribundi (P. muellerianus (Kuntze) Exell) was transferred to section Anisonema, and the two sections were combined. Sections Polyanthi and Omphacodopsis, though distinguished by pollen and fruit (in)dehiscence by Brunel (1987), can possibly be combined (see Breteler 2012). The staminate flowers of these sections are similar to species in subgenus Anesonemoides, but the indehiscent fruit is more like subgenus Kirganelia section Anisonema or Cicca.

Subgenus Emblica, sections Microglochidion (Müll.Arg.) Müll.Arg., Pityrocladus G.L.Webster (subg. Emblica) and subgenus Cyclanthera G.L.Webster were not yet included in any phylogenetic research and their relationships within Phyllanthus are not well known. Webster chose to include section Microglochidion and Pityrocladus in the Asiatic subgenus Emblica on account of their similarity in pollen (Webster 2002b; Webster \& Carpenter 2002, 2008). A possible relationship between subgenus Cyclanthera and subgenus Xylophylla was suggested by Brunel (1987), but not incorporated in the latest revision by Webster (2002b).

Kathriarachchi et al. (2006) listed several sections as "not assigned to subgenus", which are either already placed by other authors, placed here, or treated as synonyms. Sections Bivia Jean F.Brunel \& Jacq.Roux, Ceramanthus (Hassk.) Baill. and Cluytopsis Müll.Arg. are all placed in subgenus Ceramanthus (Punt 1972; Brunel \& Roux 1985; Brunel 1987). Section Nymphanthus (Lour.) Müll.Arg. has often been treated in subgenus Phyllanthus (Li 1987a), but is placed here in subgenus Eriococcus (Hassk.) Croizat \& Metcalf based on its pollen morphology (see Webster 1958; Brunel 1987; Webster \& Carpenter 2008). Species of subgenus Eriococcus occur in Asia and Australia and are characterized by the staminate flower with four sepals and two or four stamens. Section Physoglochidion Müll. Arg is placed here as a subsection under section Gomphidium Baill. based on the treatment of Schmid (1991), which is discussed below. Subgenus Gomphidium is a diverse group, with its main centres of diversity in New Guinea and New Caledonia. The monotypic section Hemicicca Baill. is here placed in subgenus Kirganelia based on its similarity in pollen (see Brunel 1987) and baccate fruits. The remaining previously un-assigned sections are here treated as synonyms: section Heteroglochidion Müll.Arg. is a synonym of subsection Eleutherogynium (Müll.Arg.) G.L.Webster ex R.W.Bouman (see below for new combination based on Webster 1986); sections Meiandroglochidion S.Moore and Polyandroglochidion S. Moore are

Chapter 3

synonyms of section Adenoglochidion (Müll.Arg.) Müll.Arg. (Schmid 1991); section Pentaglochidion Müll.Arg.is a homeotypic synonym of section Leptonema Baill. (see Baillon 1862b; Müller 1863). The type species of section Hedycarpidium Müll. Arg. has been re-identified as Baccaurea javanica (Blume) Müll.Arg (see Müll.Arg. 1866; Haegens 2000) and even though the name is sometimes still used (Thin 2007), it is invalid and the other species assigned to this section need to be re-evaluated. A small number of Phyllanthus species from Vietnam was placed in subgenus Eriococcus subsection Integra Thin (see Thin 2007), which is not included in our list. No description was provided and it is quite possibly a synonym of subgenus Eriococcus subsection Spiciferens Jean F.Brunel as they include some of the same species, but we were not able to see the original publication.

Some nomenclatural issues are still present within Phyllanthus, particularly when looking at the names of subdivisions of certain subgenera. Recommendation 22 A of the International Code of Nomenclature (McNeill et al. 2012) states that if there are no problems any subdivision of a subgenus that bears the type, should be given the same epithet. However in a few subgenera, this is currently not the case (Webster 1960). The type section of subgenus Conami is section Nothoclema G.L.Webster and the type section of subgenus Kirganelia is Anisonema. In subgenus Kirganelia section Cicca, the type species, P. acidus (L.) Skeels, is in subsection Cheramela Kuntze (Webster 2001b).

Taxonomic changes

Phyllanthus subgenus Afroswartziani Ralim. \& Petra Hoffm. section Callidisci (Jean F.Brunel) R.W.Bouman, stat nov.-Phyllanthus subsect. Callidisci Jean F.Brunel, Gen. Phyllanthus Afr. Intertrop. Madag. (1987) 334. — Type: Phyllanthus callidiscus Jean F.Brunel
Note - Species of section Callidisci were originally placed by Brunel (1987) in subgenus Phyllanthus section Anthophyllus together with other palaeotropical subsections and recognized by the fringed disc in the pistillate flowers. As this group has recently been shown to be polyphyletic (Kathriarachchi et al. 2006) and after revision were split into a few new subgenera (Ralimanana et al. 2013), it seems necessary also to transfer Brunel's subsections. All other palaeotropical species of subgenus Phyllanthus were placed in subgenus Afroswartziani and were distinguished from the neotropical subgenus Swartziani by their unisexual inflorescences (Ralimanana et al. 2013). This is in agreement with species of subsection Callidisci, which is transferred here and raised to sectional level to accommodate the separation from section Anthophyllus.

Phyllanthus subgenus Afroswartziani Ralim. \& Petra Hoffm. section Odontadenii (Jean F.Brunel \& Jacq.Roux) R.W.Bouman, stat nov.-Phyllanthus subsect. Odontadenii Jean F.Brunel \& Jacq.Roux, Willdenowia 11 (1981) 70; Brunel, Gen. Phyllanthus Afr. Intertrop. Madag. (1987) 339. - Type: Phyllanthus odontadensis

Müll.Arg.
Note - Species in the palaeotropical section Odontadenii also have unisexual inflorescences and are therefore more suited to be placed in subgenus Afroswartziani then the neotropical subgenus Swartziani. The species are distingusihed form other sections by their winged plagiotropic branchlets (Brunel \& Roux 1981).

Phyllanthus subgenus Gomphidium (Baill.) G.L.Webster section Adenoglochidion (Müll.Arg.) Müll.Arg. subsection Eleutherogynium (Müll.Arg.) G.L.Webster ex R.W.Bouman, stat nov. - Phyllanthus sect. Eleutherogynium Müll. Arg., Linnaea 32 (1863) 4, 14. - Type: Phyllanthus loranthoides Baill. Glochidion sect. Chorizogynium Müll.Arg., Linnaea 32 (1863) 58, 59. - Lectotype (designated by Webster 1986): Phyllanthus macrochorion Baill.
Phyllanthus sect. Heteroglochidion Müll.Arg. in A.DC., Prodr. 15,2 (1866) 319. — Type: Phyllanthus baladensis Baill.
Phyllanthus sect. Scleroglochidion Müll.Arg. in A.DC., Prodr. 15,2 (1866) 317. Type: Phyllanthus myrianthus Müll.Arg.
Note - Section Scleroglochidion. was previously placed in synonymy by Webster (1986) who expanded the description of Eleuterhogynium to include also Phyllanthus species with 3 free filaments. Section Heteroglochidion was defined by Müller on its biseriate sepals, which is a common character for subgenus Gomphidium. All of these sections are characterized by a rudimentary to absent nectar disc (see Müll.Arg. 1866). Lobreau-Callen et al. (1988) in a palynological study, showed that the pollen of these groups showed a continuous variation in pollen characters and were difficult to differentiate. The lack of distinguishing floral and vegetative characters and the overlap in palynological characters leads us to the decision to combine the above sections in one subsection Eleutherogynium, with as main character the absent nectar disc to distinguish it from other species within section Adenoglochidion.

Phyllanthus subgenus Gomphidium (Baill.) G.L.Webster section Gomphidium Baill. subsection Physoglochidion (Müll.Arg.) R.W.Bouman, stat nov.- Glochidion sect. Physoglochidion Müll.Arg., Linnaea 32 (1863) 58.— Phyllanthus sect.
Physoglochidion (Müll.Arg.) Müll.Arg., Prodr. 15,2 (1866) 318. - Type: Phyllanthus faguetii Baill.
Phyllanthus sect. Phyllocalyx Baill., Adansonia 2 (1862b) 236 (nom. illeg., non Phyllocalyx A.Richert, 1847)— Glochidion sect. Physoglochidion Müll.Arg., Linnaea 32 (1863) 58, 71. - Lectotype (designated here by R.W.Bouman, but see Webster (2001) manuscript synopsis of Gomphidium): Phyllanthus faguetii Baill.

Note - Phyllanthus section Physoglochidion (Müll.Arg.) Müll.Arg. is characterized by 3 free stamens, 6 sepals in two whorls and a calyx that becomes saccate in fruit. Apart from the saccate calyx, these characters also occur in section Gomphidium

Chapter 3

and within section Physoglochidion and the saccate calyx shows a continuous variation between species (Lobreau-Callen et al. 1988). Since these groups can also not be distinguished on palynological data we opt to reduce section Physoglochidion to a subsection level and place it with section Gomphidium.

Transfer of Phyllanthus oxycarpus to Glochidion:

Glochidion oxycarpum (Müll.Arg.) R.W.Bouman, comb. nov.
Phyllanthus oxycarpus Müll.Arg., Prodr. 15,2 (1866) 1270. - Diasperus oxycarpus (Müll.Arg.) Kuntze, Rev. Gen. Pl. 2 (1891) 600. - Type: Teijsmann s.n. (holotype GDC), Indonesia, Sumatra.
Note - In his treatment of the genus Phyllanthus for de Candolle, Müller (1866) reduced the genus Glochidion to a few sections within Phyllanthus. Phyllanthus oxycarpus Müll.Arg. was first described by Müller (1866) and placed in section Euglochidion Müll.Arg. as it closely resembled P. subscandens (Zoll. \& Moritzi) Müll. Arg. (a synonym of G. zeylanicum (Gaertn.) A.Juss.). Other species first published in section Euglochidion by Müll.Arg. were all transferred to the genus by other authors (e.g., Boerlage 1900; Koorders \& Valeton 1910), but we were unable to find a transfer for G. oxycarpum. The description lists no nectar disc, a 5-6-locular ovary with columnar style, which are all typical features for the genus Glochidion and therefore this species is transferred here.

Key to the subgenera and (sub) sections of Phyllanthus

A provisional key is here provided based on characters mentioned in the literature. A key for full identification purposes, using morphology only (not pollen) is difficult due to the absence of recent complete treatments for several groups and the fact that some characters have evolved multiple times within Phyllanthus. The key is not completely dichotomous (trichotomous questions are marked with *) Authors of the various subgenera, sections and subsections are listed in Appendix 3-1 and all species within a particular group are listed in Appendix 3-2.

1. Branching non-phyllanthoid (laminate leaves and flowers on all axes,
branchlets not deciduous).. 2
2. Branching phyllanthoid (leaves on main stem reduced to scales, cataphylls, laminate leaves and flowers on lateral axes, lateral branchlets deciduous) or sub-phyllanthoid (leaves at base of branchlets not reduced to scales (often in juveniles), lateral branchlets deciduous).. 15
3. Aquatic herbs.............. Subgenus Phyllanthus section Salviniopsis (Americas)
4. Herbs, shrubs or trees, but not aquatic 3
5. Palm-like (monocaul) shrubs to trees; stigma petaloid Subgenus Xylophylla section Asterandra (South America)
6. Herbs, shrubs to small trees, rarely climbers; stigmas variously bifid to
multifid, not petaloid 4
7. Leaves on all axes spirally arranged 5
8. Leaves on all axes distichous. 9
9. Sepals 4 in staminate flowers, 6 in pistillate flowers; staminate disc entire, H-shaped around filaments; stamens 2, filaments free Subgenus Swartziani section Reverchonia (North America)
10. Sepals 5-6 sepals in both sexes; staminate disc segmented; stamens 3 or 5, filaments free or connate.6
11. Sepals 5; stamens 5, filaments free Subgenus Kirganelia section Pseudomenarda (Africa)
12. Sepals 5-6 sepals; stamens usually 3, filaments connate (free in P. rosmarinifolius Müll.Arg.)7
13. Inflorescences axillary cymules with 1-4 flowers; pistillate disc consisting of free glands \qquad
Subgenus Isocladus (Africa and Asia, introduced in North America)
14. Inflorescences axillary cymules or thyrses; pistillate disc entire .8
15. Inflorescences axillary glomerules; pollen 3-4-colporate, subglobose Section Antipodanthus incertae sedis (South America \& Australia?)
16. Inflorescences axillary glomerules or thyrses (sometimes paniculate at end of branch); pollen areolate
Subgenus Xylophylla section Elutanthos (Central and South America)
17. Staminate disc segmented, pistillate disc entire or segmented; filaments free..
18. Staminate disc segmented, or entire and urceolate, pistillate disc often massive and urceolate; filaments connate - pollen with macroreticulate exine.. 12 (subgenus Ceramanthus)
19. Anthers dehiscing with horizontal slits; pollen 4-colporate.

Subgenus Phyllanthus section Loxopodium (Americas)
10. Anthers often deflexed, but dehiscing with vertical slits; pollen clypeate or perisyncolporate
11. Leaves distichous; pollen clypeate; seeds verrucate or smooth Subgenus Macraea (Africa, Asia, Australia and Pacific)
11. Leaves spiral at basal nodes, distichous at upper nodes; pollen grains

Chapter 3

perisyncolporate with median pores, colpi bordered by parallel muri; seeds smooth or striate ...Subgenus Betsileani (Madagascar)
12. Staminate flowers with sepals 4 (6 in pistillate ones); staminate disc consisting of 4 massive segments; stamens 2, filaments connate and thecae on an enlarged connective - pollen stephanoporate
Subgenus Ceramanthus section Bivia (Africa)
12. Sepals 6 in both sexes; staminate disc entire or 6 segments; stamens 3 with
connate filaments, thecae not on an enlarged connective 13
13. Staminate disc entire and cup-shaped ... Subgenus Ceramanthus section Ceramanthus (Asia)
13. Staminate disc segmented or only slightly fused into a ring 14

14. Sepals in two equal whorls; staminate disc segmented to slightly fused into a
ring; pollen pantoporate......Subgenus Ceramanthus section Cluytopsis (Asia)
15. Branching sub-phyllanthoid
16
15. Branching phyllanthoid (sometimes sub-phyllanthoid in very young plants,
check mature plants).. 20
16. Branchlets short, with only 5-10 leaves (Webster 2001b); staminate disc entire \qquad
Subgenus Xylophylla section Brachycladus (South America and Central America)
16. Branchlet length variable, usually bearing more than 10 leaves; staminate disc
segmented ... 17
17. Anther connective not enlarged; fruit an indehiscent capsule; seeds smooth with fleshy sarcotesta
......Subgenus Conami section Hylaeanthus (South America and West Indies)
17. Anther connective variable, often enlarged; fruit a dehiscent capsule; seeds
ornamented, without a fleshy sarcotesta ... 18
18. Filaments connate, stamens mostly 3.................. 26 (subgenus Afroswartziani)
18. Filaments free (filaments connate in P. allemii G.L.Webster and P. fastigiatus
Mart ex Müll.Arg., but then only 2 stamens) .. 19
19. Anther connective often enlarged, thecae not appearing as stipitate; seeds
scalariform with slight transverse striations or smooth. .Subgenus Phyllanthus section Lysiandra (Australia and Central America(?))
19. Anther connective variable, sometimes deeply emarginate with the two thecae appearing to be stipitate; seeds striate or linearly verrucate.Subgenus Phyllanthus section Phyllanthus subsection Clausseniani (South America)
20. Herbs or subshrubs 21
20. Shrubs to trees, rarely climbers 36
21. Herbs; each branchlet bearing just one pair of (sub)opposite leaves and terminating in a raceme; anther connective enlargedSubgenus Phyllanthus section Phyllanthus subsection Almadanses (South America)
21. Herbs or subshrubs; branchlet with more than 2 alternate leaves and flowers in leaf axils; anther connective (not) enlarged 22
22. Flowers 5-merous; stamens 5, filaments free (except 3 stamens in P. cocumbiensis Jean F.Brunel) - pollen subglobose, 3-4-colporate 23 (Subgenus Tenellanthus pantropical, but origin Africa)
22. Flowers 5-6-merous; stamens 2-3, filaments free or connate 24
23^{*}. Shrubs or hemicryptophytes; stamens 5, filaments basally united; pollen 3-colporate, with macroreticulate exine. Seeds with fine punctuation Subgenus Tenellanthus section Loandani (Africa)
23*. Herbs; stamens 5 (3 in P. cocumbiensis), filaments connate or free; pollen 3-colporate, with tectate, microperforate exine Subgenus Tenellanthus section Pentandra(Africa)
23^{*}. Herbs or subshrubs; stamens 5, filaments completely free; pollen 4-colporate with sponge-like exine
..Subgenus Tenellanthus section Tenellanthus (pantropical, but origin Africa)
24. Inflorescences unisexual 25
24. Inflorescences bisexual 35
25. Cataphyllary stipules (unilaterally) auriculate 26
25. Cataphyllary stipules not auriculate 32
26. Leaf base symmetric; plagiotropic branches carinate (winged) (Brunel \& Roux 1981). Pollen exine tectate; seeds with longitudinal striae or smooth Subgenus Afroswartziani section Odontadenii (Africa)
26. Leaf base asymmetric; plagiotropic branches not carinate 27

Chapter 3

27. Pistillate disc entire with delicate fringes ...
28. Sepals 5 in staminate flowers ... 29
29. Sepals 6 in staminate flowers.. 30
30. Cataphyllary stipules usually black and indurate; stamen 2-3, filaments partially or wholly connate, anthers sometimes deeply emarginate, dehiscing mostly horizontal; seeds longitudinally striate or banded, possibly with transverse striae. Pollen 3-colporate
...... Subgenus Phyllanthus section Phyllanthus subsection Pentaphyllus (West Indies)
31. Cataphyllary stipules thin and membranous, not indurate or black; stamen 3, filaments connate, anthers not emarginate, dehiscing horizontally to vertically; seeds longitudinally striate
32. Pistillate inflorescences on proximal position and staminate inflorescences on distal position of plagiotropic branchlets; seeds transversely striate - ovary often covered with tubercles

Subgenus Emblica section Urinaria (pantropical, but origin Asia)
30. Pistillate inflorescences on distal position and staminate inflorescences on proximal position of plagiotropic branchlets; seeds longitudinally striate .. 31 (Subgenus Afroswartziani)

31*. Pollen 3-4-colporate, exine bireticulate........Subgenus Afroswartziani section Praephyllanthus (Africa)
31*. Pollen 3-sulcate, exine macroreticulate. Often found in water \qquad
Subgenus Afroswartziani section Fluitantoides (Africa)
31^{*}. Pollen perihexabrevisulcate, exine macro-rugulose (Brunel 1987). Ovary on gynophore \qquad Subgenus Afroswartziani section Microdendron (Africa)
32. Branchlets and flowers not purplish; stamens 3, filaments mostly free or united to $2 / 3$ of length; pollen 4-colporate, exine (hetero-)reticulate; pistillate sepals 5; pistillate disc entire; stigmas free, bifid, tips sometimes subcapitate33
32. Branchlets and flowers often purplish; stamens 2 or 3, filaments connate; pollen pantoporate, exine shields elongated or if round with only 1 pila; pistillate sepals 6; pistillate disc dissected or lobed; stigmas free or connate, bifid to emarginate, tips not capitate 34 (Subgenus Cyclanthera)
33. Anther connective not enlarged, thecae not stipitate; style branches sub-
capitate; seeds verrucate
Subgenus Phyllanthus section Phyllanthus subsection Niruri (South America, pantropically invasive)
33. Anther connective variable, deeply emarginate with the two thecae appearing stipitate; style branches not capitate; seeds striate or linearly verrucateSubgenus Phyllanthus section Phyllanthus subsection Clausseniani (South America)
34. Branchlets unramified, rooting at nodes; leaves crisply succulent; stamens 2, filaments free; pollen shields elongated (banded) (Webster \& Carpenter 2002) Subgenus Cyclanthera section Callitrichoides (West Indies)
34. Branchlets often with 1 or 2 lateral branches (bipinnatiform), not rooting at nodes; leaves not succulent; stamens 3 , filaments completely connate into a circular synandrium; pollen shields isodiametric, each with a central pila surrounded by a murus (Webster \& Carpenter 2002)
Subgenus Cyclanthera section Cylcanthera (West Indies)
35. Stamens 3, filaments free, anthers dehiscing horizontally; pistillate disc dissected; pollen grains brevicolporate and diorate or porate, exine pilate; seeds verruculose \qquad Subgenus Conami section Apolepsis (South America)
35. Stamens 2 or 3, filaments entirely or partially connate (free in P. warnockii G.L.Webster), anthers dehiscing oblique to horizontally (vertically in P. warnockii); pistillate disc entire; pollen 3-colporate, exine reticulate; seeds smooth or longitudinally striate...........Subgenus Swartziani (North America, pantropical invasive)
36. Leaves reduced and branchlets transformed to phylloclades (at least in older
branches) ... 37
36. Leaves not reduced and branchlets not transformed to phylloclades........... 39
37. All stems rounded or flat; stipules unilaterally auriculate, stamens free or connate; pollen 3-4-colporate, exine reticulate \qquad .38 (Subgenus Phyllanthus section Choretropsis)
37. Lateral stems flattened with wide phylloclades, (bi-)pinnatiform; stipules not auriculate; stamens usually united at base; pollen clypeate, exine areolate.......

Subgenus Xylophylla section Xylophylla (West Indies)
38. Main axes often flat, branching monopodial, leaves distichous; inflorescences usually bisexual, stamens 3 (rarely 4) \qquad Subgenus Phyllanthus section Choretropsis subsection Applanata (South America)
38. Main axes rounded, branching monopodial or sympodial, leaves spiral; inflorescences mostly unisexual; stamens 2 or 3 .

Chapter 3

..Subgenus Phyllanthus section Choretropsis subsection Choretropsis (SouthAmerica)
39. Fruits indehiscent, berries or drupes 40
39. Fruits dehiscent, capsules (or absent) 48
40. Fruits drupaceous 41
40. Fruits baccate 43
41. Sepals 6; stamens 3, filaments connate

\qquad Subgenus Emblica section Emblica (Asia)
41. Sepals 4-6; stamens 3-4(rarely 2 or 5), filaments free

\qquad
42 (Subgenus Kirganelia section Cicca)
42. Plants dioecious; disc absent in both sexes; staminodes absent; fruits spongy (Webster 1957)Subgenus Kirganelia section Cicca subsection Aporosella (West Indies andSouth America)
42. Plants monoecious; disc present in both sexes; sometimes staminodes present; fruits hard
Subgenus Kirganelia section Cicca subsection Cheramella (commonly cultivated, origin possibly African?)
43. Stamen 2, filaments connate; ovary 2-locular Subgenus Kirganelia section Chorisandra (Africa, Madagascar, Mainland Asia)
43. Stamen 3-6, filaments free or connate; ovary 3-locular 44
44. Branchlets subtended by reduced leaves, but not cataphylls, flowers on brachyblasts; stamens 3, filaments free or connate
Subgenus Conami section Hylaeanthus (South America)
44. Branchlets subtended by (spinescent) cataphylls, stamens 4-6, filaments free. 45
45. Branchlets subtended by spinescent cataphylls; stamens 5 in 2 sets, one freeand the other basally fusedSubgenus Kirganelia section Anisonema (Africa and Asia)
45. Branchlets subtended by scale or stipule like cataphylls; stamens 4-6, filaments free 46
46. Staminate inflorescences on separate (leafless) plagiotropic branches, pistillate flowers axillary - seeds globular, smooth Subgenus Kirganelia
section Polyanthi (Africa)
46. Inflorescences axillary, on all plagiotropic branches 47
47. Stamens 5 Subgenus Kirganelia section Hemicicca (Asia)
47. Stamens 6 Subgenus Kirganelia section Chorisandra (Africa, Madagascar, Mainland Asia)
48. Anthers apiculate. 49
48. Anthers non-apiculate 56
49. Sepals often caudate-acuminate; filaments connate, staminate disc consisting of linear spathulate segments; pistillate disc entire - pollen 4-colporate, exine reticulate 50 (Subgenus Phyllanthodendron (Asia)
49. Sepals often acuminate, but not caudate; filaments free or connate, staminate disc segmented, globular; pistillate disc entire (or absent) 54
50. Shoots not differentiated, all leaves similar in size, flowers on lateral shoots51
50. Shoots differentiated into sterile leaf bearing shoots with larger leaves and fertile shoots with smaller leaves 53
51. Sepals 4 in staminate flowers; stamens 4; pistillode present Subgenus Phyllanthodendron section Tetrandrum (Asia)
51. Sepals 5-6 in staminate flowers; stamens 3; pistillode absent 52
52. Shrubs; sepals 5 in staminate flowers. Fruit reminiscent of Actephila (Croizat 1942a) Subgenus Phyllanthodendron section Pseudoactephila (Asia)
52. Twining shrubs; Sepals 6 sepals in staminate flowers Subgenus Phyllanthodendron section Arachnodes (Asia)
53. Trunk often succulent and enlarged at base; leaf blades $>6 \mathrm{~cm}$ long Subgenus Phyllanthodendron section Phyllanthodendron (Asia)
53. Trunk not succulent or enlarged at base; leaf blades $<6 \mathrm{~cm}$ long Subgenus Phyllanthodendron section Calophyllum (Asia)
54. Filaments connate.Subgenus Xylophylla section Ciccastrum (South America)
54. Filaments free 55
55. Leaves with or without laminar glands; sepals in two indistinct whorls; pollen 4-8-colporate or diorate....Subgenus Emblica section Microglochidion (South America)
55. Leaves without laminar glands; sepals in two distinct whorls; pollen 3-syncolporate 67 (Subgenus Gomphidium)

Chapter 3

56. Leaves opposite or subopposite 57
57. Leaves alternate 59
58. Bark lenticellate; filaments connate .Subgenus Xylophylla section Williamia subsection Mirifici (Cuba)
59. Bark smooth; filaments free 58
60. Branchlets sometimes opposite bipinnatiform; staminate sepals 5, not distinctly biseriate; staminate disc consisting of 5 free segments; stamens 5.... Subgenus Menarda (Madagascar and Middle East(?))
61. Branchlets pinnatiform, not opposite; staminate sepals 5 or 6 , in both sexes often distinctly biseriate; staminate disc entire, 3 emarginate segments or 5-6 massive segments; stamens mostly 3 or 5 (up to 20) 67 (Subgenus Gomphidiumn)
62. Sepals 4 in staminate flowers; stamen 2, filaments connate- pollen pantoporate or clypeate 60
63. Sepals 5 or 6 in staminate flowers; stamens 3-15, filaments free or connate66
64. Leaf margins very thick, conspicuously revolute; staminate disc massive, entire; pollen clypeateSubgenus Xylophylla section Glyptothamnus (Cuba)
65. Leaves margins not thickened, sometimes slightly revolute; staminate disc segmented; pollen pantoporate or clypeate. 61
66. Anthers dehiscing vertically; sepal margins entire 62
67. Anthers dehiscing horizontally/transversely; sepal margins entire to dentate or lacerate 64
68. Inflorescences usually bisexual, appearing with the expanding leaves(Webster 1958); pollen clypeate; style connate in a tube and stigmas oftenreduced to acute tipsSubgenus Xylophylla section Thamnocharis (West Indies)
69. Inflorescences mostly unisexual, appearing after the leaves; pollen pantoporate; style connate or free 63
70. Ovary papillose or verrucullose, 3-locular Subgenus Eriococcus sectionEriococcodes (Asia)
71. Ovary smooth, 6-locular... Subgenus Eriococcus section Nymphanthus (Asia)64*. Stigmas entire, connate. Filaments thickened at topSubgenus Eriococcus section Emblicastrum (Asia to Australia)
64^{*}. Stigmas entire or emarginate....Subgenus Eriococcus section Scepasma (Asia)

64*. Stigmas free, bifid......................... 65 (Subgenus Eriococcus section Eriococcus)
65. Flowers in all leaf axils..............Subgenus Eriococcus section Eriococcus (Asia)
65. Pistillate flowers on leafy panicles at end of branchlets and staminate flowers closer to the base of branchlets without leaves (see Brunel 1987).....Subgenus Eriococcus section Eriococcus subsection Spiciferens (Asia)

66. Branchlets pinnatiform; sepal whorls indistinct; staminate nectar disc entire
or segmented.. 79
67. Branchlets bipinnatiform ... 68
67. Branchlets pinnatiform .. 70
68. Axes incrustate or hirsutulous with red hairs; stamens 2-6; pollen clypeateSubgenus Xylophylla section Hemiphyllanthus (West Indies)

68. Axes not incrustate or hirsutulous, hairs usually white; stamens mainly 3-5
(up to 20); pollen 3-(syn)colporate.
69. Inflorescences glomerules; pollen diverse, often 3-colporate or porate with diorate colpi (see Webster \& Carpenter 2002), exine vermiculate to pilate. Fruit conspicuously veined

Subgenus Conami section Nothoclema (South America)
69. Inflorescences glomerules or panicles; pollen 3-4-syncolporate with vermiculate/rugulate exine (Lobreau-Callen et al. 2011); fruit smooth Subgenus Gomphidium section Nymania (Southeast Asia, mostly New Guinea)
70. Disc absent or rudimentary in both sexes ... 71
70. Disc entire or segmented in both sexes.. 74
71. Sepals 6, biseriate, inner whorl petal-like, pistillate sepals leafy; stamens 3; ovary 3-locular. Calyx in fruit saccateSubgenus Gomphidium section Gomphidium subsection Physoglochidion (New Caledonia)
71. Sepals 5-6, not distincly biseriate; stamens(3-)5(-15), ovary 3-5-locular.. 72
72. Sepals 5; stamens 5; ovary 4-5-locular.............Subgenus Gomphidium section
Leptonema (New Caledonia)
72. Sepals 5 sometimes 6; stamens mostly (3-)5(-15); ovary 3-locular 73

Chapter 3

73. Disc rudimentary or absent in both sexes; filaments longer than anthers, diverging from center of receptaculum............Subgenus Gomphidium section Adenoglochidion subsection Eleutherogynium (New Caledonia)
74. Stamens connate.. 75
74. Stamens free... 76
75. Inflorescences glomerules; pollen diverse, often 3-colporate or porate with diorate colpi (see Webster \& Carpenter 2002), exine vermiculate to pilate; fruit conspicuously veined
................................Subgenus Conami section Nothoclema (South America)
75. Inflorescences glomerules or paniculate; pollen 3-4-syncolporate, exine
vermiculate/rugulate (Lobreau-Callen et al. 2011); fruit smooth Subgenus
Gomphidium section Nymania (Southeast Asia, mainly New Guinea)
76. Sepals 5 , not distinctly biseriate; stamens mostly (3-)5(-15), filaments free; disc consisting of 3 emarginate segments or absent
.Subgenus Gomphidium section Adenoglochidion (Southeast Asia New Caledonia)
76. Sepals 5 or 6 , often biseriate (except in P. tuerckheimii G.L.Webster); stamens 3 , filaments free or connate; disc of consisting of 3 emarginate segments or 6 free segments 77
77. Sepals 5; pollen grains not syncolpate, colpi without distinct borders; exine reticulate.......... Subgenus Gomphidium section Calodictyon (South America)
77. Sepals 6; pollen grains with marginate colpi, often meeting at poles; exine reticulate or \pm vermiculate 78

78*. Inflorescences axillary cymules; pollen 3-syncolporate with fine to course reticulate exine.

Subgenus Gomphidium section Gomphidium (Southeast Asia, New Caledonia)
78*. Inflorescences glomerules or panicles; pollen 3-syncolporate with vermiculate/rugulate exine \qquad Subgenus Gomphidium section Nymania (Southeast Asia, mostly New Guinea)
78*. Inflorescences glomerules; pollen diverse, often 3-colporate with diorate
colpi (see Webster \& Carpenter 2002), exine vermiculate to pilate. Fruit conspicuously veined
Subgenus Conami section Nothoclema (South America)
79. Staminate disc entire Subgenus Xylophylla section Adianthoides (South America)
79. Staminate disc segmented 80
80. Filaments free or only fused at base 81
80. Filaments fused at least partially to completely, sometimes fused in separate sets or whorls 89
81. Leaves often with glands; anthers apiculate. Leaves thick; style entire Subgenus Emblica section Microglochidion (South America)
81. Leaves without glands; anthers not apiculate 82
82. Stamens 3 83
82. Stamens 4 or 5 85
83. Brachyblasts often present; inflorescences cauliflorous; sepals 6

\qquad Subgenus Kirganelia section Ciccopsis (South America)
83. Brachyblasts absent; inflorescences axillary; sepals 5 84
84. Leaf blades $<8 \mathrm{~cm}$ long; anther connective enlarged; pollen 4-colporate Subgenus Phyllanthus section Phyllanthus subsection Clausseniani (South Ameria)
\qquad
84. Leaf blades $>8 \mathrm{~cm}$ long; anther connectives not enlarged; pollen perisyncolporate - Pistillate pedicel quite massive (up to 3 cm wide (Brunel 1987)), fruit ornamented
Subgenus Ceramanthus section Ebolowani (Africa)
85. Pistillate sepals $8-10$
Subgenus Xylophylla section Diplocicca (South America)
85. Pistillate sepals 5 or 6 86
86. Brachyblasts present 87
86. Brachyblasts absent 8887. Inflorescences (stalked) fascicles; stamens 5, filaments completely free; fruits3-locular, dehiscent; seeds kidney-shaped, smooth with mottled patterns(similar to seeds of P. juglandifolius Willd.)

Chapter 3

> 87. Inflorescences panicles; stamens 4 or 5, filaments free or sometimes basally fused; fruits 3-5-locular, indehiscent; seeds globular, smooth Subgenus Kirganelia section Polyanthi (Africa)
88. Stamens 3-5, free or slightly fused at base; anthers dehiscing vertically; fruits capsular; seeds smooth or faintly longitudinally striate.
Subgenus Anesonemoides (Africa, Madagascar, Asia)
88. Stamen 2-5(-7); anthers dehiscing horizontally; fruits capsular; seeds smooth Subgenus Emblica section Pityrocladus (South America)
89. Stamens fused in several whorls or sets 90
89. Stamens fused in a central column 93
90. Brachyblasts present; stamens fused in two sets with one central column and two separate free stamens 91
90. Brachyblasts absent; stamens in 2 or 3 whorls, fused in various ways 94 (Subgenus Xylophylla section Willamia (West Indies)
91. Pollen 3-colporate, exine pilate or reticulate 92
91. Pollen clypeate, exine areolate
94 (Subgenus Xylophylla section Willamia, West Indies)
te..Subgenus Kirganelia section Brazzeani (Africa)
92. Exine reticulate Subgenus Kirganelia section Anisonema (Africa and Asia)
93. Stems and branchlets incrustate with dark platelets of bark or lenticellate.. 94
93. Stems smooth. 95
94*. Stems smooth; leaves alternate; stamens 3-15 in 3 whorls, connate in various ways; stigmas erect but not lacerate. Sepals 5 or 6
...Subgenus Xylophylla section Williamia subsection Discolores (West Indies)
94^{*}. Stems and branchlets incrustate with small dark platelets on the fissured bark;leaves alternate; stamens (2)3-6 with filaments connate, usually in 2 whorls;stigmas erect, conspicuously lacerate (see Webster 1958)....Subgenus Xylophylla section Williamia subsection Incrustati (West Indies)
94^{*}. Stems smooth but prominently lenticellate; leaves opposite; stamens 5 withfilaments connate, but 2 anthers inserted lower than the other 3; stigmasreflexed and covering the ovary, apex sometimes blunt........Subgenus Xylophylla section Williamia subsection Mirifici (West Indies)
95. Pollen 3-5-colporate or 5-brevicolporate (Webster \& Carpenter 2008), exine reticulate, microperforate or scabrous (Africa and Asia) 96
95. Pollen clypeate, exine areolate (Americas) 99 (Subgenus Xylophylla)
96. Anthers dehiscing obliquely to horizontally; exine microperforate or scabrous..................... Subgenus Afroswartziani (pantropical, mostly African)
96. Anthers dehiscing vertically; exine reticulate 97 (Subgenus Emblica)
97. Sepals mostly 5; staminate disc consisting of 5 segments; stamens 2-5(-7); anthers dehiscing horizontally; pollen 3-5-colporate; pistillate disc entire or segmented Subgenus Emblica section Pityrocladus (South America)
97. Sepals 6; staminate disc consisting of 6 segments; stamens 3; anthers dehiscing vertically; pollen 4-5-colporate or 5-brevisulcate; pistillate disc entire
98. Inflorescences appearing paniclulate in leaf axils; pollen 5-brevisulcate. Subgenus Emblica section Botryoides (Asia)
98. Inflorescences found along entire branchlet as axillary cymules; pollen 4-5-colporate Subgenus Emblica section Emblica (Asia)
99. Inflorescences cauliflorous thyrses; stigmas petaloid ..Subgenus Xylophylla section Epistylium (West Indies)
99. Inflorescences axillary cymules; stigmas tapering, not petaloid, sometimes fused into a tube
100. Leaf blades mostly $1-2 \mathrm{~cm}$ long, with mesophyllar sclereids; stamens 3-7 Subgenus Xylophylla section Orbicularia (West Indies)
100. Leaf blades $>2 \mathrm{~cm}$ long, sometimes with mesophyllar sclereids; stamens 2-7(-8)
101. Brachyblasts often present; sepals 5; staminate disc consisting of 5 segments; stamens 3 (rarely 4); fruit a large fleshy capsule (usually $>2 \mathrm{~cm}$ in diameter)..Subgenus Xylophylla section Omphacodes (West Indies)
101. Brachyblasts absent; sepals 4-6; staminate disc usually consisting of 6 segments; stamens 2-7(-8); fruit small dry capsule ($<1 \mathrm{~cm}$ in diameter) . 102
102. Staminate sepals 5 , pistillate sepals 6 ; inflorescences mostly unisexual cymules appearing after the leaves, several pistillate flowers per node; stamens 3-7, thecae dehiscing horizontally; style present, elongated and exerted from calyx, stigmas dilated, bifid to multifid

Subgenus Xylophylla section Oxalistylis (South America)
102. Sepals in both sexes 4-6; inflorescences bisexual cymules appearing with the expanding leaves on new branchlets, usually only 1 or 2 pistillate flowers among several staminate flowers; stamens 2-6 (or 8), thecae dehiscing

Chapter 3

vertically; style like an erect tube, stigma branches narrowed to acute tips......
Subgenus Xylophylla section Thamnocharis (West Indies)

Discussion \& Conclusion

Taxonomic discussions on the circumscription of genus Phyllanthus are still ongoing, mainly with the question whether the genera nested within should be subsumed (Hoffmann et al. 2006) or remain separate (van Welzen et al. 2014a). However, a good understanding and clear structure within the genus Phyllanthus in its current circumscription is necessary. Here an attempt was made to summarize over 200 years of taxonomic work on this immense group. Several issues that still exist will hopefully be resolved in new systematic studies. The provisional key to the subgenera and (sub) sections provided here works with most typical examples of Phyllanthus species. Future research and revision work should focus on treatments of the individual subgenera and/or sections within the genus.

Unfortunately not all species could be fitted in this subgeneric classification due to exceptional characters or incomplete descriptions (see Appendix 3-2). These will need further study or more new collections to elucidate their place within the genus. Often these are species of which only the type specimen is known and which were not collected since, and some might be extinct (e.g., P. aoraiensis Nadeaud; Wagner \& Lorence 2011), or they might be exceptional forms, which should be united with other species. For some we could only assign them to subgenus level and further revision work should place them in their appropriate sections. The placement of some species may change with new research and we welcome these changes as they will lead to a better understanding of the genus Phyllanthus and we hope this article inspires discussion.

Several issues are still unresolved and will require further attention. Subgenus Phyllanthus, which previously spanned all herbaceous species, remains difficult and more species need to be included in new phylogenetic studies. Several groups in our list have not had formal taxonomic treatment for some time and new revision work may identify new species and better characters to differentiate them within Phyllanthus. Another taxonomic problem was created by the discussions on the validity of Brunel's thesis (1987), which has led to many species being published twice under different names (see Radcliffe-Smith 1996b). This will require close scrutiny in determining how many should be synonymized. Finally, a decision should be made on how to treat the paraphyly of the genus Phyllanthus. Whether the genus will be split or whether the clades will be subsumed within Phyllanthus, we hope that this treatment will provide structure to this diverse genus.

Acknowledgements

This work was done as part of the PhD research of the main author, funded by the Hortus botanicus Leiden and Leiden University. Help with preparing the list for the manuscript by Peter Hovenkamp is gratefully acknowledged. The second
author thanks the Leiden University Fund (LUF) for their support of the chair Botanical gardens and botany of Southeast Asia. The last author thanks the Treub Maatschappij, the Society for the Advancement of Research in the Tropics, for their support of the Ornstein chair in Tropical Plant Biogeography.

Appendix 3-1. Synopsis of the infrageneric classification of the genus Phyllanthus. Author of type species can be found in Appendix 3-2. Countries in parentheses indicate unlikely disjunct ditributions that require further study. Available at: https://doi.org/10.3767/blumea.2018.63.02.14

Appendix 3-2. Species checklist of Phyllanthus based on the current infrageneric classification. Each species denotation contains information on whether the classification was based on morphology, literature references or phylogenetic evidence. Unsure placements are noted with 'loc' for location based placements, a question mark and/or a ~ symbol when morphology does not completely comply with the group. Available at: https://doi.org/10.3767/blumea.2018.63.02.14

CHAPTER 4

A taxonomic revision of Phyllanthus subgenus Macraea (Phyllanthaceae)

Janna I.M. Verwijs, Roderick W. Bouman, Peter C. van Welzen

Published in Blumea 64: 231-252. 2019
https://doi.org/10.3767/blumea.2019.64.03.05

Chapter 4

A taxonomic revision of Phyllanthus subgenus Macraea (Phyllanthaceae)

Short title: Taxonomic revision of Phyllanthus subgenus Macraea

Janna I.M. Verwijs ${ }^{1}$, Roderick W. Bouman ${ }^{1,2}$, Peter C. van Welzen ${ }^{1,3}$

${ }^{1}$ Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands
${ }^{2}$ Hortus botanicus Leiden, PO BOX 9500, 2300 RA Leiden, the Netherlands
${ }^{3}$ Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands

Abstract

Within the morphologically diverse pantropical genus Phyllanthus, many subgenera, sections and subsections are recognized. While most taxonomic revisions often focus on local floras, closely related and often resembling species are not always treated in full. Subgenus Macraea is here revised for the first time over its whole distribution, including an identification key and descriptions of its species with distributions, ecology, uses and vernacular names. The currently acknowledged varieties of Phyllanthus distichus are rejected due to inadequate morphological differences. Phyllanthus panayensis is synonymized with P. lancifolius. Phyllanthus alpestris has now become a variety of P. glaucophyllus because of the resemblance in morphology and distribution. The species complex around Phyllanthus virgatus remains taxonomically difficult, but Phyllanthus virgatus var. gardnerianus and Phyllanthus virgatus var. hirtellus are here recognized on the species level as P. gardnerianus, stat nov. and P. tararae, stat \& nom nov. A new species from the Philippines, Phyllanthus ridsdalei, is described.

Keywords: Euphorbiaceae, Macraea, new species, Phyllanthaceae, Phyllanthus, revision, species descriptions, taxonomy.

Introduction

Phyllanthus L. is the largest genus in the family Phyllanthaceae (Kathriarachchi et al. 2006), and occurs in the tropics and subtropics of all continents (Ralimanana \& Hoffmann 2011). The genus displays a large morphological variety, both in habit and floral characters (Webster 1956; Ralimanana \& Hoffmann 2011). As a result of this large morphological variety within the over 800 species recorded for Phyllanthus, the classification of the species is challenging (Webster 1956; Govaerts et al. 2000; Kathriarachchi et al. 2006). Currently, due to its size, morphological variability and history, Phyllanthus is divided into a considerable number of subgenera, sections and subsections (Bouman et al. under review). Phyllanthus

Taxonomic revision of Phyllanthus subgenus Macraea

is paraphyletic (Wurdack et al. 2004; Kathriarachchi et al. 2006; Pruesapan et al. 2008), which could be solved by subsuming the presently recognized genera Breynia J.R.Forst. \& G.Forst., Synostemon F.Muell. and Glochidion J.R.Forst. \& G.Forst. (van Welzen et al. 2014a) into Phyllanthus and creating a large monophylectic genus (Kathriarachchi et al. 2006; Hoffmann et al. 2006; Webster 2007; Kurosawa 2016). However, this is not preferred by some authors (Pruesapan et al. 2008; 2012; van Welzen et al. 2014a; Barrett \& Telford 2015), because this only moves the problem to infrageneric ranks and makes Phyllanthus a giant, unrecognizable and unmanageable genus. The alternative is to split Phyllanthus into smaller monophyletic genera, for example by using the monophyletic clades found by Kathriarachchi et al. (2006) and Pruesapan et al. (2008; 2012), when these are morphologically recognizable. Phyllanthus subgenus Macraea (Wight) Jean F.Brunel is one of these monophyletic clades (Kathriarachchi et al. 2006), which may be considered for recognition on the genus level.
Wight (1852) described Macraea as a separate genus, but noted that it was not very distinct from Phyllanthus, the principal difference being the free stamens of Macraea, as opposed to the united ones of known Phyllanthus species. He named the genus after a synonymized orchid genus with the same name from the botanist Lindley (Wight 1852). Because Wight did not designate a type, Webster (1986) chose Macraea oblongifolia Wight as the lectotype of the subgenus. This species had already been synonymized under Phyllanthus simplex Retz. by Müller (1866) and is currently recognized as a synonym of Phyllanthus virgatus G.Forst. (Govaerts et al. 2000). Brunel (1987) gave Macraea its current rank of subgenus and included two sections: Macraea sect. Macraea and sect. Praemacraea Jean F.Brunel. The latter was shown to be phylogenetically distinct and raised to subgenus Betsileani (Jean F.Brunel) Ralim. \& Petra Hoffm. (Kathriarachchi et al. 2006; Ralimanana \& Hoffmann 2011). There is some discussion about the legitimacy of the publication of the PhD thesis of Brunel (1987) in which he published these changes. According to ICN (Turland et al. 2018) article 30.9 the thesis can be and is accepted by us as a validly published book, since it contains the name of a printing company, is distributed to several institutes and has been written with all considerations of the code taken into account. In this treatment, we follow Brunel's definition of subgenus Macraea as separate from subgenus Isocladus, but with the exclusion of (former) section Praemacraea.
Subgenus Macraea occurs only in the palaeotropics (Webster 1986) and small centres of diversity can be found in Sri Lanka, the Philippines, Australia and various islands in the Pacific. It is a clade of monoecious (rarely dioecious) herbs, (sub) shrubs and trees, characterised by non-phyllanthoid branching; a 6-parted perianth (but often 4-parted in one species); a dissected staminate disc; 3 stamens (but often 2 in one species), free filaments (but variably connate in some species); spherical, clypeate pollen grains (Webster 1986; Brunel 1987; Punt 1980; Chen et al. 2009; Wu et al. 2016); smooth or verrucate seeds; triangular or ovate, translucent, chestnut-

Chapter 4

brown stipules with often an auriculate base and laminate stem leaves. The leaves are distichous on all axes. Previous studies have shown that pollen characteristics are especially useful in differentiating between clades within Phyllanthus (Webster 1956; Punt 1967, 1972; Wu et al. 2016), and as such can be used for distinguising Macraea species from other Phyllanthus species. A few Philippine and Pacific species are here transferred to subgenus Macraea based on previous palynological studies (e.g., P. lancifolius Merr., P. pacificus Müll.Arg. P. samarensis Müll.Arg. and P. tenuipes C.B.Rob., see Chen et al. 2009; Wu et al. 2016). Most species in Phyllanthus have a phyllanthoid branching type, which is characterised by flowerless penultimate axes (generally the main, vertical branches) with cataphylls (reduced leaves) and deciduous and floriferous ultimate axes (side branches) bearing real leaves of limited growth (Webster 1956; Radcliffe-Smith 1987), but Macraea species have unspecialized non-phyllanthoid branching (Webster 1956; Kathriarachchi et al. 2006). Their axes are not differentiated, flowers occur on any node and leaves instead of cataphylls are present on the penultimate axes (Webster 1956). Non-phyllanthoid branching has evolved several times within Phyllanthus (see Kathriarachchi et al. 2006), which resulted in some clades with a morphology similar to the species in subgenus Macraea, that are currently placed in other subgenera and sections.
Other subgenera and sections morphologically most similar to Macraea are Phyllanthus subgenus Phyllanthus section Lysiandra (F. Muell.) G.L.Webster, P. subgenus Ceramanthus (Hassk.) Jean F.Brunel, P. subgenus Betsileani (Jean F.Brunel) Ralim. \& Petra Hoffm., P. subgenus Isocladus G.L.Webster p.p., P. subgenus Phyllanthus section Loxopodium G.L.Webster, P. subgenus Isocladus G.L.Webster section Antipodanthus G.L.Webster and P. subgenus Phyllanthus section Salviniopsis Holm-Nielsen ex Jean F.Brunel. Species of section Lysiandra are restricted to Australia and are monoecious or dioecious, with non- or subphyllanthoid branching, and can be distinguished from Macraea by their spirally arranged leaves, thicker, opaque, narrow stipules without cordate or auriculate base, thickened anther connectives in some species, the minutely striate or smooth seed surface (Webster 1978; Barret \& Telford 2015) and tricolporate pollen (Webster 1978). Phyllanthus subgenus Ceramanthus is both morphologically and phylogenetically very close to Macraea (Kathriarachchi et al. 2006). This subgenus occurs in Africa and Asia and can be distinguished from Macraea by the connate filaments and anther connectives with usually elongated anthers, thick and/or urceolate disc of the pistillate flowers that often folds over the ovary (Brunel 1987) and the pollen, which are pantoporate or pantocolporate (Punt 1972). In vegetative state, it is very similar to Macraea, but with the leaves on the distal parts of the main axes spirally arranged (Brunel 1987). Phyllanthus subgenus Betsileani, formerly section Praemacraea of subgenus Macraea (Brunel 1987), has perisyncolporate pollen (Ralimanana \& Hoffmann 2011). It is vegetatively very similar to Macraea, but the leaves are spirally arranged at the basal nodes and are only distichous distally. Species of subgenus

Taxonomic revision of Phyllanthus subgenus Macraea

Betsileani are found in Madagascar (Ralimanana \& Hoffmann 2011). Phyllanthus subgenus Isocladus is currently monotypical (despite placement of similar species in the group by Brunel 1987), only containing Phyllanthus maderaspatensis L., of which the leaves are arranged spirally over its entire length. The filaments of the staminate flower are entirely fused (Brunel 1987, Ralimanana \& Hoffmann 2011) and the pollen is colporate (Wu et al. 2016). Phyllanthus subgenus Phyllanthus section Loxopodium occurs in South America, while Macraea occurs in Africa, Asia, Polynesia, Australia and the Pacific Islands. Section Loxopodium is distinguished by its oblong tetracolporate pollen grains (Webster 1955, 1956). Phyllanthus subgenus Isocladus section Antipodanthus is distinguishable from Macraea by its spirally arranged leaves and tri- or tetracolporate pollen (Webster 2002); it occurs in South America and Australia (Webster 2002). Phyllanthus subgenus Phyllanthus section Salviniopsis is a monotypic section containing the only free-floating aquatic species in the Phyllanthaceae, the South American P. fluitans Benth. ex Müll.Arg., which is very easily recognizable (Brunel 1987). This species has leaves with inflated blades and roots can be found on all axes.
Over the years, reviews, descriptions and keys have been made of Macraea for specific regions, for example for New Guinea (Webster \& Airy Shaw 1971), Tropical Africa (Brunel 1987), Eastern Melanesia (Webster 1986), French Polynesia (Florence 1997) and Australia (Hunter \& Bruhl 1997; Barrett \& Telford 2015). The most widespread and complex species of Macraea, P.virgatus, is included several times in these reviews. Phyllanthus virgatus is morphologically very variable, both within and between regions (Webster \& Airy Shaw 1971; Hunter \& Bruhl 1997), which has lead to the creation of several varieties and subspecies over time. Many specific and intraspecific taxa have been synonymized with P. virgatus, some possibly unjustly (Hunter \& Bruhl 1997). A list of these synonyms can be found in Govaerts et al. (2000). Despite the reviews focusing on specific regions, no complete revision of the subgenus has been made until now. A complete revision is very useful in determining and comparing difficult to distinguish and/or related species, as well as comparing Macraea to related clades. Here we attempt to completely revise subgenus Macraea over its entire distribution. The species included here were either already placed in subgenus Macraea by previous authors (e.g. Wight 1852; Webster 1986; Brunel 1987; Hunter \& Bruhl 1997) or found to be a part of this group in phylogenetic (Kathriarachchi et al. 2006; Luo et al. 2011a) or palynological studies (e.g. Chen et al. 2009; Wu et al. 2016). Some morphologically similar species like P. hakgalensis Thwaites ex Trimen, P. pseudoparvifolius R.L.Mitra \& Sanjappa and P. sanjappae Chakrab. \& M.Gangop. might also belong in subgenus Macraea, but this has not yet been confirmed by other research, and material of these species was not available during this study. Previous authors placed them in Webster's broad definitions of subgenus Isocladus and subgenus Phyllanthus (e.g., Balakrishnan \& Chakrabarty 2007), but these were shown to be polyphyletic in Kathriarachchi et al. (2006) and their placements should be re-evaluated.

Chapter 4

Morphologically important characters

Species can be distinguished by the following morphological characters: habit, indumentum, leaf size and shape, shape of the leaf base, margin and apex, venation, pedicel length and several characters of the flower, such as perianth number, form of the disc (nectar) glands, number of stamens and whether the filaments are free or connate. Ornamentation of fruits and seeds can be variable within species, but sometimes serves as a diagnostic character.

Habit

All species are woody, however some of the smaller species appear to be herbs in the early stages of life. Species found in the Philippines and the Pacific can grow to be small trees of up to 15 meters.

Indumentum

Most species of subgenus Macraea are glabrous with some exceptions. Often the indumentum is only present on young branches, but some species always show indumentum (e.g., P. macraei Müll.Arg., P. tararae Verwijs and P. wheeleri G.L.Webster). The indumentum consists of short simple hairs, often appearing as puberulous.

Leaf morphology

Leaves are always arranged alternate and distichous. Contrary to most other species of Phyllanthus, leaves can be found on all axes. Each leaf has two stipules at the base. The stipules are triangular, ovate or (sub)orbicular, usually glabrous, persistent or caducous. The stipule base is either straight or auriculate and the margins are often brown, entire and brittle.
The leaves are shortly petiolate, sometimes appearing sessile. The petioles are not thickened or pulvinate, and pubescent or glabrous depending on the species. The leaves have a pinnate venation, whereby the secondary veins loop and anastomose near the margins. The midvein and secondary veins can be somewhat elevated on either side of the leaf. The blade can be papery to coriaceous with an entire, sometimes revolute margin. The leaf blades are orbicular, lanceolate, ovate to elliptic-oblong. The base of the blades varies from cordate to attenuate, while the apex similarly varies from retuse/emarginate to acuminate.

Inflorescences and flowers

Staminate and pistillate flowers can be found in unisexual or bisexual axillary fascicles, sometimes solitary and then spatially separated. Most species appear to be monoecious (dioecy is found in P. pacificus and P. lancifolius), however there may be a slight difference in whether staminate or pistillate flowers bloom first.
The perianth consists of 6 sepals in both sexes (except 4 in the staminate flowers of
P. ussuriensis Rupr. \& Maxim. and 5 in P. aoraiensis Nadeaud). Sepals are usually elliptic to somewhat (ob)ovate and are arranged in two whorls that may differ slightly. Officially the term tepal should be used here instead of sepal, but we like to be consistent with all literature and, therefore, use the term sepal.
The staminate disc consists of free glands with the same number as the sepals and they alternate with the sepals. Staminate flowers have no pistillode and usually have three free stamens (connate in P. womersleyi Airy Shaw \& G.L.Webster and variably connate in P. prominulatus J.T.Hunter \& J.J.Bruhl and P. ridsdalei R.W.Bouman \& Verwijs). Each stamen has two thecae, which are rounded to oval and dehisce longitudinally and latrorse with the filaments deflexed so that the anthers are horizontally.
Pistillate flowers have no staminodes and often longer pedicels than the staminate flowers. The pistillate disc is usually entire, but consists of free glands in several species and may show some ornamentation. The ovary is 3 -locular with 2 ovules per locule, usually subglobose and shows 6 grooves via which the capsule later opens. On top of the ovary a style can be present, but the three stigmas can also be sessile. Each stigma is bifid at the tip, but the length varies between species.

Fruits and seeds

Pistillate pedicels often become longer in fruit and are slender. The fruits are dry capsules that open septicidally and loculicidally along 6 lines which are usually already visible in flower. The fruits are usually smooth, sometimes verrucose or slightly tuberculate and can be glabrous to hirtellous. All species have typical Phyllanthaceae fruits with two seeds per locule. The seeds are trigonous in outline with convex outer walls that are either smooth or verrucate, with the verrucae arranged along longitudinal lines or in random directions.

Biogeography

Subgenus Macraea is mainly distributed in the palaeotropics and the species can be found in Africa, Asia and on several island groups in the pacific to Hawai'i. Africa has only one species of subgenus Macraea, while in Asia there are roughly 14 species. The subgenus appears to be absent from Madagascar, but a group with a similar flower morphology and habit has evolved there independently (subgenus Betsileani, which was so similar that it was formerly included in subgenus Macraea (Brunel 1987)). Two examples of morphologically variable island species can be found in P. pacificus and P. distichus, which either vary in leaf shape or size. In the phylogeny of Kathriarachchi et al. (2006), several species of subgenus Macraea were included, but mainly from Sri Lanka, New Caledonia and Australia. Species from Sri Lanka appeared to be sister to the rest of subgenus Macraea, but no species from Africa or the pacific were included.

Chapter 4

Taxonomic treatment

This study was performed at the National Herbarium Netherlands (L), with specimens loaned from the Queensland Herbarium (BRI), Australian National Herbarium (CANB), University of California Davis Center for Plant Diversity (DAV), Conservatoire et Jardin botaniques de la Ville de Genève (G), Harvard University Herbaria (A), Royal Botanic Gardens Kew (K), Naturalis Biodiversity Center (L), Missouri Botanical Garden (MO), Royal Botanic Gardens, National Herbarium of New South Wales (NSW), Muséum National d'Histoire Naturelle (P), Swedish Museum of Natural History (S) and United States National Herbarium, Smithsonian Institution (US). All type specimens cited here were either seen as physical specimens or as high quality scans online. When type specimens were mentioned in literature, but could not be traced, they are denoted with a question mark or "not seen" in the citation. Barcodes are mentioned when a particular herbarium houses several duplicates of a type specimen to provide a unique identifier.

Phyllanthus subgenus Macraea (Wight) Jean F.Brunel

Phyllanthus subgenus Macraea (Wight) Jean F.Brunel (1987) 293. —Macraea Wight (1852) 27. - Phyllanthus section Macraea (Wight) Baill. (1858) 628; Müll.Arg. (1866) 384; G.L.Webster (1986) 93. - Lectotype (designated by Webster 1986): Macraea oblongifolia Wight (= P. virgatus G.Forst).

Erect or prostrate herbs, subshrubs, shrubs or trees, monoecious or dioecious; branching non-phyllanthoid; branches (minutely) ridged or smooth, brown, distally often flattened and/or winged, often green; (aerial roots occasionally present on nodes in P. womersleyi). Indumentum absent or short, simple hairs present on (distal parts of the) branches, leaves, petioles, pedicels and ovaries. Stipules triangular, ovate or (sub)orbicular, flat, membranous, translucent chestnut-brown, persistent, base often auriculate. Leaves alternate, distichous, simple, petiolate; blade elliptic, (ob)ovate or (sub)orbicular, margin entire, glabrous, (hairy on both sides in P. tararae and P. wheeleri); midrib sunken to prominent above, flat or prominent underneath, lateral veins often barely visible, looping and anastomosing near the margin, flat or prominent on both sides. Inflorescences axillary fascicles, unisexual, (rarely) bisexual in some species. Staminate flowers solitary to 12 together, bracteate; pedicel glabrous; sepals 6 (except 5 in P. aoraiensis and sometimes 4 in P. ussuriensis), elliptic or (ob)ovate, sometimes in two whorls with sepals differing in size and/or shape, imbricate; disc glands alternating with and as many as sepals, circular, flat; stamens 3 (sometimes 2 in P. ussuriensis), filaments free (connate in P. womersleyi and variably connate in P. prominulatus and P. ridsdalei), often reflexed, thecae 2, (sub)globular or (sub)ovoid, dehiscencing latrorse via longitudinal slits (pollen: Punt 1980; Wu et al. 2016). Pistillate flowers solitary to

7 together, bracteate; sepals 6, elliptic or (ob)ovate, sometimes in two whorls with sepals differing in size and/or shape, imbricate; disc annular (6 disc glands in P. dumosus, P. tenuipes, P. ussuriensis, P. wheeleri and P. womersleyi, then alternating with sepals), flat; ovary 3-locular (rarely 4-locular in P. lancifolius), glabrous or pubescent; ovules 2 per locule; style absent to present, stigmas 3, spreading, bifid for between half to $4 / 5$ of the length, reflexed. Fruits capsules, subglobular or oblate, 6 -grooved, in some species with 3 grooves deeper than the others and/or bivalved, glabrous or (minutely) verrucate; stigmas and sepals persistent; columella narrowly tetrahedriform, persistent after dehiscense. Seeds trigonous, triangular in transverse section, with convex outer wall, smooth or verrucate, verrucae circular (or rhomboid and stretched widthwise in P. myrtifolius), sometimes very small, randomly placed or in indistinct longitudinal lines.

Key to the species

1. Stems barely branched, arising from a thick woody rhizome. Staminate disc glands often bell-shaped - Africa.
.9. P. glaucophyllus
2. Stems usually branched several times, growing without a thick rhizome. Staminate disc glands flattened - outside Africa .2
3. Ovary on a gynophore. Stigmas united into a style for $0.3-0.6$ or $1.5-1.6 \mathrm{~mm}$, then spreading into 3 separate lobes, latter complete bifid or with bifid tips.. 3
4. Ovary sessile, without gynophore. Stigmas only basally united or entirely free 4
5. Branches glabrous; internodes 6-7 mm long. Staminate sepals $1.5-2$ by $0.8-1$ mm ; filaments variably connate. Pistillate disc annular. Style $1.5-1.6 \mathrm{~mm}$ high, stigmas 1-2 mm long with bifid tips...................................16. P. ridsdalei
6. Branches pubescent; internodes $2-4 \mathrm{~mm}$ long. Staminate sepals $1-1.1$ by c. 0.5 mm ; filaments free. Pistillate disc consisting of 6 free glands. Style 0.3-0.6 mm high, stigmas $0.2-0.5 \mathrm{~mm}$ long, completely bifid..................19. P. tenuipes
7. Leaf margin thickened, flat .. 5
8. Leaf margin not thickened, flat or revolute ... 7
9. Stipules $0.5-0.7 \mathrm{~mm}$ long. Stamens up to 0.4 mm long; filaments sometimes connate. Pistillate pedicel $0.3-1.1 \mathrm{~mm}$ long; sepals $0.3-0.7$ by $0.2-0.5 \mathrm{~mm}$; stigmas $0.2-0.3 \mathrm{~mm}$ long. Fruits $1.5-1.8 \mathrm{~mm}$ in diam15. P. prominulatus
10. Stipules $1-2 \mathrm{~mm}$ long. Stamens longer than 0.5 mm ; filaments free. Pistillate pedicel $1.5-10 \mathrm{~mm}$ long; sepals $1-1.5$ by $0.5-0.1 \mathrm{~mm}$; stigmas c .1 mm long. Fruits more than 2.2 mm in diam

Chapter 4

6 Petioles 0.2-1 mm long; leaf base rounded or obtuse, apex not mucronate, lateral veins $3-5$ on each side of the midrib. Staminate pedicels $1-1.5 \mathrm{~mm}$ long. Pistillate pedicels $1.5-2.5 \mathrm{~mm}$ long. Seeds $1.2-2 \mathrm{~mm}$ long
2. P. chrysanthus
6 Petioles $1-1.5 \mathrm{~mm}$ long; leaf base oblique, subcordate, apex mucronate,
lateral veins 5-7 on each side of the midrib. Staminate pedicels $2-4 \mathrm{~mm}$ long.
Pistillate pedicels $8-10 \mathrm{~mm}$.
7. Branches and/or leaves least partially hairy (check young parts)..................... 8
7. Branches and leaves completely glabrous ... 15
8. Pistillate disc consisting of free glands, alternating with sepals........................ 9
8. Pistillate disc entire, annular.. 10
9. Internodes $0.8-1 \mathrm{~mm}$ long. Leaf blades $2-7$ by $1.5-3.5 \mathrm{~mm}$. Stamens c. 0.4 mm long. Ovary glabrous. Fruiting pedicels $8-12 \mathrm{~mm}$ long........5. P. dumosus
9. Internodes 2-5 mm long. Leaf blades 5-13.5 by 2-7 mm. Stamens c. 0.6 mm long. Ovary densely hirsute. Fruiting pedicels $3-4 \mathrm{~mm}$ long..... 23. P. wheeleri
10. Leaf blades densely hairy on both sides, less than 4 mm wide, lateral veins not
visible .. tararae
10. Leaf blades glabrous, sometimes distally tomentellous above (P. samarensis) or (sparsely) hairy (P. lancifolius)/ rarely tomentellous (P. samarensis) on both sides, wider than 4 mm , lateral veins 6-11, well visible on each side of the midrib
11. Staminate flowers c. 4 mm diam. Pistillate flower $4-5 \mathrm{~mm}$ in diam. Ovary verrucate
11. P. macraei
11. Staminate flowers $1-3 \mathrm{~mm}$ diam. Pistillate flower up to 3 mm in diam. Ovary
hairy, tuberculate or glabrous.. 12
12. Stipule margins fimbriate. Leaf blades obovate, sometimes elliptic, base narrowly cuneate to attenuate
3. P. clarkei
12. Stipule margins entire. Leaf blades elliptic to oblong or ovate-elliptic, base
obtuse, sometimes cuneate, rounded to subcordate................................... 13
13. Leaf blades mostly ovate-elliptic, 9-79 mm long, apex acuminate. \qquad 10. P. lancifolius
13. Leaf blades mostly elliptic to oblong, $7-38 \mathrm{~mm}$ long, apex acute to obtuse or rounded to retuse 14
14. Leaf blades 11-38 mm long; stamens $0.6-0.8 \mathrm{~mm}$ long. Fruiting pedicels
11-25 mm long 6. P. everettii
14. Leaf blades $7-24 \mathrm{~mm}$ long; stamens c .0 .3 mm long. Fruiting pedicels not longer than 11 mm 17. P. samarensis
15. Branches strongly winged, wings $0.8-1 \mathrm{~mm}$ wide. Flowers of both sexes with 5 sepals. 1. P. aoraiensis
15. Branches not winged, ridged or slightly (up to 0.2 mm wide) winged. Flowers of both sexes usually with 6 sepals (but often 4 in the staminate flowers of P. ussuriensis) 16
16. Usually prostrate herbs or subshrubs, sometimes erect up to 150 cm high. Stamen filaments connate, but connectives free. Leaf blade irregularly orbicular, 2-4 mm in diam 24. P. womersleyi
16. Usually erect herbs, (sub)shrubs or trees. Stamen filaments free. Leaf blade suborbicular, ovate, oblong, elliptic, obovate, 2-85 mm long 17
17. Leaf blades obovate, base very narrow, cordate-sagittate. 13. P. myrtifolius
17. Leaf blades suborbicular, ovate, elliptic, oblong or seldom obovate, base of normal width, cuneate, attenuate, rounded, obtuse or (sub)cordate 18
18. Pistillate disc consisting of free glands 19
18. Pistillate disc entire, annular. 20
19. Leaf blades 2-7 by 1.5-3.5 mm, blades only 1.3-2 times longer than wide; apex retuse to rounded. Staminate flowers with 6 sepals, stamens 3
5. P. dumosus
19. Leaf blades $4-25$ by $1.5-8 \mathrm{~mm}$, blades >2 times longer than wide; apex obtuseor acute, rarely rounded. Staminate flowers with 4 or 6 sepals, stamens mostly2 , but sometimes 3 on the same plant21. P. ussuriensis
20. Leaf blades $22-85$ by $10-40 \mathrm{~mm}$, midrib prominent on both sides, lateral veins prominent above. Pistillate pedicels up to 30 mm long. 20. P. urceolatus
20. Leaf blades $2-80$ by $1-32 \mathrm{~mm}$, midrib above flat or sunken (sometimes slightly prominent), prominent underneath, lateral veins flat above or sunken or barely visible. Pistillate pedicels up to 19 mm long 21
21. Staminate flowers $1.5-4 \mathrm{~mm}$ in diam. Pistillate flowers $4-5.5 \mathrm{~mm}$ in diam.. 22
21. Staminate flowers $0.7-1.7 \mathrm{~mm}$ in diam. Pistillate flowers $1-3 \mathrm{~mm}$ in diam.. 2422. Leaf blades 3-37 by $2.5-18 \mathrm{~mm}$. Staminate flowers $1.5-2.8 \mathrm{~mm}$ in diam

Chapter 4

22. Leaf blades 7-80 by $4-32 \mathrm{~mm}$. Staminate flowers 3-4 mm in diam 23
23. Large shrubs or trees, $0.9-5 \mathrm{~m}$ high. Petioles up to 4 mm , leaf blades $7-80$ by 5-32 mm. Staminate pedicels $1.5-3 \mathrm{~mm}$ long4. P. distichus
24. Shrubs to herbs, usually less than 1 m high (exceptionally 2 m in P. pacificus). Petioles usually shorter than 2 mm , leaf blades $14-45$ by 4-18 mm. Staminate pedicels 3-6 mm long ..11. P. macraei
25. Staminate pedicels $0.5-0.8 \mathrm{~mm}$ long. Pistillate flowers $1-1.2 \mathrm{~mm}$ in diam, pedicels $0.5-2 \mathrm{~mm}$ long 12. P. minutiflorus
26. Staminate pedicels $0.2-5 \mathrm{~mm}$ long. Pistillate flowers more than 1.5 mm in diam, pedicels at least 2.5 mm long 25
27. Leaf blades wider than $6 \mathrm{~mm}, 1.1-3.7$ times longer than wide. Staminate sepals $1.2-1.5$ by $1-1.2 \mathrm{~mm}$; stamens $1-1.2 \mathrm{~mm}$ long..................14. P. pacificus
28. Leaf blades at most 6 mm wide; (1-)2.5-7.5 times longer than wide. Staminate sepals $0.4-1$ by $0.2-0.5 \mathrm{~mm}$; stamens $0.3-0.4 \mathrm{~mm}$ long 26
29. Leaf blades 6-15 by 1-2 mm. Stipules suborbicular, c. 0.5 by 0.3 mm . Leaf blades small, not longer than 15 mm , usually 5-7.5 times longer than wide, lateral veins barely visible. Staminate flowers c. 0.8 mm in diam. Pistillate pedicels $2.5-4 \mathrm{~mm}$ long, ovaries always verrucate 7. P. exilis
30. Leaf blades $3-40$ by $1-6 \mathrm{~mm}$. Stipules triangular, $1-2.5$ by $0.5-1 \mathrm{~mm}$. Leaf blades small to slightly larger, $3-40 \mathrm{~mm}$ long, mostly less than 5 times longer than wide (rarely up to 6.7 times), venation prominent, usually 5-8 lateral veins on each side of the midrib. Staminate flowers $0.8-1.7 \mathrm{~mm}$ in diam. Pistillate pedicels 3-9 mm long, ovaries glabrous or verrucate ..22. P. virgatus

1. Phyllanthus aoraiensis Nadeaud - Map 4-1

Phyllanthus aoraiensis Nadeaud (1873) 73; Drake (1892) 286; (1893) 181; J.Florence (1997) 122; W.L.Wagner \& Lorence (2011) 69. - Lectotype (designated by Florence 1997): J. Nadeaud 459 (P (P00636870); iso P (P00636871 \& P00636872), G), Tahiti.

Shrubs, 2-3 m high, monoecious; branches glabrous, strongly winged, wings 0.8-1 mm wide; internodes 11-26 mm long. Stipules triangular, scarious, c. 0.8 mm long, caducous, flat, thin, base auriculate, margin entire, apex acute. Leaves: petiole 1-3 mm long, glabrous; blade ovate-oblong, 45-125 by 17-47 mm, 2.2-3.3 times longer than wide, subcoriaceous, glabrous, base (sub)cordate, weakly asymmetric, margin thickened, apex acute; midrib flat on both sides, lateral veins 9-11 on each side, flat. Staminate flowers few, axillary, c. 0.7 mm in diam; pedicel $10-20 \mathrm{~mm}$ long, glabrous,
thicker than pistillate one; sepals 5, red, in two indistinct whorls, ovate, apex obtuse, recurved; disc glands 5; stamens 3, fusion of filaments unknown, thecae rounded. Pistillate flowers solitary, axillary; pedicel $>20 \mathrm{~mm}$ long, sepals 5 , red, in two indistinct whorls, oblong, 1-2 mm high, apex acute; disc entire, weakly lobed; ovary sessile, with each locule grooved; style absent, stigmas 3, bifid, recurved. Fruits 4-5 mm in diam, 6-grooved, glabrous; pedicel 12-30 mm long; columella $1.3-1.9 \mathrm{~mm}$ long. Seeds 4-5 mm long, verrucate, verrucae not known in detail. Distribution - Endemic to Tahiti (Aorai mountain). Habitat \& Ecology - Found on mountains at 1000 m altitude. Flowering and fruiting in November (based on only the type collection).
Note - A species morphologically very close to P. urceolatus and tentatively placed here in subgenus Macraea. This species is endemic to Tahiti, but has not been collected since 1857 and is presumed extinct (Florence 1997; Wagner \& Lorence 2011). Phyllanthus aoraiensis is easily distinguished from P. urceolatus and P. pacificus by the very large wings on the branches, the larger seeds and its red flowers. Unfortunately, only the type material was available online, thus descriptions of fruits and flowers have been completed from literature (e.g. Florence 1997).

2. Phyllanthus chrysanthus Baill. - Map 4-2

Phyllanthus chrysanthus Baill. (1862a) 238; Müll.Arg. (1863) 34; (1866) 393;
Guillaumin (1948) 177; Lobr.-Callen et al. (1988) 294; M.Schmid (1991) 48. Diasperus chrysanthus (Baill.) Kuntze (1891) 598. - Lectotype (designated by Schmid 1991): E. Vieillard 1201, 1855 (P (P00066057); iso P (P00066058)), New ∞
3)

Map 4-1. Distribution of Phyllanthus aoraiensis Nadeaud (®) and Phyllanthus urceolatus Baill. ($\mathbb{1}$) in French Polynesia.

Chapter 4

Caledonia, Balade.
Phyllanthus persimilis Müll.Arg. (1863) 34; (1866) 392. — Lectotype (designated here): E. Vieillard 1201 p.p., 1855 (G-DC (G00318228)), New Caledonia, Balade.
(Prostrate) shrubs, 10-100 cm high, monoecious; branches (minutely) ridged, brown, older branches subcylindrica, glabrous, younger branches subcylindrical or distally flattened, often winged and shortly puberulous; internodes $0.2-4 \mathrm{~mm}$ long. Stipules triangular, 1-2 by $0.5-1 \mathrm{~mm}$, base bilaterally auriculate, margin entire or (extremely) erose, apex attenuate. Leaves: petiole $0.2-1 \mathrm{~mm}$ long, glabrous; blade elliptic or orbicular, $1.5-30$ by 1-9 mm, 1-2.5(-5) times longer than wide, base rounded or obtuse, margin thickened, flat, apex rounded or obtuse, not mucronate; midrib slightly prominent above, prominent underneath, lateral veins 3-5 on each side, often not or barely visible, flat on both sides. Staminate flowers 1-3 together, $1.3-2 \mathrm{~mm}$ in diam; pedicel $1-1.5 \mathrm{~mm}$ long, glabrous; sepals 6 , elliptic, $0.5-1.2$ by $0.2-0.8 \mathrm{~mm}$, whitish, (pale) green or (pale) yellow, apex acute or obtuse; disc glands 6, circular, $0.2-0.3 \mathrm{~mm}$ in diam, flat; stamens $3,0.5-0.8 \mathrm{~mm}$ long, filaments free, thecae subglobular, c. 0.2 mm long. Pistillate flowers solitary, 2-3 mm in diam; pedicel $1.5-2.5 \mathrm{~mm}$ long, glabrous; sepals 6 , elliptic, $1-1.5$ by $0.5-0.8 \mathrm{~mm}$, whitish, (pale) green or (pale) yellow, apex obtuse or rounded; disc annular, (slightly) lobed, $0.8-1 \mathrm{~mm}$ in diam, c. 0.1 mm high; ovary sessile, oblate(-ovoid), $0.6-1 \mathrm{~mm}$ in diam, 0.4-0.8 mm high, glabrous; style absent, stigmas 3, c. 1 mm long, bifid for between $3 / 4$ and $4 / 5$ of the length, reflexed. Fruits subglobular, 2.2-3 mm in diam, with 3 deep and 3 shallow grooves, often bivalved, glabrous, green or red; pedicel 2-3.5 mm long, glabrous; columella $0.8-1 \mathrm{~mm}$ long. Seeds $1.2-2 \mathrm{~mm}$ high, c. 1 mm wide, minutely verrucate, chestnut-brown, verrucae circular, randomly placed or in (indistinct) longitudinal lines.
Distribution - New Caledonia.
Habitat \& Ecology - Occuring in maquis shrubland, forests and near rivers, on rocky, alluvium, laterite and/or serpentine soils. Altitude: 0-1150 m. Flowering and fruiting the whole year round.
Note - According to Guillaumin (1948), P. chrysanthus can be distinguished by its randomly positioned verrucae on the seeds and the smooth ovary, while P. virgatus from New Caledonia has seeds with the verrucae in a linear pattern and the ovary can be either smooth or verrucate. However, seeds with randomly positioned verrucae have been found in specimens of P. virgatus from all over Asia and Australia, not just from New Caledonia. A better distinctive character is the thickened leaf margins, in comparison to the flat or revolute leaf margins of P. virgatus, and the more prominent midvein in P. chrysanthus.

Key to the varieties

1.Branches glabrous, flattened, especially distally. Leaf blades (2-)5-19(-30) mm
longa. var. chrysanthus
1.Young branches distally shortly puberulous or minutely verrucate, subcylindrical, only slightly flattened. Leaf blades $1.5-10 \mathrm{~mm}$ long. .2
2.Leaf blades $1.5-3.5(-5)$ by $1-2 \mathrm{~mm}$. Staminate sepals c. 1.2 mm long. Pistillate sepals c. 1.5 mm long \qquad b. var. deverdensis 2.Leaf blades $3.5-10$ by $2.5-8 \mathrm{~mm}$. Staminate sepals $0.5-0.8 \mathrm{~mm}$ long. Pistillate sepals 1-1.2 mm long \qquad c. var. micrantheoides

a. var. chrysanthus

Phyllanthus chrysanthus Baill. var. chrysanthus: M.Schmid (1991) 50.
Shrubs, $10-70 \mathrm{~cm}$ high; fertile branches minutely ridged, glabrous, distally flattened and winged; internodes 2-4 mm long. Stipules $1.5-2$ by $0.8-1 \mathrm{~mm}$, margin entire or (extremely) erose. Leaves: petiole c. 1 mm long; blade elliptic, (2-)5-19(-30) by (1-)2-9 mm, 1.6-2.1(-5) times longer than wide, glabrous, upper surface dark

Map 4-2. Distribution of Phyllanthus chrysanthus Baill. var. chrysanthus (\triangle), P. chrysanthus var. deverdensis M.Schmid (\boxtimes) and P. chrysanthus var. micrantheoides (Baill.) M.Schmid (\boxtimes) on New Caledonia.

Chapter 4

green, underneath pale greyish green, sometimes reddish, especially in young leaves, base rounded or obtuse, apex rounded, rarely obtuse; lateral veins flat above, barely visible underneath. Staminate flowers solitary to 3 together, $1.3-2 \mathrm{~mm}$ in diam; pedicel 1-2 mm long; sepals $0.8-1$ by $0.3-0.6 \mathrm{~mm}$, (pale) green or yellow, apex acute or obtuse; disc glands $0.2-0.3 \mathrm{~mm}$ in diam; stamens $0.5-0.7 \mathrm{~mm}$ long. Pistillate flowers c. 2 mm in diam; pedicel $1.5-2.5 \mathrm{~mm}$ long; sepals 1-1.2 by $0.5-0.6$ mm , (pale) green or yellow, apex ovate; disc annular, with six small lobes alternate to the sepals, c. 0.8 mm in diam, c. 0.1 mm high; ovary oblate-ovoid, c. 0.6 mm in diam, c. 0.4 mm high; stigmas c. 1 mm long, bifid for $3 / 4$ of the length. Fruits 2.2-3 mm in diam, green, yellow or red; pedicel 2-3.5 mm long; columella c. 0.8 mm long. Seeds c. 1.5 mm high, c. 1 mm wide, verrucae circular, in longitudinal lines.
Distribution - New Caledonia.
Habitat \& Ecology - Occuring in (high) maquis shrubland and forests, on rocky, alluvium and/or serpentine soils. Altitude: 0-1150 m.

b. var. deverdensis M.Schmid

Phyllanthus chrysanthus Baill. var. deverdensis M.Schmid (1991) 53. - Type: H.S. MacKee 30021 (holo P (P00066096); iso K, NOU, P (P00066097)), New Caledonia, Cap Deverd, Gomen.

Prostrate shrubs; branches subcylindrical, older branches ridged, glabrous, younger branches without ridges, shortly puberulous; internodes $0.2-1 \mathrm{~mm}$ long. Stipules c. 1.5 by 0.8 mm , margin entire. Leaves: petiole c. 0.2 mm long; blade elliptic or orbicular, $1.5-3.5(-5)$ by $1-2 \mathrm{~mm}, 1-2$ times longer than wide, glabrous, green, base rounded, apex rounded or obtuse; lateral veins not visible. Staminate flowers solitary or 2 together, c. 2 mm in diam; pedicel c. 1 mm long; sepals c. 1.2 by 0.8 mm , whitish or pale green, apex obtuse; disc glands c. 0.2 mm in diam; stamens c. 0.8 mm long. Pistillate flowers c .3 mm in diam; pedicel 2-2.5 mm long; sepals c. 1.5 by 0.6 mm , whitish or pale green, apex obtuse; disc and ovary not seen. Fruits not seen intact; pedicel 2-2.5 mm long; columella c. 1 mm long. Seeds c. 1.2 mm high, c. 1 mm wide, verrucae circular, randomly placed or in indistinct longitudinal lines. Distribution - New Caledonia (Kaala-Gomen, Cap Deverd).
Habitat \& Ecology - Maquis shrubland and forests. Altitude: $20-30 \mathrm{~m}$.
Note - No complete pistillate flowers or intact fruits were found in the six specimens studied.
c. var. micrantheoides (Baill.) M.Schmid

Phyllanthus chrysanthus Baill. var. micrantheoides (Baill.) M.Schmid (1991) 52. Phyllanthus micrantheoides Baill. (1862a) 238; Müll.Arg. (1866) 387. - Diasperus micrantheoides (Baill.) Kuntze ('micrantheodes') (1891) 600. - Lecotype (designated
here): J.F. Pancher 365 (P (P00066093); iso P (P00066094)), New Caledonia, Sommet du Pic.
Phyllathus rufidulus Müll.Arg. (1863) 29; Guillaumin (1948) 176. — Diasperus rufidulus (Müll.Arg.) Kuntze (1891) 600. - Syntypes: E. Vieillard 1196 (G-DC, P), New Caledonia, Port de France.
Phyllanthus rufidulus Müll.Arg. var. kafeateenis Guillaumin (1962) 247. — Lectotype (designated by Schmid 1991): A. Guillaumin \& M. Baumann 9657 (probably P, not seen), New Caledonia, Mont Kafeate.

Shrubs, 10-100 cm high; branches subcylindrical, older branches glabrous, ridged, younger branches without ridges, sometimes distally slightly flattened, shortly puberulous or minutely verrucate; internodes $0.2-1 \mathrm{~mm}$ long. Stipules c. 1 by 0.5 mm , margin entire. Leaves: petiole c. 0.3 mm long; blade elliptic, ovate or orbicular, $3.5-10$ by $2.5-8 \mathrm{~mm}, 1.2-2.5$ times longer than wide, glabrous, rarely puberulous on one or both sides, upper surface light to dark green, underneath paler green, sometimes reddish on one or both sides, base rounded, apex rounded or obtuse; lateral veins 3-5 flat and barely visible on both sides. Staminate flowers solitary to 3 together, $1.2-2 \mathrm{~mm}$ in diam; pedicel $1-1.4 \mathrm{~mm}$ long; sepals $0.5-0.8$ by $0.2-0.5$ mm , (pale) green or yellow, often with reddish centre, apex acute; disc glands c. 0.2 mm in diam; stamens c. 0.5 mm long. Pistillate flowers c. 2.5 mm in diam; pedicel $1.5-2.5 \mathrm{~mm}$ long; sepals 1-1.2 by 0.6-0.8 mm , (pale) green or yellow, often with reddish centre, apex obtuse; disc annular, slightly lobed, c. 1 mm in diam, c. 0.1 mm high; ovary oblate, c. 1 mm in diam, c. 0.8 mm high; stigmas 3 , c. 1 mm long, bifid for $4 / 5$ of the length. Fruits c. 2.2 mm in diam, green or red; pedicel $2-2.5 \mathrm{~mm}$ long; columella c. 1 mm long. Seeds c. 2 by 1 mm , verrucae circular, randomly placed or in indistinct longitudinal lines.
Distribution - New Caledonia.
Habitat \& Ecology - Occuring in (open) maquis shrubland and low forests, often near rivers, on alluvium, laterite and/or serpentine soils. Altitude: 10-1000 m.

3. Phyllanthus clarkei Hook.f. - Map 4-3

Phyllanthus clarkei Hook.f. (1887) 297; A.M.Cowan \& Cowan (1929) 117; Croizat (1940) 650; Airy Shaw (1972) 317; R.L.Mitra \& Sanjappa (2003) 13; Chantar. in Welzen \& Chayam. (2007) 483; P.T.Li \& M.G.Gilbert in Z.Y.Wu, P.H.Raven \& D.Y.Hong (2008) 181; Chakrab. \& N.P.Balakr. (2009a) 527; Chakrab. \& N.P.Balakr. (2018) 338. - Diasperus clarkei (Hook.f.) Kuntze (1891) 601. - Lectotype (designated by Mitra \& Sanjappa 2003): C.B. Clarke 25420 (K (K000246582); iso BM (BM000951413), K (K000246581, K000246583)), India, Sikkim Himalaya at Catsuperri.
Phyllanthus simplex Retz. var. tonkinensis Beille (1927) 578. - Syntypes: Balansa s.n. (probably in P, not traced) Tonkin Cho-bo (black river), Vietnam; Poilane s.n. (probably in P, not traced) Ban-sa-noi, Ba-na-punk, Vietnam.

Chapter 4

(Sub)shrubs, up to 120 cm high, monoecious; branches terete, not winged, scabrid to puberulous; internodes $2-7 \mathrm{~mm}$ long. Stipules ovate-triangular, $1.5-2.4$ by c. 0.8 mm , persistent, brown when dry, base bilaterally auriculate, margin fimbriate, apex caudate. Leaves: petiole $1-1.5 \mathrm{~mm}$ long, glabrous; blade obovate, sometimes elliptic, $7-22$ by $4-12 \mathrm{~mm}, 1.2-2.4$ times longer than wide, membranous, base cuneateattenuate, margin entire, plane to revolute, apex rounded to revolute, mucronate, dark green above, light green underneath; midrib flat above, prominent underneath, lateral veins 4 or 5 per side, barely visible above, clear underneath. Staminate flowers 1-3 together, $1.5-2.5 \mathrm{~mm}$ in diam; pedicel $1-3 \mathrm{~mm}$ long, glabrous; sepals 6, obovate, $0.8-1.2$ by $0.5-0.9 \mathrm{~mm}$, apex acuminate; disc glands 6 , flat, circular, c. 0.2 mm in diam, thin, smooth; stamens $3,0.7-1 \mathrm{~mm}$ long, filaments free, $0.5-0.8 \mathrm{~mm}$ long, thecae globular, $0.2-0.3 \mathrm{~mm}$ long. Pistillate flowers solitary, rarely in pairs, $1.5-2.5 \mathrm{~mm}$ in diam; pedicel $2-4 \mathrm{~mm}$ long, glabrous; sepals 6 , obovate, $1-1.2$ by $0.5-0.6 \mathrm{~mm}$, apex obtuse; disc annular, slightly cupuliform, 6 -lobed, c. 1.2 mm in diam, $0.2-0.3 \mathrm{~mm}$ high, smooth; ovary subglobose, c. 1 mm in diam, c. 0.9 mm high, each locule with a groove, glabrous; stigmas 3, c. 0.8 mm long, bifid for half of length. Fruits globose, $2.2-3.2 \mathrm{~mm}$ diam by c. 2.5 mm high, 6 -grooved, green, turning black when dry, glabrous; pedicel 3-9 mm long; columella c. 1.2 mm long. Seeds trigonous, c. 2.2 by 1.1 mm , smooth when young, then verrucate along longitudinal lines, verrucae circular.
Distribution -India, Sri Lanka, Nepal, Myanmar, China, Thailand and Vietnam. Habitat \& Ecology - Open, rocky ground, found in pastures, sometimes on

Map 4-3. Distribution of Phyllanthus clarkei Hook.f. in S.E. Asia main land.
limestone ridges. Altitude: 900-2300 m. Flowering and fruiting whole year round. Vernacular name - Thailand: Mayom doi (มะยมดอย) (Chantaranothai 2007).

Notes - 1 . This species is closely related to other species of subgenus Macraea according to the phylogeny of Luo et al. (2011a). Morphological characters such as its non-phyllanthoid branching and staminate flowers with free stamens confirm that this species should be placed in subgenus Macraea.
2. A similar species was described by Chakrabarty \& Gangopadhyay (1993) as P. sanjappae. This species has not yet been included in any pollen or phylogenetic study and the staminate flowers are not known, so it is difficult to place this species in subgenus Macraea with full certainty. Phylanthus sanjappae is distinct by its glabrous branchlets, sessile leaves with a mucron and the presence of a short style under the stigmas. However, the leaves of P. clarkei can also be mucronate and the indumentum is variable.
3. This species was confused by Hooker (1887) with P. parvifolius Butch.-Ham. ex D.Don and is also similar to P. pseudoparvifolius. A detailed study into the identity of these species was done by Mitra \& Sanjappa (2003). Phyllanthus clarkei can be distinguished from P. parvifolius and P. pseudoparvifolius by its branching floriferous shoots, completely free stamens and longer fruiting pedicels (Mitra \& Sanjappa 2003).
4. Map data was supplemented with data from Gbif.org. Coordinate data can be accessed via DOI.org/10.15468/dl.uv7ddr.

4. Phyllanthus distichus Hook. \& Arn. - Map 4-4

Phyllanthus distichus Hook. \& Arn. (1832) 95; Müll.Arg. (1866) 413; Hook.f. (1887) 304; W.J.Kress et al. (2003) 233. —Diasperus distichus (Hook. \& Arn.) Kuntze (1891) 599. - Lectotype (designated here): Beechey's Voyage (Lay \& Collie) s.n. (K (K001056963), iso E, K (K001056962), L (L.2252054), USA, Hawai'i, O’ahu.
[Phyllanthus argentatus Noronha (1790) 22, nom. nud.]
[Phyllanthus cheremela Roxb. (1814) 104, nom. nud.]
Phyllanthus sandwicensis Müll.Arg. (1863) 31; (1866) 389; Wawra (1875) 149; Sherff (1939) 563.—Diasperus sandwicensis (Müll.Arg.) Kuntze (1891) 600. - Phyllanthus sandwicensis Müll.Arg. var. oblongifolius Müll.Arg. (1863) 31, nom. inval., not autonym; (1866) 389. - Syntypes: C. Gaudichaud-Beaupré s.n. (P), USA, Hawai’i; L.K.A. Chamisso s.n. (LE), USA, Hawai'i.

Phyllanthus sandwicensis Müll.Arg. var. ellipticus Müll.Arg. (1863) 31; (1866) 389. —Phyllanthus distichus Hook. \& Arn. var. ellipticus (Müll.Arg.) Govaerts \& Radcl.Sm. (1996) 176. - Syntypes (based on Müller 1866): C. Gaudichaud-Beaupré 290 (G, G-DC, P), USA, Hawai'i; Chamisso s.n. (LE); B. Seemann 2284 (BM).
Phyllanthus sandwicensis Müll.Arg. var. parvifolius Müll.Arg. (1863) 32; (1866) 389.

- Phyllanthus sandwicensis Müll.Arg. f. parvifolius (Müll.Arg.) Wawra (1875) 149.

Chapter 4

- Type: C. Gaudichaud-Beaupré 289 (holo G-DC), USA, Hawai'i.

Phyllanthus sandwicensis Müll.Arg. var. radicans Müll.Arg. (1863) 32; (1866) 389. — Type: C. Gaudichaud-Beaupré s.n. (holo G-DC), USA, Hawai'i.
Phyllanthus sandwicensis Müll.Arg. f. grandifolia Wawra (1875) 149. — Type: W. Hillebrand 2340a (holo W), Hawai'i.
Phyllanthus sandwicensis Müll.Arg. f. rufidus Fosberg (1936) 6. - Type: F.R. Fosberg 12410 (holo BISH (BISH1009121); iso BISH (BISH1009120), CAS), USA, Hawai'i, Lanai, Haalelepaakai.
Phyllanthus sandwicensis Müll.Arg. var. degeneri Sherff (1939) 567. - Phyllanthus distichus Hook. \& Arn. var. degeneri (Sherff) Govaerts \& Radcl.-Sm. (1996) 176. Type: O. Degener 8019 (iso F), USA, Hawai'i.

Shrubs or trees, 90-500 cm high, monoecious; branches ridged, glabrous, dark or cinnamon-brown, distally flattened, winged, dark brown or sage-green; internodes 3-10 mm long. Stipules ovate, c. 2 by 1 mm , base cordate, margin erose, spinose or very irregular, apex acute. Leaves: petiole $0.5-4 \mathrm{~mm}$ long, glabrous; blade elliptic, 7-80 by 5-32 mm, 1.3-3.1 times longer than wide, glabrous, upper surface sagegreen, sometimes reddish, underneath slightly paler, base rounded, margin not thickened, flat, apex acute, less often obtuse or rounded; midrib flat or sunken above, prominent underneath, lateral veins 5-11 on each side, flat or sunken on

Map 4-4. Distribution Phyllanthus distichus Hook. \& Arn. in Hawai'i.
both sides, sage-green above, chestnut-brown underneath. Staminate flowers solitary to 7 together, c. 3 mm in diam; pedicel $1.5-3 \mathrm{~mm}$ long, glabrous; sepals 6, elliptic, c. 1.2 by 0.6 mm , light red with pale yellow margin or entirely pale yellow, apex acute; disc glands 6, circular, c. 0.5 mm in diam, flat; stamens 3, c. 1 mm long, filaments free, reflexed, thecae subglobular, c. 0.3 mm long. Pistillate flowers in pairs or solitary, c. 5 mm in diam; pedicel $8-10 \mathrm{~mm}$ long, glabrous; sepals 6, elliptic, 2-2.5 by c. 1 mm , light red with pale yellow margin or entirely pale yellow, apex acute; disc annular, with six small lobes alternate to the sepals, crispate, c. 1 mm in diam, c. 0.1 mm thick; ovary sessile, globular-oblate, c. 1.5 mm in diam, c. 1 mm high, glabrous; style absent, stigmas 3, c. 1 mm long, bifid for half of the length, thin, reflexed. Fruits subglobular, 3-3.5 mm in diam, 6-grooved, glabrous, yellow green; pedicel 8-12 mm long, glabrous; columella c. 1 mm long. Seeds c. 2 mm high, c. 1 mm wide, smooth, chestnut-brown.
Distribution - Hawai'i (west Maui, O’ahu, Kauai, Molokai and Lanai).
Habitat \& Ecology - In dry or rainy forests, thickets and bushland, on rocky ridges, in gulches and on slopes. Altitude: 300-1000 m. Flowering and fruiting the whole year round.
Notes - 1 . This species is very variable in leaf shape and size. It can be distinguished by its size and robustness of the branches when compared to other species of subgenus Macraea.
2. Sherff (1939) distinguished var. degeneri by its distally more alate branchlets and cylindric and more elongate pulvina. None of the distinguishing characters for var. degeneri were found in the material. There is a gradient in leaf size, and apex shape that connects var. distichus to var. ellipticus. Both small- and large-leaved specimens were found on the same islands, which further confirms our decision not to distinguish varieties, but to unite them.

5. Phyllanthus dumosus C.B.Rob. - Map 4-5

Phyllanthus dumosus C.B.Rob. (1909) Bot 79; Merr. (1923) 392. - Lectotype (designated here): FB (M.L. Merritt \& F.W. Darling) 13974 (K; iso US), Philippines, Luzon, province of Ilocos Norte.

Shrubs, c. 1 m high, monoecious; much-branched with small branches from main stem; branches light brown, terete, not winged, pubescent when young, otherwise glabrous, side branches often shorter than 5 cm ; internodes $0.8-1 \mathrm{~mm}$ long. Stipules ovate-triangular, c. 0.4 by 0.2 mm , caducous, flat, membranous, margin thinner than center, dark brown when dry, base obtuse, margin entire, apex caudate (tip may break off, then rounded). Leaves: petiole $0.2-0.4 \mathrm{~mm}$ long, glabrous; blade ovate-orbicular when young, to elliptic, 2-7 by 1.5-3.5 mm, 1.3-2 times longer than wide, membranous, glabrous, base often oblique, slightly cordate, margin not thickened, revolute, apex slightly retuse to rounded, mucronate, upper side often

Chapter 4

darker than lower side; midrib slightly raised on lower side, lateral veins 4-6 per side, barely visible. Staminate flowers 1 or 2 together, $0.7-0.8 \mathrm{~mm}$ in diam; pedicel 1.2-5 mm long, glabrous, slender; sepals 6 , red when dry, in two indistinct whorls, obovate, $0.8-1$ by $0.8-0.9 \mathrm{~mm}$, apex obtuse or rounded; disc glands 6 , flat, slightly ovoid with broad end towards stamen, c. 0.2 by $0.1 \mathrm{~mm}, \mathrm{c} .0 .1 \mathrm{~mm}$ high, smooth; stamens 3, c. 0.4 mm long, filaments free, reflexed, thecae rounded to oval, 0.2-0.3 mm long. Pistillate flowers usually solitary, c. 1.5 mm in diam when closed, c. 3 mm in diam when opened; pedicel c. 2 mm long, glabrous, slender; sepals 6, in two indistinct whorls, obovate, $0.8-1.2$ by c. 0.7 mm , midrib not conspicuous, apex obtuse to acute; disc glands 6, elliptic, partly covered by ovary, only orbicular glands visible, c. 0.3 by 0.1 mm , smooth; ovary sessile, globose, 6 -grooved, c. 1 mm in diam, 0.6-0.7 mm high, glabrous; style absent, stigmas 3, 0.3-0.4 mm long, bifid for two third of length. Fruits subglobose, $2.5-3.5 \mathrm{~mm}$ in diam, 6-grooved, brown when dry, glabrous; pedicel 8-12 mm long; columella c. 1.5 mm long. Seeds 1.7 mm long, verrucose-tuberculate along longitudinal lines (Robinson 1909).
Distribution - Philippines (Luzon, Ilocos Norte Prov., Mount Piao).
Habitat \& Ecology — Exposed ridges (Robinson 1909). Altitude: c. 1100 m.
Flowering and fruiting in November, only known from the type.
Notes - 1. Very similar to P. chrysanthus, but differing in the size of the shrub stems and pedicel lengths of the flowers of both sexes.
2. Only the type material is available and this species has not been collected since. The type only contains a few fruits and no seeds. Since the description by Robinson (1909) seems adequate, the species is incorporated here.

6. Phyllanthus everettii C.B.Rob. - Map 4-5

Phyllanthus everettii C.B.Rob. (1909) 80; Merr. (1923) 392. - Lectotype (designated here): FB (Everett) 4301 (K; iso NY, US), Philippines, Negros, Gimagaan river.

Shrubs, up to 3 m high, monoecious; branches terete, flattened in young branches and distal parts of older branches, pubescent; internodes 3-4 mm long. Stipules elliptic, 2-3 by $0.8-1 \mathrm{~mm}$, persistent or caducous, membranous, base bilaterally auriculate, margin entire, apex caudate. Leaves: petiole $0.5-1 \mathrm{~mm}$, slightly pubescent; blade elliptic to oblong, 11-38 by 4-11 mm, 2.1-3.9 times longer than wide, membranous, glabrous, base obtuse to cuneate, slightly asymmetric, margin not thickened, revolute, apex acute to obtuse, mucronate; midrib slightly raised on both sides, lateral veins 7-11 per side. Staminate flowers in fascicles of 2-4, rarely together with a pistillate flower, c. 1.4 mm in diam in bud, c. 2.5 mm in diam when opened; pedicel 2-12 mm long, glabrous; sepals 6 , elliptic, slightly ovate, 1.1-1.4 by $0.5-0.8 \mathrm{~mm}$, midrib distinct, but not thickened, apex obtuse, white; disc glands 6 , circular to ovate, flat with a non-raised distinct central part, $0.3-0.4 \mathrm{~mm}$ in diam, height c. 0.1 mm , smooth; stamens 3 , c. 0.8 mm long, filaments free, $0.6^{-0.8} \mathrm{~mm}$
long, anthers c. 0.2 mm high, thecae rounded. Pistillate flowers solitary, rarely in pairs, c. 3 mm in diam when open; pedicel $4-24 \mathrm{~mm}$ long, glabrous, slender; sepals 6, elliptic to slightly ovate, $1.1-1.5$ by $0.8-0.9 \mathrm{~mm}$, midrib conspicuous, apex obtuse; disc entire, 6 -lobed, lobes alternating with sepals, c. 1.5 mm in diam, smooth; ovary sessile, subglobose, 6 -grooved, $0.7-1$ by c. 0.8 mm , tuberculate; style absent, stigmas 3, c. 1 mm long, bifid for two third of length. Fruits subglobose, $2.5-3 \mathrm{~mm}$ in diam, 6-grooved, glabrous; pedicel 11-25 mm long; columella 1-1.5 mm long. Seeds c. 1.4 mm high, c .1 mm wide, verrucose along longitudinal lines, brown.
Distribution - Philippines (Luzon).
Habitat \& Ecology - On forested stream banks at low and medium altitude (Merrill 1923).
Vernacular name - Miagos (Panay Bisáya) (Merrill 1923).
Note - Similar to some of the other species in the Philippines like P. samarensis and P. lancifolius. This species is distinct by its leaf blades, which are elliptic, as opposed to ovate in P. lancifolius, and larger than those found in P. samarensis. The resemblance with P. samarensis is quite considerable and these species might possibly have to be combined.

7. Phyllanthus exilis S.Moore - Map 4-6

Phyllanthus exilis S.Moore (1926) 97; J.T.Hunter \& J.J.Bruhl (1997) 153. — Type:

Map 4-5. Distribution of Phyllanthus dumosus C.B.Rob. (区), Phyllanthus everettii C.B.Rob. ($\mathbb{)}$) and Phyllanthus samarensis Müll.Arg. (\mathbb{I}) in the Philippines.

Chapter 4

G.H. Wilkins 109 (holo K), Australia, Groote Eylandt.

Erect herbs or subshrubs, 30-60 cm tall, monoecious; branches brown, distally slightly flattened and green, glabrous; internodes 2-10 mm long. Stipules suborbicular, c. 1 by 0.3 mm , base slightly subcordate, margin entire, apex caudate. Leaves: petiole $0.5-1 \mathrm{~mm}$ long, glabrous; blade narrowly elliptic, 6-15 by 1-2 mm , 5-7.5 times longer than wide, glabrous, green, base obtuse, rounded or slightly subcordate, margin not thickened, flat, apex obtuse or rounded, often minutely mucronate; midrib sunken above, prominent underneath, lateral veins barely visible, flat above, slightly prominent underneath. Staminate flowers solitary to 3 together, c. 0.8 mm in diam; pedicel c. 1 mm long, glabrous; sepals 6, ovate, pale green and reddish, in two whorls, outer ones c. 0.4 by 0.6 mm , apex acute, inner ones c. 0.5 by 0.5 mm , apex obtuse; disc glands 6 , circular, c. 0.2 mm in diam, flat, slightly dented in the middle; stamens 3 , c. 0.3 mm long, filaments free, reflexed, thecae globular, c. 0.2 mm long. Pistillate flowers solitary, c. 1.8 mm in diam; pedicel $2.5-4 \mathrm{~mm}$ long, glabrous; sepals 6, ovate, c. 1 by 0.5 mm , pale green and reddish, apex obtuse; disc annular, c. 1 mm in diam, flat; ovary sessile, subglobular, c. 1 mm in diam, c. 0.5 mm high, verrucate; style absent, stigmas 3 , c. 0.3 mm long, bifid for half of the length, reflexed. Fruits subglobular, c. 2 mm in diam, 6-grooved, basally glabrous, apically minutely verrucate; pedicel c. 5 mm long, glabrous; columella c. 1 mm long. Seeds c. 1.5 by 1 mm , smooth, chestnut-brown.
Distribution - Australia (Northern Territory, Queensland and New South Wales). Habitat \& Ecology - In (low) open wood- of shrubland on (shallow) brown or red rocky, loamy, sandy, clayey or skeletal soil. Altitude: 15-385 m. Flowering and fruiting: April to June
Note - Very similar to P. virgatus, but with long, extremely narrow leaves. While the ovary of P. virgatus can be smooth or verrucate, the ovary of P. exilis is always verrucate.

8. Phyllanthus gardnerianus (Wight) Baill. - Map 4-7

Phyllanthus gardnerianus (Wight) Baill. (1858) 628; Thwaites (1861) 282 (as P. gardneri); G.L.Webster in Dassan. \& Clayton (1997) 212; Chakrab. \& N.P.Balakr. (2018) 300. - Macraea gardneriana Wight (1852) 27, pl. 1902-3. - Phyllanthus simplex Retz. var. gardnerianus (Wight) Müll.Arg. (1863) 33; (1866) 392; Hook.f. (1887) 295; N.P.Balakr. \& Chakrab. (2007) 381. - Phyllanthus virgatus G.Forst. var. gardnerianus (Wight) Govaerts \& Radcl.-Sm. (1996) 177. — Lectotype (designated by Webster 1997): G. Gardner s.n. in G.H.K. Thwaites C.P. 296 (K), Sri Lanka, Horton Plain.
Phyllanthus miquelianus Müll.Arg. (1863) 33; (1866) 391. —Diasperus miquelianus (Müll.Arg.) Kuntze (1891) 600. - Lectotype (designated here): R.F. Hohenacker 1130A (G-DC; iso L(L.2247451), India.

Map 4-6. Distribution of Phyllanthus exilis S.Moore ($($) and P. minutiflorus F.Muell. ex Müll.Arg. (\boxtimes) in Australia.

Phyllanthus patens Miq. ex Müll.Arg. (1863) 34 (non Phyllanthus patens Roxb.). Type: R.F. Hohenacker 1130 (holo L (L.2248235)) India.

Herbs or subshrubs, sometimes 5-10 cm high, often much higher, monoecious; branches brown, glabrous, distally slightly flattened, often winged; internodes 1-9 mm long. Stipules triangular, $1.5-2$ by $0.8-1 \mathrm{~mm}$, base cordate, margin entire or erose, apex attenuate. Leaves: petiole $0.5-1 \mathrm{~mm}$ long, glabrous; blade elliptic, rarely suborbicular, 3-37 by 2.5-18 $\mathrm{mm}, ~ 1.2-3.5$ times longer than wide, glabrous, green above, slightly paler green underneath, base rounded or (sub)cordate, margin not thickened, revolute, apex obtuse or rounded, often minutely mucronate; midrib flat or slightly suppressed above, prominent underneath, lateral veins 3-6 per side, not visible above, slightly prominent underneath. Staminate flowers solitary to 12 together, $1.5-2.8 \mathrm{~mm}$ in diam; pedicel 2-5 mm long, glabrous, slender; sepals 6, obovate, $1-1.2$ by $1-1.2 \mathrm{~mm}$, pink, apex rounded; disc glands 6 , circular, flat, c. 0.3 mm in diam; stamens $3, \mathrm{c} .1 \mathrm{~mm}$ long, filaments free, reflexed, thecae subovoid, c. 0.2 mm long. Pistillate flowers solitary, $4-5.5 \mathrm{~mm}$ in diam; pedicel $4-19 \mathrm{~mm}$ long, glabrous; sepals 6 , elliptic, 1.8-2.4 by $1.4-1.5 \mathrm{~mm}$, red with white margins, apex obtuse; disc annular, flat, slightly crispate, $1.2-1.6 \mathrm{~mm}$ in diam; ovary sessile, globular, $1-1.2 \mathrm{~mm}$ in diam, $0.8-1 \mathrm{~mm}$ high, slightly verrucate; style absent, stigmas 3, 0.8-1.2 mm long, bifid for $4 / 5$ of the length, reflexed. Fruits oblate, $2.5-3.8 \mathrm{~mm}$ in diam, c. 2 mm high, 6 -grooved, with 3 grooves slightly deeper, glabrous or slightly

Chapter 4

verrucate; pedicel 4-19 mm long, glabrous; columella c. 1.8 mm long. Seeds c. 1.8 by 1.3 mm , smooth, light brown

Distribution - South India and Sri Lanka.
Habitat \& Ecology - On rocky montane grasslands and disturbed soils. Altitude: $800-1250 \mathrm{~m}$. Flowering and fruiting: All year round.
Uses -Leaf juice used as eyewash or antiseptic. Fresh leaves, bruised and mixed with buttermilk, used as a cure for children's itch. Root preparations are externally applied to abscesses (Quattrocchi 2016).
Vernacular name - India: Kaattunelli (Quattrocchi 2016).
Notes -1 . Very similar to P. virgatus, but with significantly larger pistillate flowers and often with wider leaves.

9. Phyllanthus glaucophyllus Sond. - Map 4-8

Phyllanthus glaucophyllus Sond. (1850) 133; Baill. (1862b) 166; Müll.Arg. (1863) 18 (1866) 393; N.E.Br., Hutch. \& Prain (1915) 394; Radcl.-Sm. (1987) 19; Jean F.Brunel (1987) 299, annex 40; M.G.Gilbert (1995) 281; Radcl.-Sm. (1996a) 48; Radcl.-Sm. \& Petra Hoffm. (2006) 610. - Diasperus glaucophyllus (Sond.) Kuntze (1891) 599. - Lectotype (designated here): C.L.P. Zeyher 1509 (S; iso MEL), South Africa, Transvaal, Magalisberg.
Phyllanthus glaucophylus Sond. var. major Müll.Arg. (1864) 514; (1866) 393;
N.E.Br., Hutch. \& Prain in Dyer (1912) 713; Jean F.Brunel (1987) 299. - Lectotype (designated here): Sanderson 447 (S; iso DBN, K, NH, SAM, TCD), South Africa, Port Natal (currently Durban).
Phyllanthus glaucophyllus Sond. var. suborbicularis Hutch. (1920) 395. - Lectotype (designated here): M.E. Barber 39 (K) South Africa, Kaffranian Mountains.
(Sub)shrubs, 5-100 cm high, monoecious; stems arising from a thick woody rhizome, barely branching; branches winged or minutely ridged, minutely pubescent or glabrous, greyish-green or brown, distally flattened; internodes 3-6 mm long. Stipules triangular, 1-2 by $0.3-1 \mathrm{~mm}$, base bilaterally auriculate, margin entire, sometimes denticulate, apex attenuate. Leaves: petiole 1-1.5 mm long, glabrous; blade ovate or elliptic, $7-20$ by $4-18 \mathrm{~mm}, 1.1-2.5$ times longer than wide, glabrous, base often slightly asymmetrical, (sub)cordate, margin thickened or thin, flat or revolute, apex acute, obtuse or rounded, often minutely mucronate; midrib flat above, prominent underneath, lateral veins 5-7 per side, flat or prominent on both sides. Staminate flowers solitary to 5 together, $1.5-2.5 \mathrm{~mm}$ in diam; pedicel 2-4 mm long, glabrous, often slender; sepals 6 , obovate or elliptic, 1-1.2 by $0.5-1 \mathrm{~mm}$, white, green or yellow, sometimes with white margin, apex rounded; disc glands 6 , either circular, flat, c. 0.2 mm in diam or bell-shaped, c. 0.2 mm in diam, $0.2-0.3$ mm high; stamens $3,0.5-1 \mathrm{~mm}$ long, filaments free, thecae subglobular, $0.2-0.3 \mathrm{~mm}$ long. Pistillate flowers solitary, c. 2.5 mm in diam; pedicel $6-10 \mathrm{~mm}$ long, glabrous;

Map 4-7. Distribution of Phyllanthus gardnerianus (Wight) Baill. (®), P. macraei Müll.Arg. (®), P. myrtifolius (Moon ex Wight) Müll.Arg. ($\begin{aligned} & \text {) and P. wheeleri }\end{aligned}$ G.L.Webster (+) in S India and Sri Lanka.
sepals 6, ovate or elliptic, 1-1.5 by $0.5-1 \mathrm{~mm}$, white, green or yellow, apex acute or obtuse; disc annular, slightly lobed, flat, 1.5-2 mm in diam; ovary globular-oblate, $1-1.5 \mathrm{~mm}$ in diam, $0.5-1 \mathrm{~mm}$ high, glabrous; style absent, stigmas $3, \mathrm{c} .1 \mathrm{~mm}$ long, bifid for 2/3-3/4 of the length, reflexed. Fruits subglobular, 3-8 mm in diam, 6-grooved, glabrous; pedicel 6-12 mm long, glabrous; columella 1-1.5 mm long. Seeds c. 2.5 by 2 mm , verrucate, light brown, verrucae circular, randomly placed or in indistinct longitudinal lines.
Distribution - Southern half of Africa.
Habitat \& Ecology - In grasslands, savannahs, woodland, on mountains and slopes, often in rocky areas. Altitude: 100-2000 m. Flowering and fruiting: Whole year round.
Notes - 1 . This is the only Macraea species that grows from a woody rhizome, and is therefore easily recognizable.
2. Brunel (1987) united P. glaucophyllus with P. alpestris, but because of the difference in distribution and morphology of the staminate disc glands, we would like to recognize P. alpestris as a variety of P. glaucophyllus.
3. Another possible synonym of P. glaucophyllus might be P. graminicola Hutch. because one of the type specimens (C.F.M. Swynnerton 261, stored in BM with

Chapter 4

barcode BM000911067) was re-identified by Radcliffe-Smith as P. glaucophyllus. However, to our knowledge this combination was never published and the description by Hutchinson in Rendle et al. (1911) differs markedly from any species within subgenus Macraea. As we have not seen the specimens during this study, we did not include it here.

Key to the varieties

1. Leaf blade concolorous. Staminate flowers solitary; disc glands circular, flat. Pistillate pedicels $8-10 \mathrm{~mm}$ long. Fruits 3-4 mm in diam
a. var. glaucophyllus
2. Leaf blade discolorous. Staminate flowers 2-5 together; discs glands bellshaped, $0.2-0.3 \mathrm{~mm}$ high. Pistillate pedicels c .6 mm long. Fruits 6-8 mm in diam... b. var. alpestris

a. var. glaucophyllus

Phyllanthus glaucophylus Sond. var. glaucophylus

Subshrubs, 5-30 cm high; branches winged, glabrous, greyish-green; internodes 3-6

Map 4-8. Distribution of Phyllanthus glaucophylus Sond. var. glaucophylus (区) and P. glaucophyllus var. alpestris (Beille)Verwijs (区) in Africa.

Taxonomic revision of Phyllanthus subgenus Macraea

mm long. Stipules 1.5-2 by c. 1 mm , base auriculate. Leaves: petiole c. 1 mm long; blade 7-20 by $4-18 \mathrm{~mm}, 1.1-2.5$ times longer than wide, concolorous, pale greygreen when dry, base often slightly asymmetrical, cordate, margin thickened, flat, apex acute, obtuse or rounded, minutely mucronate; midrib flat above, prominent underneath, lateral veins 5-7 per side, prominent on both sides, shiny underneath. Staminate flowers solitary, c. 2 mm in diam; pedicel c. 4 mm long; sepals obovate, c. 1 by 0.5 mm , white; disc glands circular, flat, c. 0.2 mm in diam; stamens c. 0.5 mm long, thecae c. 0.3 mm long. Pistillate pedicel $8-10 \mathrm{~mm}$ long, glabrous; sepals ovate, $1-1.5$ by c. 1 mm , white, apex acute or obtuse; disc c. 1.5 mm in diam; ovary c. 1 mm in diam, c. 0.5 mm high; stigmas bifid for $2 / 3$ of the length. Fruits $3-4 \mathrm{~mm}$ in diam; pedicel 8-12 mm long; columella c. 1 mm long. Seeds not seen.
Distribution - Southern half of Africa.
Habitat \& Ecology - In woodland, and grassy places in forests (Sonder 1850). Altitude: c. 250 m . Flowering and fruiting: unknown.
b. var. alpestris (Beille) Verwijs, comb. et stat. nov.

Phyllanthus alpestris Beille (1908) 56; N.E.Br., Hutch.\& Prain in Dyer (1912) 712; Hutch. \& Dalziel (1928) 291; Jean F.Brunel (1987) 299; Essou in Akoègn. et al. (2006) 575. - Type: A.J.B. Chevalier 12907 (holo P), Guinea, Fouta Djallon. Phyllanthus leonensis Hutch. (1917) 232; Hutch. \& Dalziel (1928) 291. - Type: N.W. Thomas 580 (holo K), Sierra Leone, Sendugu.
Phyllanthus monticola Hutch. \& Dalziel (1928) 291. —Syntypes: G.F. Scott-Elliot 5819 (K), Sierra Leone, near Regent; G.F. Scott-Elliot 3962 (K); C.E. Lane-Poole 424 (K).

Shrubs, 15-100 cm high; branches minutely ridged, minutely pubescent or glabrous, brown; internodes 6-12 mm long. Stipules $1-2$ by $0.3-1 \mathrm{~mm}$, base cordate. Leaves: petiole $1-1.5 \mathrm{~mm}$ long; blade 12-19 by $7.5-13.5 \mathrm{~mm}$, rarely much smaller on the distal branches, 1.4-1.6 times longer than wide, discolorous, upper surface medium to dark green, underneath much paler, base subcordate, margin not thickened, revolute, apex rounded, obtuse or acute; midrib flat above, prominent underneath, lateral veins c. 5 per side, flat above, flat or prominent underneath. Staminate flowers 2-5 together, $1.5-2.5 \mathrm{~mm}$ in diam; pedicel $2-4 \mathrm{~mm}$ long; sepals 6 , elliptic, c. 1.2 by 1 mm , green or yellow, sometimes with a white margin; disc glands bell-shaped, c. 0.2 mm in diam, $0.2-0.3 \mathrm{~mm}$ high; stamens c .1 mm long, thecae $0.2-0.3 \mathrm{~mm}$ long. Pistillate pedicel c. 6 mm long; sepals green or yellow, sometimes with white margin, apex obtuse, in two whorls, outer ones elliptic, c. 1.5 by 0.5 mm , inner ones ovate, c. 1.5 by 1 mm ; disc $1.5-2 \mathrm{~mm}$ in diam; ovary c. 1.5 mm in diam, c. 1 mm high; stigmas bifid for 3/4 of the length. Fruits 6-8 mm in diam, green; pedicel 6-9 mm long; columella c. 1.5 mm long. Seeds c. 2.5 by 2 mm , verrucate, light brown, verrucae circular, randomly placed or in indistinct longitudinal lines.

Chapter 4

Distribution - Guinea, Liberia, Sierra Leone and Ivory Coast. One specimen was found in Bénin, and one in Ethiopia, the latter is most likely introduced.
Habitat \& Ecology - In grasslands, savannahs, on mountains and slopes, often in rocky areas. Altitude: 100-2000 m. Flowering and fruiting: Whole year round.

10. Phyllanthus lancifolius Merr.- Map 4-9

Phyllanthus lancifolius Merr. (1914) 489; (1923) 393. - Lectotype (designated here): BS (M. Ramos) 17465 (US), Philippines, Samar.
Phyllanthus panayensis Merr. (1920) 539; (1923) 394. — Lectotype (designated here): BS (A. Martelino \& G. Edaño) 35655 (US; iso A, K, L (L0016442), P), Philippines, Panay island, Mt. Bulilao.
(Sub)shrubs to trees, 1-8 m high, monoecious or dioecious; branches terete, bark reddish brown, pinkish purplish to light beige, pubescent, young branches with pale spreading short brown hairs; internodes 2-5 mm long. Stipules ovate-elliptic, 1.5-2 by 0.6-0.8 mm, caducous, membranous, brown, base bilaterally auriculate, margin entire, apex caudate, acuminate. Leaves: petiole $0.3-1 \mathrm{~mm}$, pubescent, brown; blade ovate-elliptic, 9-79 by 3-16 mm, 2-4.6 times longer than wide, membranous, base oblique, rounded, subcordate, margin not thickened, flat, apex acuminate, slightly mucronate, upper side shiny light to dark green or yellowish, lower side pale green, puberulous or glabrous; midrib slightly raised on upper side, sometimes puberulous, lateral veins 8-11 per side, well visible on both sides. Staminate flowers several to >10 flowers in axillary fascicles, not all in the same stage, $1-1.6 \mathrm{~mm}$ in diam in bud, open 2-3 mm in diam; pedicel 2-12 mm long, glabrous; sepals 6 , ovate-elliptic, $1.2-1.6$ by $0.6-0.8 \mathrm{~mm}$, greenish to yellowish white, midrib slightly curved inwards and thickened, apex rounded to acute, mucronate; disc glands 6, reniform, $0.1-0.4 \mathrm{~mm}$ in diam, c. 0.1 mm high, thin, with a central connective, smooth; stamens 3, 0.5-1 mm long, filaments free, deflexed, thecae rounded, 0.2-0.3 mm long. Pistillate flowers solitary or in pairs in usually upper axils, $1.5-2 \mathrm{~mm}$ in diam; pedicel 8-50 mm long, glabrous, reddish-purple; sepals 6, whorls indistinct, (ob)ovate to elliptic, $0.8-1.8$ by $0.5-0.8 \mathrm{~mm}$, green to yellow or white, midrib not prominent, apex rounded, obtuse or acute; disc annular, slightly cup-shaped and lobed, lobes alternating with sepals, $1.2-1.4 \mathrm{~mm}$ in diam, covering \pm basal 0.4 mm of ovary, smooth; ovary 3-locular, sessile, depressed subglobose, wider at base, $0.7-1.5$ by $0.5-0.6 \mathrm{~mm}$ high, each locule with a groove, glabrous or pubescent; style absent, stigmas 3, 0.3-1.2 mm long, bifid for half of length, horizontal or pressed to top of ovary. Fruits subglobose, 2.2-3.7 by c. $2 \mathrm{~mm}, 6$-grooved, (pale) green to yellow or white, glabrous or pubescent; pedicel 10-50 mm long; columella 1.2-1.5 mm long. Seeds 1.6-1.8 by c. 1.4 mm , brown, minutely verrucate, verrucae circular, along longitudinal lines.
Distribution - Philippines (Bohol, Luzon, Mindanao, Panay, Samar), Lesser Sunda

Map 4-9. Distribution of Phyllanthus lancifolius Merr. in Malesia.

Islands (Flores), Moluccas (Ambon, Buru, Dodaga, Morotai).
Habitat \& Ecology - On dry slopes or along creeks on limestone or clay soils in secondary forests with dipterocarps. Altitude: 50-100 m.
Notes - 1. Similar to P. everettii, but differs in its larger ovate leaves (blades elliptic to oblong, $11-38$ by $4-11 \mathrm{~mm}$ in . everetii).
2. Listed in Govaerts et al. (2000) as P. lanceifolius Merr., but written on the type and in the original publication as P. lancifolius.
3. Merrill (1920) described P. panayensis as differing from P. lancifolius in its smaller leaves and longer pistillate pedicels. However, the leaf size is variable within individuals and specimens were found with leaves of the P. panayensis type but with longer pistillate pedicels (e.g., BS (Ramos) 48249). As only small differences in proportions were encountered, with overlap between the species, it is logical to merge them.
4. The distribution of this species is greatly expanded with material from the Moluccas and Flores that have typical Macraea flowers and seem allied with this species.

Chapter 4

11. Phyllanthus macraei Müll.Arg. - Map 4-7

Phyllanthus macraei Müll.Arg. (1863) 29 (non Phyllanthus rheedii Wight); (1866) 393; Hook.f. (1887) 296; N.P.Balakr. \& Chakrab. (2007) 378; Chakrab. \& N.P.Balakr. (2018) 347. - Macraea rheedii Wight (1852) 27, pl. 1901. - Diasperus macraei (Müll.Arg.) Kuntze (1891) 599 (non D. rheedei Kuntze). — Lectotype (designated by Chakrabarty \& Balakrishnan 2018): Wight, Icon. Pl. Ind. Orient. 5 (1852) pl. 1901, India, Pulney mountains.

Shrubs, monoecious; branches winged, glabrous or puberulous, dark brown or green, distally flattened; internodes 3-13 mm long. Stipules triangular, 1-2 by 0.8-1 mm , base bilaterally auriculate, margin entire, apex attenuate. Leaves: petiole 1-2 mm long, glabrous; blade elliptic, 14-45 by 4-18 mm, 1.9-2.8 times longer than wide, glabrous, upper surface medium to dark green, often underneath paler, base cordate, subcordate, rarely rounded, margin not thickened, revolute, often proximally puberulous, apex obtuse or rounded, often mucronate; midrib flat or sunken above, prominent and rarely puberulous underneath, lateral veins 6-9 on each side, flat or sunken above, flat or prominent underneath. Staminate flowers 2 or 3 together in axils, c. 4 mm in diam; pedicel 3-6 mm long, glabrous; sepals 6, apex rounded, greenish yellow, in two whorls, outer ones ovate, c. 2 by 1.5 mm , inner ones elliptic, c. 1.5 by 1 mm ; disc glands 6, oblate, c. 0.6 mm in diam, c. 0.1 mm high; stamens 3, c. 1 mm long, filaments free, thecae subglobular, c. 0.3 mm long. Pistillate flowers solitary, 4-5 mm in diam; pedicel 12-18 mm long, glabrous; sepals 6, apex obtuse or rounded, greenish yellow, in two whorls, outer ones elliptic, c. 2 by 1 mm , inner ones ovate, c. 2 by 2 mm ; disc annular, flat, c. 2 mm in diam; ovary sessile, globular, c. 1 mm in diam, c. 1 mm high, verrucate; style absent, stigmas 3, c. 1 mm long, bifid for $3 / 4$ of the length, reflexed. Fruits subglobular, $4-5 \mathrm{~mm}$ in diam, 6-grooved, glabrous, greenish; pedicel 12-18 mm long, glabrous; columella c. 1.5 mm long. Seeds c. 2.5 by 2 mm , smooth or minutely verrucate, dark or chestnutbrown, verrucae circular, randomly and closely placed.
Distribution - South India (Palni hills, Pulney mountains and Kodaikanal).
Habitat \& Ecology — Forests and edges of forests near grassland. Altitude: 365-2100 m . Flowering and fruiting: May, June, September, October, December.
Vernacular name- India: Macrae's Leaf-Flower (www.flowersofindia.net).
Notes - 1. Distinguishable by its often puberulous branches and leaf margins.
2. Wight (1852) described this plant as Rheede's Niruri, Horti Malab. 10, t. 27
(1690); this drawing is not very detailed, small in scale and lacking staminate flowers and stipules. Wight, Icon. pl. Ind. Orient. 5 Pl. 1901 (1852) is larger scaled, more comprehensive and more precise and therefore more suitable as lectotype.

12. Phyllanthus minutiflorus F.Muell. ex Müll.Arg. - Map 4-6

Phyllanthus minutiflorus F.Muell. ex Müll.Arg. (1865) 75 (non F.Muell. ex Tate, nom. illeg., $=$ Synostemon trachyspermus (F.Muell.) I.Telford \& Pruesapan); Baill. (1865-1866) 341; Müll.Arg. (1866) 398; Benth. (1873) 112; Airy Shaw (1980) 190; J.T.Hunter \& J.J.Bruhl (1997) 158; R.L.Barrett \& I.Telford (2015) 158. — Diasperus minutiflorus (F.Muell. ex Müll.Arg.) Kuntze (1891) 600. — Phyllanthus simplex Retz. var. minutiflorus (F.Muell. ex Müll.Arg.) Domin (1927) 877. —Phyllanthus virgatus G.Forst. var. minutiflorus (F.Muell. ex Müll.Arg.) Airy Shaw (1980) 190, pro syn. - Type: F.J.H. von Mueller s.n. (holo G-DC; iso? K), Australia, Northern Territory, Arnhem Land, Victoria River.
Phyllanthus minutiflorus F.Muell. ex Benth. var. gracillimus Benth. (1873) 112. Phyllanthus simplex Retz. var. gracillimus (F.Muell. ex Benth.) Domin (1927) 877. Type: F.J.H. von Mueller s.n. (holo K), Australia, Queensland Moreton Bay.

Small erect herbs or shrubs, 8-45 cm high, monoecious; branches glabrous, slender, brown or green, minutely ridged, distally flattened and winged; internodes 1-5 mm long. Stipules triangular, c. 1 by 0.5 mm , base cordate, margin entire or erose, apex attenuate. Leaves: petiole c. 0.5 mm long, glabrous; blade elliptic or ovate, 2-14 by 1-4 mm, 2-5 times longer than wide, glabrous, dark green above, slightly lighter green underneath, base obtuse or rounded, margin not thickened, flat, apex rounded, obtuse or acute; midrib flat or slightly prominent above, prominent underneath, lateral veins not visible. Staminate flowers solitary or in pairs with also pistillate flowers, $0.7-1.2 \mathrm{~mm}$ in diam; pedicel $0.5-0.8 \mathrm{~mm}$ long, glabrous, slender; sepals 6, elliptic, c. 0.4 by 0.2 mm , whitish, apex obtuse; disc glands 6, circular, c. 0.1 mm in diam, flat; stamens $3, \mathrm{c} .0 .2 \mathrm{~mm}$ long, filaments free, reflexed, thecae ovoid, c. 0.15 mm long. Pistillate flowers solitary, rarely in pairs with staminate or pistillate flowers, 1-1.2 mm in diam; pedicel 0.5-2 mm long, glabrous; sepals 6, elliptic, c. 0.5 by 0.3 mm , whitish, apex obtuse, rarely acute; disc annular, flat, slightly crispate, c. 0.4 mm in diam; ovary sessile, globular, c. 0.5 mm in diam, c. 0.4 mm high, glabrous or verrucate; style absent, stigmas 3, c. 0.4 mm long, bifid for half of the length, reflexed. Fruits oblate, often splitting into 3 small, blunt tipped valves, $1-1.8 \mathrm{~mm}$ in diam, c. 0.8 mm high, 6-grooved, of which 3 slightly deeper than the others, glabrous, green; pedicel $0.5-2 \mathrm{~mm}$ long, glabrous; columella c. 0.5 mm long. Seeds c. 1 by 0.8 mm , minutely verrucate, light brown, verrucae circular, randomly placed. Distribution - Australia (Queensland, Northern Territory, Western Australia). Habitat \& Ecology - In (wet) woodlands and swamps. Altitude: 60-825 m. Flowering and fruiting: February to August.
Note - Differing from P. virgatus by its slender branches, smaller pistillate flowers on shorter pedicels and smaller fruits and seeds.

13. Phyllanthus myrtifolius (Moon ex Wight) Müll.Arg. - Map 4-7

Phyllanthus myrtifolius (Moon ex Wight) Müll.Arg. (1863) 35; (1866) 396; Thwaites

Chapter 4

(1861) 283; Hook.f. (1887) 296; R.Ansari \& Jeeja (1993) 141; J.Florence (1997) 134; G.L.Webster in Dassan. \& Clayton (1997) 211; Chantar. (2005) 19; in Welzen \& Chayam. (2007) 493; N.P.Balakr. \& Chakrab. (2007) 379; Chakrab. \& N.P.Balakr. (2018) 304. - [Phyllanthus myrtifolius Moon (1824) 65, nom nud.; Baill. (1858) 628 (see note 2).] - Macraea myrtifolia Moon ex Wight (1852) 27, pl. 1902-2; Baill. (1858) 628. - Diasperus myrtifolius (Moon ex Wight) Kuntze (1891) 600. Lectotype (designated by Webster in Dassanayake \& Clayton 1997): G. Gardner s.n. in G.H.K. Thwaites C.P. 650 (K; iso G, PDA), Sri Lanka, Mawelly ganga.

Shrubs, 30-200 cm high, monoecious; branches brown, glabrous, with ridged and fissured bark, distally scabrid and with 2 minute ridges; internodes $2-7 \mathrm{~mm}$ long. Stipules ovate, $1-2$ by $0.8-1 \mathrm{~mm}$, base very narrow, hastate, margin entire, apex acute. Leaves: petiole c. 1 mm long, glabrous; blade obovate, $5-25$ by 1-10 mm , to 2.5-5.5 times longer than wide, glabrous, upper surface dark green, light green underneath, base very narrow, cordate-sagittate, margin not thickened, (slightly) revolute, apex obtuse or acute; midrib flat above, prominent underneath, lateral veins $4-8$ per side, flat above, prominent underneath. Staminate flowers solitary to 5 together, c. 2.5 mm in diam; pedicel $5-10 \mathrm{~mm}$ long, glabrous, slender; sepals 6, apex obtuse, green or (pinkish) red, often with white margins, in two whorls, outer ones ovate, c. 1.5 by 1 mm , inner ones elliptic, c. 1.5 by 0.5 mm ; disc glands 6 , ovoid, c. 0.3 by 0.2 mm, c. 0.1 mm high, foveolate; stamens 3, c. 0.5 mm long, filaments free, reflexed, thecae ovoid, $0.2-0.3 \mathrm{~mm}$ long. Pistillate flowers solitary or in pairs, 2-3 mm in diam; pedicel 6-10 mm long, glabrous, slender; sepals 6, apex obtuse, green or (pinkish) red, often with white margins, in two whorls, outer ones ovate, c. 1.5 by 1 mm , inner ones elliptic, c. 1.5 by 0.5 mm ; disc hexagonal with the angles alternating with sepals, flat, c .1 mm in diam; ovary sessile, globular, c. 0.5 mm in diam, c. 0.5 mm high, glabrous; style absent, stigmas 3 , c. 0.5 mm long, bifid for half of the length, reflexed. Fruits subglobular, c. 3 mm in diam, 3 -grooved, splitting in three blunt tipped valves, glabrous; pedicel $8-10 \mathrm{~mm}$ long, glabrous; columella not seen. Seeds c. 1.8 by 1.2 mm , smooth or minutely verrucate, chestnut-brown, verruculae rhomboid and stretched widthwise or circular and very small, placed in (indistinct) longitudinal lines.
Distribution - Endemic to Central and South Sri Lanka and cultivated in China, India, Thailand, Singapore, Taiwan, and French Polynesia.
Habitat \& Ecology - Common near or even in rivers and on river banks. On granite bedrock and soils with a high water table. Altitude: usually low, up to 900 m . Flowering and fruiting all year -round.
Uses - As an ornamental shrub of hedge, as a medicine for genitourinary infections (Quattrocchi 2016).
Vernacular names - Sri Lanka: Mousetail Plant, Myrtle-leaved leaf-flower (Flowers of India, www.flowersofindia.net), China: Liu xian ye xia zhu (Quattrocchi 2016). Notes -1 . Similar to P. samarensis, but distinguisable by its glabrous branches,

Taxonomic revision of Phyllanthus subgenus Macraea

slightly narrower leaves and very narrow cordate-sagittate leaf base.
2. Baillon (1858) treats Macraea myrtifolia as part of Phyllanthus, but does not make the combination, therefore, according to Art. 35.2 ICN (Turland et al. 2018) the combination Phyllanthus myrtifolius cannot be attributed to him.

14. Phyllanthus pacificus Müll.Arg. - Map 4-10

Phyllanthus pacificus Müll.Arg. (1863) 31; Drake (1892) 287); (1893) 180; F.Br. (1935) 137; J.Florence (1997) 129; W.L.Wagner \& Lorence (2011) 82. - Diasperus pacificus (Müll.Arg.) Kuntze (1891) 600. — Phyllanthus pacificus Müll.Arg. var. typicus F.Br. (1935) 138, fig. 21h, nom. Inval. - Lectotype (designated by Florence 1997): E. Jardin 122 (P; iso G-DC), French Polynesia, Marquesas Isl., Noukahiva. Phyllanthus pacificus Müll.Arg. var. uapensis F.Br. (1935) 138. - Type: E.H. Quayle \#X (holo BISH; iso BISH), French Polynesia, Uapou.
Phyllanthus pacificus Müll.Arg. var. uahukensis F.Br. (1935) 139; St. John (1976) 419. — Lectotype (designated by St. John 1976): E.P. Mumford \& A.M. Adamson 488 (BISH (BISH1001662); iso BISH (BISH1001663)), French Polynesia, Uahuka. Phyllanthus pacificus Müll.Arg. var. quaylei F.Br. (1935) 139. - Type: E.H. Quayle 1341 (holo BISH), French Polynesia, Nukuhiva.

Shrubs, $0.5-2 \mathrm{~m}$ high, dioecious, rarely monoecious; branches winged, wings $0.1-0.5 \mathrm{~mm}$ wide, dull-brown to red-brown, glabrous, persistent; internodes 5-8 mm long. Stipules ovate-triangular, $0.8-2$ by $0.5-1.5 \mathrm{~mm}$, caducous, brown, base unilaterally auriculate (or at least more pronounced on side away from leaf), margin scarious, entire, centre slightly thicker, apex rounded. Leaves: petiole 0.5-3 mm long, glabrous; blade oblong, ovate, elliptic to suborbicular, $9-61$ by 6-19 mm , 1.1-3.7 times longer than wide, subcoriaceous, base rounded to subcordate, cuneate to obtuse, margin not thickened, slightly revolute, apex obtuse to acute, apiculate, upper side dark green, lower side light green, blade sometimes weathering red; midrib sunken above, prominent underneath, lateral veins 4-9 per side, indistinct. Inflorescences sometimes on short brachyblasts. Staminate flowers up to 8 together, axillary, c. 1.2 mm in diam; pedicel $1.5-2 \mathrm{~mm}$ long, glabrous; sepals 6 , elliptic, $1.2-1.5$ by $1-1.2 \mathrm{~mm}$, greenish-yellowish or white, midrib not prominent, apex rounded; disc glands 6 , globose, $0.3-0.5 \mathrm{~mm}$ in diam, surface crenulate; stamens $3,1-1.2 \mathrm{~mm}$ long, filaments free, $0.7-0.8 \mathrm{~mm}$ long, thecae globose, $0.2-0.4 \mathrm{~mm}$ long. Pistillate flowers up to 4 together, axillary, $2-3 \mathrm{~mm}$ in diam when open; pedicel 3-8 mm long, glabrous, pale to white; sepals elliptic-ovate, $1.2-1.4$ by c. 1.1 mm , green-white, midrib not prominent, apex obtuse; disc annular, slightly lobed, lobes alternating with sepals, c. $1.3-1.5 \mathrm{~mm}$ in diam, surface crenulate to grooved; ovary sessile, 3-locular, subglobose, c. 0.5 by $0.6-1 \mathrm{~mm}$, each locule with a longitudinal groove, glabrous to minutely tuberculate; style absent, stigmas 3 , 0.5-1.0 mm long, 2/3 to completely bifid, horizontal or appressed to ovary. Fruits

Chapter 4

capsular, subglobose, 2.8-3 mm wide by c. 2 mm high, 6-grooved, glabrous, slightly tuberculate, pale to light green; pedicel 3-25 mm long, glabrous, yellowish-green; columella 1.2-1.4 mm long. Seeds trigonous, 1.5-2 by 1.2 mm , verrucate, brown, verrucae circular, random or along longitudinal lines.
Distribution - French Polynesia (Marquesas islands: Nuku Hiva, Ua Pou, Fatu Hiva, Hiva Oa, Tahuata).
Habitat \& Ecology - Found in forested areas, along streamsides or along windswept ridges of cliffs. Altitude: 25-1200 m. Flowering and fruiting all year round.
Vernacular names - Marquesas: nouhuu, tia tia; hue iki on Hiva Oa; hueiki, maoo on Nuku Hiva (Florence 1997).
Notes - 1 . The placement in subgenus Macraea was confirmed by palynological results of Punt (1980).
2. Closely resembles P. aoraiensis and P. urceolatus, but is mostly different in the size of the leaf blades and the size of the wings.
3. Florence (1997) combined the varieties created by Brown (1935) on the basis of intermediate forms and no real segregation between varieties, even on islands. We agree with this treatment as multiple leaf forms, small to large, can be found on the same island, often with intermediates. There is a slight trend of leaves becoming smaller towards the southern islands, but large forms can still be found there.

15. Phyllanthus prominulatus J.T.Hunter \& J.J.Bruhl

Map 4-10. Distribution of Phyllanthus pacificus Müll.Arg. in French Polynesia (Marquesas islands).

Taxonomic revision of Phyllanthus subgenus Macraea

Phyllanthus prominulatus J.T.Hunter \& J.J.Bruhl (1997) 153. - Type: G.M.
Wightman 20 (holo DNA), Australia, Northern Territory, Kalpaga, [precise locality withheld].

Copied from Hunter \& Bruhl (1997): Monoecious herb. Branchlets persistent, angular to ellipsoid, slightly winged, $0.6-1.7 \mathrm{~cm}$ long, $0.3-0.6 \mathrm{~mm}$ wide, glabrous. Stipules persistent, free, $0.5-0.7 \mathrm{~mm}$ long, red-brown, ovate to triangular, chartaceous, entire, glabrous; base cordate to amplexicaul; apex acute to acuminate. Branch leaves normal. Branchlet leaves alternate, distichous, jointed, brown when dry or remaining green, symmetrical, plane to concave. Petiole 0.3-0.8 mm long, 0.1-0.4 mm wide, glabrous. Lamina 5-8.8 mm long, 2.4-4.8 mm wide, elliptic, circular to obovate, light-green, paler below, pinnately veined, adaxially prominently veined, abaxially prominulous, glabrous; base symmetrical, rounded to obtuse; apex erect, ecaudate, obtuse to rounded, mucronate; margins plane, thickened; midrib abaxially raised with 4-8 raised parallel lateral veins per side, with marginal loops. Bracts and bracteoles deciduous, glabrous. Inflorescences at least sometimes bisexual with the sexes mixed, indeterminate, axillary, sessile. Male flowers solitary or sometimes clustered, 2-5 per cluster; pedicels $0.4-1.2 \mathrm{~mm}$ long, glabrous; sepals 6 , free, ascending to divergent, $0.3-0.7 \mathrm{~mm}$ long, $0.2-0.5 \mathrm{~mm}$ wide, the margins are sometimes lobed once on each side (hastate), white to yellow, elliptic, circular, to ovate, obtuse and acute, glabrous; disk comprising discrete lobes, $0.2-0.4 \mathrm{~mm}$ wide, lobes lenticular; stamens 2-3, 1-whorled, erect; filaments free to connate for about half
their length, erect, terete, $0.1-0.3 \mathrm{~mm}$ long; anthers extrorse, divaricate, elliptic to circular, $0.1-0.2 \mathrm{~mm}$ long. Female flowers solitary or sometimes clustered, 1-2 per cluster; pedicels jointed, at anthesis $0.3-1.1 \mathrm{~mm}$ long, $0.1-0.2 \mathrm{~mm}$ wide, in fruit $1-2.7 \mathrm{~mm}$ long, $0.1-0.2 \mathrm{~mm}$ wide, glabrous; sepals free, $6,0.3-0.5 \mathrm{~mm}$ long, $0.2-0.3$ mm wide, elliptic to ovate, at anthesis ascending to divergent, in fruit divergent to reflexed, white, green to yellow, with a distinct white margin, obtuse to acute, glabrous; disk crenate, $0.4-0.6 \mathrm{~mm}$ wide, glabrous; styles 3 , free, divided for half or more of their length, divergent to recurved, yellow to green, $0.2-0.3 \mathrm{~mm}$ long, 0.1-0.2 mm wide, narrow-terete, glabrous, branches linear; ovary $0.2-0.5 \mathrm{~mm}$ long, 0.3-0.7 mm wide, transversely ellipsoid and apically depressed, smooth, glabrous. Fruit a capsule, septicidal, transversely ellipsoid and apically depressed, $0.8-0.9 \mathrm{~mm}$ long, 1.5-1.8 mm wide, yellow-brown, red-brown to green, cartilaginous, smooth, glabrous, grooved septicidally; column persistent, angular-ovoid to 'lanceolate', 0.30.5 mm long. Seeds pallid-brown to red-brown, prismatic, laterally compressed, $0.6-0.7 \mathrm{~mm}$ long, $0.5-0.7 \mathrm{~mm}$ wide, granulate; hilum slightly depressed, circular to ovate, cavity more or less basal.
Distribution - Australia (Northern Territory and Kakadu National Park) (Hunter \& Bruhl 1997).
Habitat \& Ecology - Occurs in damp parts of savanna woodlands and sedgelands.

Chapter 4

Notes - 1. There was insufficient material available to make a description. See Hunter \& Bruhl (1997) for a comprehensive description of this species. Distribution and ecological data were taken from Hunter \& Bruhl (1997).
2. Distinguished from P. virgatus by its lateral veins, which are prominent above, while those of P. virgatus are flat above. The veins of both species are slightly prominent underneath.

16. Phyllanthus ridsdalei R.W.Bouman \& Verwijs, sp.nov. - Fig. 4-1; Map 4-11

Resembling P. tenuipes by the presence of a gynophore, but differing in its larger leaves, larger staminate and pistillate sepals, pistillate annular disc (vs free disc glands in the pistillate flowers of P. tenuipes) and a longer gynophore and style. The stigmas in P. ridsdalei are also only bifid at the tip, while those in P. tenuipes are bifid for their entire length. - Type: C.E. Ridsdale 1479 (holo L (L.3958300); iso A, IBC, K), Philippines, Luzon, Zambales, Santa cruz, Acoje mine concession area, c. N15 ${ }^{\circ} 46.0^{\prime}$ E120 $0^{\circ} 00.0^{\prime}$.

Shrubs, c. 1 m high, monoecious; branches terete, glabrous, slightly winged, wing c. 0.1 mm wide; internodes $6-7 \mathrm{~mm}$ long. Stipules ovate to elliptic to triangular, c. 1 by 0.3 mm , caducous, flat, membranous, base bilaterally auricled, margin brittle, thin, apex caudate. Leaves: petiole 0.8-1.2 mm long, glabrous; blade elliptic, 11-22 by 6-10 $\mathrm{mm}, 1.5-3.1$ times longer than wide, membranous, glabrous, base oblique, subcordate, attenuate to obtuse, margin slightly revolute, apex slightly retuse to acute, upper side darker than lower side; midrib slightly elevated on lower side, lateral veins 5-9 per side, barely visible on upper side. Staminate flowers 1-3 together, axillary, 1-1.3 mm in diam; pedicel $10-15 \mathrm{~mm}$ long, glabrous; sepals 6 , elliptic to oblong, $1.5-2$ by $0.8-1 \mathrm{~mm}$, midrib slightly raised on inside of flower, apex curved inward, rounded to obtuse, green turning red; disc glands 6 , ovate, 0.5-0.6 by $0.1-0.2 \mathrm{~mm}$, c. 0.3 mm high, massive; stamens 3, c. 1.1 mm long, filaments variably connate from base to more than half of filament length, deflexed, 0.6-0.7 mm long, thecae $0.3-0.4 \mathrm{~mm}$ long. Pistillate flowers 1 or 2 together, $2.5-3 \mathrm{~mm}$ in diam; pedicel 9-13 mm long, glabrous, slender; sepals 6, ovate, c. 3 by 1.5 mm , midrib slightly elevated on inside, apex acute; disc annular, fused with base of gynophore and forming a rim around the base just in front of sepals, rim lobed with lobes alternating with sepals, folded; gynophore $0.6-0.8 \mathrm{~mm}$ high, ovary subglobose, $0.4-5$ by c. 0.6 mm , each locule with a groove, glabrous, smooth, blueish when dry; style $1.5-1.6 \mathrm{~mm}$ long, stigmas $3,1-2 \mathrm{~mm}$ long, with tips bifid, $0.1-0.2 \mathrm{~mm}$ long. Fruits and seeds not seen.
Distribution - Philippines (Luzon).
Habitat \& Ecology - Secondary forests on ultrabasic soils. Flowering in May. Notes — Pollen studied by Wu et al. (2016) showed that this species is part of subgenus Macraea, and it was previously filed under 'aff. samarensis'. However,
it differs markedly from P. samarensis by its larger pistillate flowers, the long gynophore and a long style style below three elongated stigmas.
17. Phyllanthus samarensis Müll.Arg. - Map 4-5

Phyllanthus samarensis Müll.Arg. (1865) 73; (1866) 386; Fern.-Vill. (1880) 188; C.B.Rob. (1909) 79; Merr. (1923) 395; Airy Shaw (1983) 42; Y.J.Chen et al. (2009) 49. - Diasperus samarensis (Müll.Arg.) Kuntze (1891) 600. — Type: Hb. Berol. (Herb. Berlin) s.n. (B, lost), Philippines, Samar. Neotype (designated here): BS (M. Ramos) 24460 (neo L; isoneo MO, P), Philippines, Samar, Catubig River.

Shrubs, 50-200 cm high, monoecious; large branches glabrous, with smooth bark, smaller branches tomentellous, distally flattened; internodes 2-5 mm long. Stipules triangular, $1.5-2$ by c. 1 mm , base auriculate, margin entire, apex attenuate. Leaves: petiole c .1 mm long, mostly glabrous, distally tomentellous on the upper side, rarely entirely tomentellous; blade elliptic, 7-24 by 4-8 $\mathrm{mm}, 1.8-3$ times longer than wide, glabrous, upper surface green, slightly lighter green underneath, base obtuse, margin not thickened, revolute, apex retuse or obtuse, often mucronate; midrib prominent on both sides, lateral veins 8 or 9 on each side, slightly prominent on both sides. Staminate flowers 3-7 together, $1.2-2 \mathrm{~mm}$ in diam; pedicel 2-10 mm

Map 4-11. Distribution of Phyllanthus ridsdalei R.W.Bouman \& Verwijs (\boxtimes) and Phyllanthus tenuipes C.B.Rob. (®) in the N Philippines.

Chapter 4

Figure 4-1. Phyllanthus ridsdalei R.W.Bouman \& Verwijs: A. flowering branch drawn from herbarium specimen with hanging flowers; B. detail of staminate inflorescence; C. closed staminate flower; D. staminate flower (3 sepals removed); E. pistillate flower as seen when open, note the excerted style;
F. pistillate flower (2 sepals removed), note the disc rim fused with the base of the gynophore (all: C.E. Ridsdale 1479, L). — Drawing by Esmee Winkel 2018.
long, glabrous, slender; sepals 6, ovoid, c. 0.7 by 1 mm , green or white, apex obtuse; disc glands 6, oblate, c. 0.1 mm in diam, c. 0.05 mm high; stamens $3, \mathrm{c} .0 .3 \mathrm{~mm}$ long, filaments free, reflexed, thecae ovoid, c. 0.1 mm long; for pollen see Wu et al. (2016). Pistallate flowers solitary or in pairs, c. 2.5 mm in diam; pedicel $8-10 \mathrm{~mm}$ long, glabrous, base subtomentellous, slender; sepals 6, elliptic, green or white, in two whorls, outer ones c. 1 by 0.7 mm , inner ones c. 1.2 by 0.8 mm , apex obtuse; disc annular, slightly crispate, c. 1.2 mm in diam, flat; ovary sessile, globular, c. 0.8 mm in diam, c. 0.8 mm high, tomentose; style absent, stigmas $3, \mathrm{c} .1 \mathrm{~mm}$ long, bifid for $2 / 3$ of the length, robust, reflexed. Fruits subglobular, 2.5-3 mm in diam, 6-grooved, bivalved, shortly tomentose; pedicel 8-11 mm long, glabrous, base subtomentellous; columella c. 1 mm long. Seeds c. 1.2 by 1 mm , smooth or minutely verrucate along longitudinal lines, chestnut-brown, verrucae very small. Distribution - Philippines (Samar, Cebu, Leyte).
Habitat \& Ecology - Secondary and primary forests, kaigin fields. Brown clay (loam) soil, often over limestone. Altitude: 366-650 m. Flowering and fruiting all year round.
Vernacular name - Malaantagum (Samar-Leyte Bisáya; Merrill 1923).
Note -Similar to Phyllanthus myrtifolius, but with densely tomentellous distal branches, slightly wider leaves and obtuse leaf base.

18. Phyllanthus tararae Verwijs stat. \& nom nov. - Map 4-8

Phyllanthus virgatus G.Forst. var. hirtellus Airy Shaw (1980) 195 (non P. hirtellus F.Muell. ex Müll.Arg.). - Type: L.J. Brass 8651 (holo K; iso L (L0016455)), Papua New Guinea, Western Division, Wassi Kussa River, Tarara.

Erect shrubs, c. 100 cm high; branches brown, densely whitish hirtellous, minutely ridged, distally slightly flattened and winged; internodes $1.1-2.8 \mathrm{~mm}$ long. Stipules triangular, 2-2.5 by c. 1 mm , base cordate, margin entire or erose, apex attenuate. Leaves: petiole c. 0.5 mm long, whitish hirtellous or glabrous; blade elliptic, 7-14 by 2-4 mm, 3.2-4.7 times longer than wide, densely whitish hirtellous on both sides, dark green above, slightly lighter green underneath, base rounded, margin not thickened, slightly revolute, apex acute, mucronate; midrib flat or sunken above, prominent underneath, lateral veins not visible. Staminate flowers solitary or in pairs, $0.7-1.2 \mathrm{~mm}$ in diam; pedicel $4-5 \mathrm{~mm}$ long, glabrous, slender; sepals 6, elliptic, c. 1 by 0.7 mm , apex obtuse; disc glands 6, circular, c. 0.3 mm in diam, flat; stamens 3, c. 0.4 mm long, filaments free, slightly reflexed, thecae ovoid, c. 0.15 mm

Chapter 4

long. Pistillate flowers solitary, c. 3.5 mm in diam; pedicel 2-11 mm long, whitish hirtellous, rarely glabrous; sepals 6 , elliptic, $0.8-1.4$ by $0.3-0.5 \mathrm{~mm}$, apex obtuse; disc annular, slightly crispate, c. 1 mm in diam, flat; ovary sessile, globular, $0.8-1.2 \mathrm{~mm}$ in diam, $0.5-0.8 \mathrm{~mm}$ high, whitish hirtellous or glabrous; style absent, stigmas 3, c. 0.8 mm long, bifid for $2 / 3$ of the length, reflexed. Fruits oblate, c. 3 mm in diam, c. 2 mm high, 6-grooved, whitish hirtellous or glabrous; pedicel 5-11 mm long, densely whitish hirtellous, rarely glabrous; columella c. 1 mm long. Seeds c. 1.2 by 1 mm , minutely verrucate, chestnut-brown, verrucae circular, randomly placed or in indistinct longitudinal lines.
Distribution - Papua New Guinea (Western Province).
Habitat \& Ecology - In grassland and savannah forests. Flowering and fruiting likely all year round.
Notes - 1. Can be distinguised from P. virgatus and P. chrysanthus var. chrysanthus by its densely hirtellous branches and leaves and from P. chrysanthus var. deverdensis and var. micrantheoides by its hirtellous leaves with acute apex. The leaves of P. tararae are larger than those of P. chrysanthus var. deverdensis and narrower than those of P. chrysanthus var. micrantheoides.
2. Only two specimens were seen, both from Papua New Guinea. No other comparable specimens with similar leaves and pubescence were found.

19. Phyllanthus tenuipes C.B.Rob. - Map 4-11

Phyllanthus tenuipes C.B.Rob. (1909) 78; Merr. (1923) 396. - Lectotype (designated here): E.D. Merrill 4419 (K; iso US, NY), Philippines, Luzon, Benguet.

Shrubs to trees, up to 15 m high, monoecious, dbh at least 15 cm ; branches terete, slightly winged, wings c. 0.1 mm wide, branches covered with short stiff brown hairs; internodes 2-4 mm long. Outer bark brown, inner bark reddish, sometimes with yellow sap. Stipules ovate to triangular, c. 1.2 by $0.5-0.6 \mathrm{~mm}$, caducous or persistent, membranous, base bilaterally auriculate, margin brittle, thin, entire, apex acute. Leaves: petiole $0.4-0.8 \mathrm{~mm}$ long, puberulous; blade elliptic to ovate, orbicular in earliest leaves on side branches, 5-14 by 2.5-10 $\mathrm{mm}, 1.1-2.4$ times longer than wide, membranous, glabrous, base truncate to rounded to obtuse, sometimes subcordate, margin slightly revolute, apex rounded to obtuse to acute, mucronate, upper side lighter than lower side; midrib barely elevated on lower side, lateral veins 5-7 per side. Staminate flowers solitary, $0.6^{-0.8} \mathrm{~mm}$ in diam; pedicel 2-24 mm long, glabrous, slender; sepals 6, oblong, $1-1.1$ by c. 0.5 mm , reddish with white margin, midrib not elevated, apex rounded; disc glands 6 , ovate, $0.3-0.4 \mathrm{~mm}$ long, c. 0.2 mm high and wide, smooth; stamens 3 , c. 0.5 mm long, filaments free,

Map 4-12. Distribution of Phyllanthus tararae Verwijs (』) and P. womersleyi Airy Shaw \& G.L.Webster (\boxtimes) in Papua New Guinea.
deflexed to horizontal position, thecae globose, c. 0.2 mm long, rounded. Pistillate flowers solitary or in pairs, axillary, 1.2-1.5 mm in diam; pedicel c. 18 mm long, glabrous, slender; sepals 6 , oblong to ovate, 1.3-1.8 by 1-1.1 mm, apex rounded or slightly obtuse; disc glands 6 , circular, c. 0.3 mm in diam by c. 0.1 mm high, crumpled; ovary on short gynophore of c. 0.1 mm , subglobose, 6-grooved, glabrous, smooth; style $0.3-0.6 \mathrm{~mm}$ long, stigmas $3,0.2-0.5 \mathrm{~mm}$ long, completely bifid. Fruits depressed globose, $1.5-2.5 \mathrm{~mm}$ in diam, c. 1.5 mm high, 6 -grooved, brown, glabrous, smooth; pedicel 15-21 mm long; columella without gynophore c. 0.9 mm long, width c. 1.5 mm . Seeds trigonous, 1.1-1.2 by c. 1 mm , brown, minutely verrucate along longitudinal lines.
Distribution - Philippines (Luzon (Benguet), Daklan to Kabayan, Itogon to Dilopirop).
Habitat \& Ecology - In primary or secondary forests along cliffs or roadsides, sometimes on ultrabasic soils. Altitude: 50-1500 m. Flowering and fruiting all year round.
Note - Described by Robinson (1909) as an undershrub of 30 cm high, but other specimens are shrubs of 1.5 m to trees of 15 m . Two main forms can be distinguished. The original, as described by Robinson, and a tree form with yellow sap and diamond-shaped leaves (C.E. Ridsdale ISU 276).
20. Phyllanthus urceolatus Baill. - Map 4-2

Chapter 4

Phyllanthus urceolatus Baill. (1862a) 239 (non Noronha, 1790, nom. nud.); Müll. Arg. (1866) 386; Drake (1893) 180; Guillaumin (1948) 176; M.Schmid (1991) 44; J.Florence (1997) 129. - Diasperus urceolatus (Baill.) Kuntze (1862) 601. Phyllanthus pinaiensis S.L.Welsh (1998) 112; W.L.Wagner \& Lorence (2011) 83, nom. superfl. — Lectotype (designated here): E. Vieillard 336 (P (P 00066432); iso P(P00066433)), French Polynesia, Port de France.

Shrubs, 40-150 cm high, monoecious; branches dark brown, glabrous, distally slightly flattened, not winged or ridged, sometimes green; internodes $3-15 \mathrm{~mm}$ long. Stipules ovate, c. 0.5 by 0.5 mm , base cordate, margin entire or (extremely) erose, apex acute. Leaves: petiole 1-4 mm long, glabrous; blade elliptic or ovate, $22-85$ by 10-40 mm, 1.4-3.6 times longer than wide, glabrous, green, base cuneate or attenuate, rarely rounded, margin not thickened, flat, apex narrow and obtuse, rarely rounded, minutely mucronate; midrib prominent on both sides, lateral veins 10-18 per side, prominent on both sides. Staminate flowers solitary to 3 together, c. 1.5 mm in diam; pedicel c. 6 mm long, glabrous; sepals 6 , elliptic, $0.6-0.8$ by c. 0.6 mm , greenish, reddish, red or purple, apex obtuse; disc glands 6 , circular, flat, c . 0.3 mm in diam; stamens $3, \mathrm{c} .0 .6 \mathrm{~mm}$ long, robust, filaments free, reflexed, thecae globular, c. 0.1 mm long. Pistillate flowers solitary, c. 3 mm in diam; pedicel 10-30 mm long, glabrous; sepals 6, elliptic, 1-1.2 by c. 0.8 mm , greenish, apex obtuse, red or purple; disc annular, flat, c. 1 mm in diam; ovary sessile, globular, c. 1 mm in diam, c. 0.8 mm high, glabrous; style absent, stigmas 3 , c. 0.9 mm long, bifid for $3 / 4$ of the length, slender, reflexed. Fruits subglobular, 2.5-4 mm in diam, 6-grooved, glabrous, green or red; pedicel 10-30 mm long, glabrous; columella c. 1.5 mm long. Seeds c. 2.5 by 1.5 mm , (light) brown, minutely verrucate, verrucae circular, randomly placed or longitudinally linear.
Distribution - French Polynesia (Tahiti, Moorea, Ra'iātea).
Habitat \& Ecology — In (mesophilic) forest, on crests and slopes. Altitude: 224-830 m . Flowering and fruiting all year round.
Vernacular name - Tahiti: E vou (M.J. Lepiné s.n.)
Note - Recognisable by its large leaves with long pedicels.

21. Phyllanthus ussuriensis Rupr. \& Maxim. - Map 4-14

Phyllanthus ussuriensis Rupr. \& Maxim. (1857) 222; P.T.Li \& M.G.Gilbert in Z.Y.Wu, P.H.Raven \& D.Y.Hong (2008) 182. — Phyllanthus anceps Benth. (1861) 311, nom. illeg., non Phyllanthus anceps Vahl; F.B.Forbes \& Hemsl. (1894) 420. —Phyllanthus simplex Retz. var. ussuriensis (Rupr. \& Maxim.) Müll.Arg. (1863) 33; (1866) 392. Phyllanthus wilfordii Croizat \& F.P.Metcalf (1942) 194, nom. superfl. - Type: C.J. Maximowicz s.n. (holo probably LE; iso K, M, NY), Russia, Ussuri.
Phyllanthus simplex Retz. var. chinensis Müll.Arg. (1863) 33; (1866) 391. -

Phyllanthus virgatus G．Forst．var．chinensis（Müll．Arg．）G．L．Webster in E．Walker （1971）68．－Syntypes：Park 57 （G－DC），China，Canton；Hance 1223 （B，presumably lost），China，Hongkong；C．Wilford 66 （A），China，Hongkong． Phyllanthus matsumurae Hayata ex Yabe（1904）12．－Type：Not designated．

Erect herbs，10－45 cm high，monoecious；branches brown，glabrous，minutely ridged，distally flattened and winged；internodes 3－13 mm long．Stipules triangular， $1-1.2$ by $0.5-0.8 \mathrm{~mm}$ ，base cordate，margin entire or serrate，apex attenuate．Leaves： petiole c． 0.5 mm long，glabrous；blade elliptic， $4-25$ by $1.5-8 \mathrm{~mm}, 2.4-5$ times longer than wide，glabrous，green，base obtuse，rounded or minutely cordate， sometimes slightly asymmetrical，margin not thickened，slightly revolute，apex obtuse or acute，rarely rounded；midrib prominent on both sides，lateral veins 4－9 per side，prominent on both sides．Staminate flowers solitary to 3 together，0．8－1 mm in diam；pedicel c． 1 mm long，glabrous，slender；sepals 4 or 6 ，ovate or oblong， c． 0.4 by 0.2 mm ，apex rounded；disc glands 4 or 6 ，cupuliform，c． 0.1 mm in diam， c． 0.1 mm high；stamens 2 or 3 （often on the same plant），c． 0.4 mm long，filaments free，reflexed，thecae ovoid，c． 0.2 mm long．Pistillate flowers with 1 or 2 staminate flowers，rarely solitary，c． 1 mm in diam；pedicel c． 1 mm long，glabrous；sepals 6 ，ovate， $0.3-0.8$ by c． 0.2 mm ，apex rounded；disc glands 6 ，alternate，protruding from between the sepals，ovate or oblong， $0.15-0.2$ by c． 0.1 mm ，flat；ovary sessile， globular，c． 0.8 mm in diam，c． 0.5 mm high，glabrous or verrucate；style very short， stigmas 3，c． 0.3 mm long，bifid for half of the length，reflexed．Fruits subglobular， $2-2.5 \mathrm{~mm}$ in diam，6－grooved，sometimes bivalved，glabrous or verrucate；pedicel 2－3．5 mm long，glabrous；stigmas，sepals and disc glands persistent；columella c． 1 mm long．Seeds c． 1 by 1 mm ，smooth or minutely verrucate，dark or chestnut－ brown，verrucae small，very prominent and randomly placed．
Distribution－Southeast Russia，China，Japan．
Habitat \＆Ecology－Near rivers and ponds，in moist places under woods．Altitude： 45－630 m．Flowerering：June to October．
Uses－All parts are used as an astringent or antidiarrheal（Li \＆Gilbert 2008； Quattrochi 2016）．
Vernacular names－China：Mi gan cao（蜜柑草），Sweet orange grass（Chinese， mandarin，Li \＆Gilbert 2008）．
Notes－This is the only species in subgen．Macraea with staminate flowers with 4 sepals， 2 stamens and 4 disc glands，though staminate flowers with 6 sepals， 3 stamens and 6 disc glands also occur，often on the same plant．The 6 disc glands of the pistillate flowers，while not a unique character，distinguish this species from the vegetavively very similar P ．virgatus，which has an annular disc in its pistillate flowers．

22．Phyllanthus virgatus G．Forst．－Map 4－15

Chapter 4

Phyllanthus virgatus G.Forst. (1786) 65; Hook. \& Arn. (1826) 69; G.L.Webster \& Airy Shaw (1971) 86; Airy Shaw (1975) 186; (1980) 194; Punt (1980) 163; A.C.Sm. (1981) 464; G.L.Webster (1986) 94; Lobr.-Callen et al. (1988) 294; J.T.Hunter \& J.J.Bruhl (1997) 157; M.Schmid (1991) 44; Chantar. in Welzen \& Chayam. (2007) 504; P.T.Li \& M.G.Gilbert in Z.Y.Wu, P.H.Raven \& D.Y.Hong (2008) 181; Y.J.Chen et al. (2009) 49; R.L.Barrett \& I.Telford (2015) 158. - Phyllanthus simplex Retz. var. virgatus (G.Forst.) Müll.Arg. (1863) 32; (1866) 392. - Diasperus virgatus (G.Forst.) Kuntze (1891) 597. - Lectotype (designated by A.C.Smith 1981): Banks \& Solander s.n. (holo BM), Tahiti.

Phyllanthus simplex Retz. (1789) 29; Thwaites (1861) 282; Baill. (1862a) 237; Müll. Arg. (1863) 32; (1866) 391; Laness. (1866) 611; Miq. (1867) 127; Benth. (1873) 111; Hook.f. (1887) 295; Drake (1893) 181; F.B.Forbes \& Hems. (1889-1902) 423; C.B.Rob. (1909) 81; Merr. (1923) 395; Domin (1927) 876; Guillaumin (1948) 177; J.T.Hunter \& J.J.Bruhl (1997) 157; G.L.Webster in Dassan. \& Clayton (1997) 213; W.J.Kress et al. (2003) 234; N.P.Balakr. \& Chakrab. (2007) 38; Chakrab. \& N.P.Balakr. (2018) 307.— Phyllanthus simplex Retz. var. genuinus Müll.Arg. (1866) 391, nom. inval.; Domin (1927) 877. - Type: Koenig s.n. (holo C) India, Tranqebar. Phyllanthus anceps Vahl (1791) 95. - Melanthesa anceps (Vahl) Miq. (1859) 371. Type: Unknown collector s.n. (holo C).

Map 4-13. Distribution of Phyllanthus ussuriensis Rupr. \& Maxim. in East Asia.

Phyllanthus pedunculatus Kostel. (1836) 1769. - Phyllanthus depressus Buch.-Ham. ex Dillwyn (1839) 51, nom. illeg., nom. superfl.; Müll.Arg. (1866) 432. —Diasperus pedunculatus (Kostel.) Kuntze (1891) 597. —Diasperus depressus Kuntze (1891) 599, nom. Illeg., nom. superfl. - Type: Rheede, Horti Malab. 10 (1690) t. 27.
(Phyllanthus fruticosus B. Heyne ex Benth. in Wall., Numer. List (1847) 237 (nr. 7899A), nom. nud.)
(Phyllanthus marginatus B.Heyne ex Benth. in Wall., Numer. List (1847) 237 (nr. 7899A), nom. nud.)
Macraea oblongifolia Wight (1852) 27, pl. 1902-1. — Lectotype (designated by G.L.Webster in Dassan. \& Clayton 1997): Wight, Icon. Pl. Ind. Orient. 5 (1852) pl. 1902-1.
Macraea ovalifolia Wight (1852) 27, pl. 1902-4. — Lectotype (designated here): Wight, Icon. Pl. Ind. Orient. 5 (1852) pl. 1902-4.
Melanthesa rupestris Miq. (1859) 371. - Type: Zollinger s.n. (holo U (U0002059); iso P, PC), Indonesia, Flores.
Phyllanthus pratensis Pancher ex Baill. (1862a) 237. - Phyllanthus simplex Retz. var. pratensis (Pancher ex Baill.) Müll.Arg. (1863) 33; (1866) 392. - Type: E. Vieillard 1197, 1855 (holo P (P00066448); iso G-DC (G00318230), P (P00066449, P00066450, P00066451)), New Caledonia, Saint-Vincent.
Phyllanthus conterminus Müll.Arg. (1863) 32; (1866) 389. —Diasperus conterminus (Müll.Arg.) Kuntze (1891) 599. - Type: Hogdson 215 (holo G-DC (G00325912)), Australia.
Phyllanthus simplex Retz. var. myriocladus Müll.Arg. (1863) 33; (1866) 392. — Type: E. Vieillard 1199 (holo G-DC (G00318219); iso P (P00066447)), New Caledonia, Fort de France.
Phyllanthus beckleri Müll.Arg. (1865) 74; Baill. (1865-1866) 341; (1866) 390;
J.T.Hunter \& J.J.Bruhl (1997) 157. — Diasperus beckleri (Müll.Arg.) Kuntze (1891)
598. - Type: H. Beckler 668 (holo G-DC (G00319824)), Australia, Clarence river.

Phyllanthus simplex Retz. var. brevipes Müll.Arg. (1866) 392. - Type: E. Viellard s.n. (holo G-DC; iso? P (P00066452 \& P00066453)), New Caledonia, Wagap.
Phyllanthus filicaulis Benth. (1873) 111; J.T.Hunter \& J.J.Bruhl (1997) 157. —
Phyllanthus simplex Retz. var. filicaulis (Benth.) Domin (1927) 876. — Type: C.
Stuart s.n. (holo K), Australia, New South Wales, New England.
Phyllanthus simplex Retz. var. leiospermus Benth. (1873) 111. —Phyllanthus simplex Retz. var. genuinus subvar. leiospermus (Benth.) Domin (1927) 876, nom. inval. Type: T.L. Mitchell 66 (holo K), Australia, Narren river.
Phyllanthus trachygyne Benth. (1873) 103; J.T.Hunter \& J.J.Bruhl (1997) 157. — Lectotype (designated by J.T.Hunter \& J.J.Bruhl 1997): M. Schultz 668 (K), Australia, Northern Territory, Port Darwin.
Phyllanthus weinlandii K.Schum. in K.Schum. \& Lauterb. (1905) 287. —Syntypes: K. Weinland 241 (BRI, K, M), Papua New Guinea, Morobe Province, Finschhafen; K. Weinland 389a (n.v.), Papua New Guinea, Matatakum.

Chapter 4

Phyllanthus eboracensis S.Moore (1920) 216; J.T.Hunter \& J.J.Bruhl (1997) 158. Type: E. Dämel s.n. (holo BM, not seen; iso K), Australia, Cape York.
Phyllanthus narayanswamii Gamble (1925a) 329; (1925b) 1290; N.P.Balakr. \& Chakrab. (2007) 381; Chakrab. \& N.P.Balakr. (2018) 349. - Lectotype (designated by Chakrabarty \& Balakrishnan 2018): V. Narayanswami 640 (K; iso CAL, not seen), India, Dummakouda, Rampa hills, Godawari district.
Phyllanthus simplex Retz. var. myrtifolius Domin (1927) 876; J.T.Hunter \& J.J.Bruhl (1997) 158. - Type: Domin s.n. (n.v.), Australia, North East Queensland. Phyllanthus simplex Retz. var. pinifolius Domin (1927) 877; J.T.Hunter \& J.J.Bruhl (1997) 158. - Type: Domin s.n. (n.v.), Australia, Queensland.

Usually erect, rarely sprawling shrubs or herbs, $30-100 \mathrm{~cm}$ high, monoecious; branches brown or purplish, minutely ridged, glabrous, distally brown or sagegreen, flattened and winged; internodes 1-5 mm long. Stipules triangular, 1-2.5 by 0.5-1 mm, base cordate, margin entire or erose, apex attenuate. Leaves: petiole 0.5-1 mm long, glabrous; blade elliptic or ovate, rarely suborbicular or obovate, 3-40 by 1-6 mm, (1-)2.5-5(-6.7) times longer than wide, glabrous, dark green above, lighter green underneath, base rounded, margin not thickened, (slightly) revolute, rarely flat, apex acute, obtuse or rounded, often minutely mucronate; midrib flat above, prominent underneath, lateral veins 5-8 per side, flat above, slightly prominent underneath. Staminate flowers solitary or in pairs with sometimes a pistillate flower, $0.8-1.7 \mathrm{~mm}$ in diam; pedicel $0.2-5 \mathrm{~mm}$ long, glabrous, slender; sepals 6 , elliptic, $0.5-1$ by $0.2-0.5 \mathrm{~mm}$, red to purple to green to yellow to white, apex obtuse; disc glands 6, circular, c. 0.2 mm in diam; stamens 3, c. 0.4 mm long, filaments free, reflexed, thecae ovoid, c. 0.2 mm long; for pollen see Punt (1980) and Wu et al. (2016). Pistillate flowers solitary, rarely in pairs, with sometimes a staminate flowers, $1.5-2.6 \mathrm{~mm}$ in diam; pedicel 3-9 mm long, glabrous; sepals 6 , elliptic, $0.8-1.2$ by $0.3-0.5 \mathrm{~mm}$, red to purple to green to yellow to white, apex obtuse, rarely acute; disc annular, slightly crispate, flat, c. 0.9 mm in diam; ovary sessile, globular, c. 0.8 mm in diam, c. 0.5 mm high, glabrous or verrucate; style absent, stigmas $3, \mathrm{c} .0 .6$ mm long, bifid for half of the length, reflexed. Fruits oblate or subglobular, often bivalved, 2-3.5 by 1.5-2 mm, 6-grooved, of which often 3 slightly deeper, greenish, glabrous or verrucate; pedicel 4-9 mm long, glabrous; columella c. 1 mm long. Seeds $1.2-1.8$ by $1-1.4 \mathrm{~mm}$, minutely verrucate, rarely smooth, light brown, verrucae circular, randomly placed or longitudinally linear.
Distribution - Widespread, possibly introduced in multiple locations, occurring in most of southern Asia, ranging from Pakistan to Australia and the Pacific islands up to Hawai'i.
Habitat \& Ecology — Ocurring in grassland, forests, swamps or cultivated fields, both in wet and dry soils. Often in disturbed, grazed or fire-damaged areas.
Altitude: 0-1850 m. Flowering and fruiting all year round.
Uses - Used as an antiseptic, against intestinal parasites, eye diseases, cold, fever,
diarrhea, dysentery, itch, gonorrhea and (mammary) abscesses (A.C. Smith 1981; Quattrocchi 2016).
Vernacular name(s) - China: Huang zhu xi cao (Quattrocchi 2016). India: seed under leaf, virgate leaf-flower, banaunri, bhuiavali, bhiuavate, bhui-amla, biradi pello, bon baberi, jar amla, kaadu nelli, kadunelli,motibhuiavali, niruri, tanda meral, uchchi usirika, uchhiyusirka (www.flowersofindia.net; Quattrocchi 2016). Myanmar: shit-sha (W.J. Kress et al. 2003). Thailand: khaang amphai, luuk tai bai, phaeng kham hoi (Quattrocchi 2016). Laos: ket 'hoy, 'khi doy (Quattrocchi 2016). Vietnam: v[aar]y [oos]e (Quattrocchi 2016). Indonesia: sahakèpo, sakahepo (Indonesia, Heyne 1950, Quattrocchi 2016). Philippines: kaya-an, kayut-búlan, kayut-bulang (Merrill 1923, Quattrocchi 2016). Tahiti: tei ni niu (A.C. Smith 1981). Notes - 1. According to Hunter \& Bruhl (1997) the distinguishing character between P. exilis and P. virgatus is that the ovary of P. exilis is verrucate, and smooth in P. virgatus. However, smooth and verrucate ovaries occur in P. virgatus in areas outside Australia. See note under P. exilis for differences with P. virgatus. Additional distinguishing characters are the shape and size of the leaf blade, which is usually narrower and smaller in P. exilis and the diameter of the staminate flowers, which is also usually smaller in P. exilis than in P. virgatus.
2. Phyllanthus narayanswamii Gamble is here combined with P. virgatus. The differences described by previous authors to distinguish it from P. virgatus were a thickened revolute margin and subsessile staminate flowers. However, the margin differences are minimal and subsessile flowers can also be found in P. virgatus. The nervature of the leaves on the type of P. narayanswamii differs a little bit from other

Map 4-14 Distribution of Phyllanthus virgatus G. Forst.

Chapter 4

specimens of P. virgatus in the prominent nervature on the lower side of the leaf blade.

23. Phyllanthus wheeleri G.L.Webster - Map 4-7

Phyllanthus wheeleri G.L.Webster (1995) 266; in Dassan. \& Clayton (1997) 215; Chakrab. \& N.P.Balakr. (2018) 309. - Type: L.C. Wheeler 12437 (holo DAV; iso PDA, US), Sri Lanka, Central Province, Dambulla Rock.
Phyllanthus gardnerianus (Wight) Baill. var. pubescens Thwaites (1861) 282
('gardneri'). - Phyllanthus simplex Retz. var. gardnerianus f. pubescens (Thwaites)
Müll.Arg. (1863) 33. - Lectotype: (designated by Webster 1995): Thwaites C.P. 178 (K; iso PDA), Sri Lanka, Galagama.

Small shrubs, monoecious; branches brown, glabrous or hirsute, ridged, distally brown or sage-green, slightly flattened and with 2 larger ridges; internodes $2-5 \mathrm{~mm}$ long. Stipules triangular, 1-1.5 by $0.4-0.8 \mathrm{~mm}$, base rounded, margin entire or erose, apex attenuate. Leaves: petiole c. 0.5 mm long, glabrous; blade elliptic or obovate, $5-13.5$ by 2-7 mm, 1.8-2.4 times longer than wide, green, base asymmetric, obtuse, margin not thickened, slightly revolute, apex obtuse or rounded, younger leaves usually hirsute on both sides, older leaves often glabrous; midrib flat above, prominent underneath, lateral veins 5-7 per side, slightly prominent on both sides. Staminate flowers solitary or in pairs, c. 1 mm in diam; pedicel 2-2.5 mm long, glabrous, slender; sepals 6, elliptic, c. 1 by 0.5 mm , apex obtuse; disc glands 6 , circular, c. 0.2 mm in diam, flat; stamens 3 , c. 0.6 mm long, filaments free, reflexed, thecae ovoid, c. 0.2 mm long. Pistillate flowers solitary or in pairs, c. 1 mm in diam; pedicel 2.5-4 mm long, glabrous; sepals 6, ovate, c. 1 by 0.2 mm , apex acute; disc glands 6, sometimes sticking out between the sepals, cuneiform or obcordate, $0.2-0.5$ by $0.2-0.3 \mathrm{~mm}$, flat; ovary sessile, globular, c. 0.7 mm in diam, c. 0.7 mm high, densely hirsute; style absent, stigmas $3, \mathrm{c} .0 .5 \mathrm{~mm}$ long, bifid for $3 / 4$ of the length, reflexed. Fruits subglobular, 2-2.5 mm in diam, 6-grooved, hirsute, rarely glabrous; pedicel 3-4 mm long, glabrous; columella c. 1 mm long. Seeds c. 1-1.2 by 0.8-1 mm , smooth or verrucate, light brown, verrucae circular, in (indistinct) linear lines.
Distribution - Sri Lanka.
Habitat \& Ecology - On shady and semi-shady red clay and sandy soils, often on road banks. Altitude: c. 230 m . Flowering and fruiting: October till May, possibly all year round.
Note - This species can be distinguished from other species of subgenus Macraea by the segmented pistillate flower disc. There are a few other species with a segmented pistillate disc: Phyllanthus dumosus has smaller orbicular leaves and the ovary is glabrous; P. tenuipes has the ovary on a gynophore and a style; P. ussuriensis has minute disc glands and glabrous, elliptic leaves; and P. womersleyi can be
distinguished by its (sub)orbicular leaves, prostrate habit and connate stamens.

24. Phyllanthus womersleyi Airy Shaw \& G.L.Webster - Map 4-12

Phyllanthus womersleyi Airy Shaw \& G.L.Webster in G.L.Webster \& Airy Shaw (1971) 86; Airy Shaw (1980) 196; Punt (1980) 163. - Type: NGF (J.S. Womersley) 11311 (holo K; iso A, BISH, BRI, CANB, L (L0016456), Papua New Guinea, Western Highlands, Wabag Sub-district, Merimanta, Porget logging area.

Prostrate herbs or subshrubs, sometimes erect, then up to 150 cm high, monoecious; branches brown, red or purple, glabrous, with 2 minute ridges, often partly without leaves, but with persistent stipules; internodes $0.5-4 \mathrm{~mm}$ long; aerial roots occasionally present on nodes when prostrate, up to 0.5 mm thick. Stipules irregularly orbicular, $1-1.8 \mathrm{~mm}$ in diam, base rounded, margin erose, sometimes entire or spinose, apex rounded. Leaves: petiole c. 0.5 mm long, glabrous; blade (sub)orbicular, rarely ovate, 2-4 mm in diam, about equally long as wide, glabrous, grey-green when dry, sometimes with red hue, base rounded or obtuse, margin not thickened, flat, apex rounded, rarely obtuse; midrib sunken above, prominent underneath, lateral veins 4 or 5, barely visible. Staminate flowers solitary, $2.5-3 \mathrm{~mm}$ in diam; pedicel c. 3 mm long, glabrous; sepals 6 , elliptic, apex rounded, red, in two whorls, outer ones c. 1.2 by 0.8 mm , inner ones c. 1 by 0.6 mm ; disc glands 6 , oblate, c. 0.5 mm in diam, c. 0.1 mm high, foveolate; stamens 3 , c. 0.9 mm long, filaments connate at base, reflexed, robust, thecae subglobular, c. 0.2 mm long, bright yellow; for pollen see Punt (1980) and Wu et al. (2016). Pistillate flowers solitary, $2.5-3 \mathrm{~mm}$ in diam; pedicel 3-4 mm long, glabrous; sepals 6, elliptic, c. 1.2 by 0.8 mm , red, apex rounded or obtuse; disc glands 6, oblate, c. 0.5 mm in diam, c. 0.1 mm high, foveolate, flat, in fruit merging and flattened, then minutely foveolate; ovary sessile, ovoid, c. 0.5 by 0.5 mm , verrucose; style absent, stigmas $3, \mathrm{c} .1 \mathrm{~mm}$ long, thin, bifid for half of the length, reflexed. Fruits subglobular, 2-2.5 mm in diam, 6-grooved, red or purple, basally glabrous, apically verrucose or lepidote; pedicel 3-5 mm long, glabrous; columella c. 1 mm long. Seeds c. 1.5 by 0.6 mm , smooth, chestnut-brown. Distribution - Papua New Guinea (Southern and Western Highlands). Habitat \& Ecology - In forests, grassland, on exposed or open patches, amongst pit-pit (Saccharum edule Hassk., Poaceae), or in ground cover beneath Rhodondendron and fern species. Common on drier ground, but also found on a saturated swampy lake-margin. Altitude: 2250-3270 m. Flowering and fruiting: April to December.
Uses - Eaten by pregnant women, who hope to have a son, especially if they only had daughters so far (Bowers 59).
Vernacular names - Nom, Noma (Tomba), Nohm (Enga, Poio dialect), Num (Enga, Kepilaum dialect), Nomə k’mə (Medlpa, Kaugel dialect; partly after Webster \& Airy Shaw (1971).

Chapter 4

Note - Phyllanthus womersleyi is the only species in Macraea with fully connate filaments, which, together with its small orbicular leaves and general prostrate habit, makes it easily distinguishable from related species. The filaments in P. ridsdalei are often variably connate and may appear similar, but the pistillate flowers (with excerted style) in that species are quite distinctive. They also do not overlap in distribution.

Acknowledgements

Dr. P.H. Hovenkamp is thanked for discussing the validity of Brunel (1987), why it should be acknowledged according to the Melbourne Code and for finding the proper author of Phyllanthus myrtifolius. The Queensland Herbarium (BRI), Australian National Herbarium (CANB), University of California Davis Center for Plant Diversity (DAV), Conservatoire et Jardin botaniques de la Ville de Genève (G), Harvard University Herbaria (A), Royal Botanic Gardens Kew (K), Naturalis Biodiversity Center (L), Missouri Botanical Garden (MO), Royal Botanic Gardens, National Herbarium of New South Wales (NSW), Muséum National d'Histoire Naturelle (P), Swedish Museum of Natural History (S) and United States National Herbarium, Smithsonian Institution (US) are gratefully acknowledged for lending us the material used for this revision. Two anonymous reviewers are thanked for their comments on the manuscript, which greatly improved the manuscript. The last author thanks the Treub Maatschappij, the Society for the Advancement of Research in the Tropics, for supporting the Ornstein university chair in Tropical Plant Biogeography.

Identification list of Phyllanthus specimens

$1=$ Phyllanthus aoraiensis Nadeaud
$2 \mathrm{a}=$ Phyllanthus chrysanthus Baill. var. chrysanthus
$2 \mathrm{~b}=$ Phyllanthus chrysanthus Baill. var. deverdensis M.Schmid
2c $=$ Phyllanthus chrysanthus Baill. var. micrantheoides (Baill.) M.Schmid
3 = Phyllanthus clarkei Hook.f.
4 = Phyllanthus distichus Hook. \& Arn.
$5=$ Phyllanthus dumosus C.B.Rob.
$6=$ Phyllanthus everettii C.B.Rob.
$7=$ Phyllanthus exilis S.Moore
$8=$ Phyllanthus gardnerianus (Wight) Baill.
$9 \mathrm{a}=$ Phyllanthus glaucophyllus Sond. var. glaucophyllus
$9 \mathrm{~b}=$ Phyllanthus glaucophyllus Sond.var. alpestris (Beille) Verwijs
$10=$ Phyllanthus lancifolius Merr.
$11=$ Phyllanthus macraei Müll.Arg.
$12=$ Phyllanthus minutiflorus F.Muell. ex Müll.Arg.
$13=$ Phyllanthus myrtifolius (Moon ex Wight) Müll.Arg.

Taxonomic revision of Phyllanthus subgenus Macraea

$14=$ Phyllanthus pacificus Müll.Arg.
$15=$ Phyllanthus prominulatus J.T.Hunter \& J.J.Bruhl
$16=$ Phyllanthus ridsdalei R.W.Bouman \& Verwijs
$17=$ Phyllanthus samarensis Müll.Arg.
18 = Phyllanthus tararae Verwijs
$19=$ Phyllanthus tenuipes C.B.Rob.
$20=$ Phyllanthus urceolatus Baill.
$21=$ Phyllanthus ussuriensis Rupr. \& Maxim.
$22=$ Phyllanthus virgatus G.Forst.
$23=$ Phyllanthus wheeleri G.L.Webster
$24=$ Phyllanthus womersleyi Airy Shaw \& G.L.Webster

JG Adam 44: 9b; 3647: 9b; 4186: 9b; 4868: 9b; 5181: 9b; 6258: 9b; 12802: 9b; 20644: 9b; 20670: 9b; 21585: 9b; 24043: 9b; 27416: 9b; 28786: 9b; 29794: 9b - L Anglade 164: 11; 537: 22; 886: 11 - ANU series 597: 24; 911: 24 - CM Arora 5616: 22 Asdat 197: 22 - Aubreville-Heine 248: 2a - LV Averyanov HLF 4144: 22. RC Bakhuizen van den Brink Jr 1873: 22; 3484: 22 - B Balansa 1214: 1c; 1216: 2a; 1860: 2a; 1861: 2a; 1862: 1c; 2790: 1c — J Banks \& Solander 1769: 20 - ME Barker 39: 9 - A Baudouin 542: 1c - MG Baumann-Bodenheim 5575: 1c; 14333: 22 MG Baumann-Bodenheim \& A. Guillaumin 9453: 1c; 9613: 1c; 9619: 1c — AR Bean 16608: 12; 24126: 7 - H Beckler 668: 22 - E Bidault et al. 260: 9b; 334: 9b — D Bilivogui et al. 62: 9b - ST Blake 17662: 7; 23241: 12 — JP Blanchon 1335: 2a — E Blatter \& Hallberg 24797: 8 - R Booth 4185: 7 - R Booth \& D Kelman 3263: 12; CAM 14-9: 12 - R Booth \& EJ Thompson 3942: 12 - AS Boughey GC 18095: 9b — Bourdillon 7: 8 - AG Bourne 448: 8; 1404: 11; 2861: 8 - N Bowers 59: 24 - LJ Brass 6516: 22; 7525: 22; 8451: 22; 8651: 18; 21666: 22; 22101: 22; 27727: 22; 6516A: 18 - BS series 13306: 26; 15879: 19; 17465: 17; 24460: 17; 29469: 22; 35655: 17; 43249: 17; 43284: 17; 75281: 17; 85215: 22 - W Bush 8013: 2.
BJ Carter 404: 7; 651: 12 - H Cheng 163404: 22 - AJB Chevalier 12907: 9 b China Germany Team 136: 22 — GM Chippendale 1063: 7; 5742: 12; 5955: 7; 6113: 7; 7554: 7 - E Christophersen 1272: 2 - E Christophersen et al. 1523: 2 - CB Clarke 25420: 3 - JR Clarkson 3565: 12; 7304: 12 — JR Clarkson \& VJ Neldner 9001: 12; 9465: 22 — MS Clemens 43372: 22 — NHA Cole 200: 9b - DJ Collins 1845: 22 — RG Cooray 69111805R: 22 - ID Cowie 2586: 12; 4386: 12; 11937: 7
— ID Cowie \& J Palmer 13414: 7 - LH Cramer 3382: 13 - LA Craven 3315: 12 — NEG Cruttwell 8: 22 - RJ Cumming 17583: 12; 21276: 12; 24807: 12.
JJFE de Wilde 888: 9b - WJJO de Wilde \& BEE de Wilde-Duyfjes 6873: 9b; 18943: 22 — BG Decker 2011: 22; 2299: 22; 2639: 22 — O Degener 4145: 4; 8019: 4; 8029: 2 - O Degener \& I Degener 28389: 4; 28734: 2 - O Degener \& T Murashige19952: 2 - O Degener \& K Nitta 8018: 2 - O Degener \& E Ordonez 12185: 4; 14 - O
Degener \& CL Shear 8026: 2 - O Degener et al. 8014: 4; 8017: 4; 11645: 4; 11645: 4; 12360: 4; 12509: 4; 12682: 4; 20797: 4; 24152: 4; 25115: 4; 25115: 4 - FC Deighton:

Chapter 4

5637 5b; 5638: 9b — SW Deng 90793: 22 - E Deplanche 503: 2b - A Dietrich 2666: 22 - WA Docters van Leeuwen 1860: 22 — JR Drummond 26379: 22 — CR Dunlop 2405: 22 - L Dunn 247:21 - L Dunn \& DH Lorence 479: 22. ADE Elmer 11023: 22; 12018: 22; 17442: 22 - HJ Esser 98-187: 22; HD Everett 4301: 6.
F Fagerlind 673: 13; 6122: 8; 6632: 22; 6663: 4 - F Fagerlind \& C Skottsberg 6420: 4 - CS Fan \& YY Li 489: 22 — U Faurie 484: 4; 489: 4; 3822: 21; 6121: 21 - KM Feng 12528: 22 - J Florence 2400: 13; 4201b: 22; 4297: 22; 4776: 20; 4813: 20; 4923: 20; 6718: 22; 6836: 22; 7812: 20;8321: 20; 8386:21; 8429: 22; 8503: 22; 9305: 20; 11881: 20 — J Florence \& S Perlman 9574: 22; 9639: 22 - T Flynn \& D Harder 3005: 4 - CN Forbes 42.Mo: 4; 45.2: 4; 431.Mo: 4; 720.R: 4; 1046.O: 4; 1520.O: 4; 1669: 4; 1669.O: 4 - PI Forster \& R Booth 22524: 12 — PI Forster \& MB Thomas 37074: 12 - FR Fosberg 10731: 4; 12296: 4; 12410:4; 13399: 4; 37939: 22; 38168: 22; 50670: 13; 61028: 13; 62875: 13 — FR Fosberg \& M-H Sachet 53167: 23 — FR Fosberg \& H St John 8909: 4 — I Franc 295: 22;788: 2a; 1385: 1c; 2049: 22 — H Fung 20309: 22 - M Furuse 44623: 21.
BH Gagné 1223: 22 — JS: Gamble 3010: 8; 11445: 8; 12015: 8; 18744: 13; 20611: 8-G Gardner 772: 8 - G Gaudichaud-Beaupré 289:4; 290: 4-C Geerling \& J Bokdam 1685: 9b - JW Gillespie 4759: 22 - GW Gillet 2199: 22 - ML Grant 5378: 20 - AJC Grierson \& DG Long 2415: 22 - A Guillaumin \& MG BaumannBodenheim 9208: 22; 9543: 1c; 11190: 1c; 12214: 1c; 12235: 1c; 1c; 13483: 22. JH Haas 2834: 3; 2855: 3 - PK Haba et al. 75: 9b; 123: 9b; 160: 9b - F Hallé 2060: 22; 2061: 22; 2086: 22 — H Hara et al. 6306814: 22 — AA Heller 2196: 4 — D Herbst 2360: 4 — D Herbst \& J Obata 5262: 4 - W Hillebrand 52: 4; 53: 4; 54: 4; 2340a: 4 - RF Hohenacker 1130: 8 — RD Hoogland \& R Pullen 6006: 24 — RD Hoogland \& R Schodde 7078: 24; 7567: 24 — Hort. Bog. Coll. 147:20; 149: 17 — SY Hu \& KH Yung 413: 13 - CE Hubbard \& CW Winders 7671: 12 - JT Hunter, JJ Bruhl \& JL Egan 152: 7; 1549: 7; 1576: 12; 1590: 12 — PCM Hutchinson \& J Obata 2809: 4 - SY Hutchinson \& J Obata 12264: 22 - BPM Hyland 7190: 22.
MM Jacobs 7713: 19 — P Jaeger 1373: 9b — T Jaffré 1240: 2a; 1576: 2a — RL Jago 6426: 12 — PCM Jansen \& C Boane 7889: 9a — DES Jardin 122: 22 — AHM Jayasuriya 949: 8; 1359: 13 - AHM Jayasuriya \& S Balasubramanium 1210: 8 AHM Jayasuriya et al. 1472: 8 — DMA Jayaweera 357: 13 - R Jensen \& J Kemp 2610: 12 - J Jeswiet 753: 22 — RW Johnson \& MB Thomas MRS 546: 7; MRS 958: 12 - CCH Jongkind \& D Bilivogui 11355: 9b - CCH Jongkind et al. 7423: 9b; 7758: 9b; 11018: 9b; 11113: 9b.
A Kanis 1835: 12 — HS Kathriarachchi et al. 4: 8; 23: 13; 42: 8 — DT Kelman 1001: 12 — J Kemp 8089: 12 — KF Kenneally 11474: 12 — GK Kjellberg 165: 22 — J Klackenberg \& R Lundin 97: 8-A Kleinhoonte 747: 13 - AJGH Kostermans 716: 17; 7872: 17; 24298: 13; 25142: 13 - KU Kramer \& GB Nair 6130: 8.
LAE series 60791: 24; 66177: 24 - CE Lane-Poole 424: 9b - KM Larsen et al. 31536: 22 - PK Latz 6121: 12 - SK Lau 3345: 22; 4216: 22; 6397: 22 - MO

Lazarides 7739: 22; 9248: 12 - GJ Leach 4100: 7 - J Lépine 138: 20 - YH Li 738: 22 - BH Liang 83336: 22 - XR Liang 65717: 22 - JC Liao 10549: 13 - E Licent 7837: 22 - Lingnan (To and Ts'ang) 12744: 22 - S Lisowski 12682: 9b; 51627: 9b; D-718: 9b.
HS MacKee 2479: 1c; 3683: 1c; 4241: 1c; 4570: 2a; 12511: 2a; 13306: 2a; 13565: 2a; 14555: 2a;15238: 2a; 15240: 2a; 15289: 2a; 15294: 2a; 16614: 2a; 16832: 2c; 16901: 2a; 16917: 1c; 19414: 2a; 20340: 1c; 21229: 2a; 21926: 2a; 22608: 1c; 23177: 2a; 23340: 2a; 23906: 2c; 25137: 2a; 27419: 2a; 28399: 2a; 30021: 2b; 30410: 2a; 30781: 2c; 30782: 2c; 31158: 2a; 35415: 2a; 36769: 2c; 36868: 2a; 36868: 2a; 37091: 2a; 37943: 2c; 40357: 2c; 40548: 2a; 42559: 2a - T Makino 33797: 21 - R Malaise 432: 22 C Mas et al. 1315: 9b - JF Maxwell 03-251: 22; 04-371: 22; 04-371: 22; 06-389: 22; 06-415: 22; 85-814: 22; 86-849: 22; 90-616: 22; 90-957: 22; 91-1063: 22; 92-435: 22; 94-704: 22; 98-585: 13; 99-166: 22 — KR McDonald 5983: 12; 6686: 12; 7530: 12; 8109: 12; 8350: 12; 8399: 12; 9514: 12 — GD McPherson 5340: 2c; 5543: 2c; 6210: 2b — GD McPherson \& HH van der Werff 17703: 2c; 17704: 2c; 17878: 2a — W Meijer Ceylon 1457: 13 - R Melville 3732: 22 - Mereir 272: 22 - ED Merrill 164: 6; 292: 22; 2885: 6; 3343: 22; 4299: 19; 6680: 19 — ED Merritt \& Darling 13974: 5 —TL Mitchel 66: 22 - S Mokim 89: 22 - HF Mooney 3971: 22 - JW Moore 100: 22 — JK Morton \& D Gledhill SL 1056: 9b; SL 3132: 9b — A Mouly 516: 22 —EP Mumford 488: 22 - J Munzinger 380: 2a — J Munzinger \& GD McPherson 796: 2a - L Murray et al. 49: 22.

J Nadeaud 458: 20; 459: 1 — V Narayanswami 640: 22 — VJ Neldner 4498: 12 — NGF series 11311: 24; 16667: 22; 41245: 24; 45070: 22 — DH Nicolson et al. HFP 2817: 22 - A Nothis 478: 2a.
E Ordonez 12847: 4.
J Palmer \& ID Cowie 894: 12 — JF Pancher 165: 2b; 362: 20; 365: 2c; 5855: 20 — Park 57: 21 - MO Parker 739: 12 — RN Parker 2389: 22 - HE Parks 16244: 22 — M Parris 9375: 12 — S Perlman 10112: 22; 14972: 22; 15013: 22; 18443: 22 — S Perlman et al. 10158: 22 — S Perlman \& KR Wood 15969: 22; 15985: 22; 19193 — S Perlman et al. 14922: 22 - A Pételot 6563: 22 - PNH series 4425: 19; 12547: 22; 15482: 17; 17040: 22; 18667: 22; 35919: 22; 35955: 22; 39087: 22; 117300: 17; 117902: 17 - E Poilane 17382: 22 - P Poilecot 0966 CI: 9b - R Pooma et al. 2760: 21 PPI series 3439: 17; 5748: 17; 5766: 17; 5969: 17; 6034: 17; 7383: 17; 7550: 17; 7746: 17; 10066: 17; 10071: 17; 10505: 17; 15475: 13; 20201: 17; 20230: 17; 21911: 17 — RL Pullen 9118: 12 - W Punt 797: 11.
EH Quayle \#X: 22; 1341: 22; 1781: 22.
TP Ramamoorthy HFP 1832: 22 — M Ramos 1489: 22; 1950: 22 — MO Rankin 1164: 12; 2074: 12; 2162: 12 — FW Rappard 141: 22 — EJ Rémy 601: 4; 603: 4 — Rheede 10: 22 - CE Ridsdale 1479: 24 - CE Risdale et al. ISU 276: 19 - RHT series 16359: 21; 18224: 22 - Ribourt 72: 20 - CB Robinson 1704: 17 - G Roberty 5188: 22 - JF Rock 4811: 4.
Sanderson 447: 9 - MJS Sands et al. 6551: 22 - A Saulière 96: 11; 101: 11 - JC

Chapter 4

Saunders 651: 24 — PA Schäfer 5813: 22; 5915: 22; 5955: 22 — FRR Schlechter 14803: 22;14832: 2a; 14832: 22; 15020: 2a \& 14 - M Schmid 1466: 2a; 5370: 2a; 5363 bis: 2a — E Schmutz 5745: 17; 7138 - R Schnell 7141: 9b; 7255: 9b — M Schultz 660: 22; 668: 22 - GF Scott-Elliot 3962: 9b; 5819: 9b - OH Selling 257: 2a - WA Setchell \& HE Parks 1: 22 - SFN series 35488: 13 - Shan Ranrong et al. 7400: 21 - T Shimizu et al. T-10701: 22; T-10110: 3 - MA Siddiqi 27700: 22 MP Simmons 1827: 2a — ELAN Simons et al. 833: 9b - C Skottsberg 302: 4 - LS Smith 3060: 22 — DD Soejarto et al. 8163: 22 - SH Sohmer \& D. Herbst 6137: 4 T Sørensen et al. 7315: 22 — RL Specht 222: 7; 322: 7; 517: 12; 747: 12; 958: 12 — H St John 17985: 4; 24910: 4; 25169: 4 - H St John \& AJ Eames 18737: 4 - H St John \& RS Cowan 22599: 4 - AN Steward et al. 635: 22 - BC Stone 3164: 4 - B Suprin 1925: 2a; 1989: 2a; 2177: 2c.
T Takahashi 341: 21 - PM Taylor 2585C: 17 - SW Teng 90793: 22 - NW Thomas 580: 9b - EJ Thompson \& M Newton BUR 272: 12; WES 1071: 12 - EJ Thompson \& GP Turpin NOR 246: 12; NOR 258: 12 - EJ Thompson \& GW Wilson WES 1376: 12 — BG Thomson 2209: 7 — EJ Thomson WES 252: 7; WES 271: 7; WES 526: 7; WES 1007: 7; WES 1102: 7; WES 1142: 7 — RF Thorne 28254: 2c — GHK Thwaites CP 5: 22; CP 178: 23; CP 501: 8; CP 650: 13 - C Tirel 1260: 2a - M Tobe 15505: 21 - C Townsend \& TP Ramamoorthy 60: 8 - FRR Tronchet 654: 2c - S Tsugaru 20997: 21 - S Tsugaru \& T Takahashi:29875: 21 - S Tsugaru et al. 34844: 21.

MMJ van Balgooy 2953: 22; 5069: 17 - XM van der Burgt \& C Couch 1156: 9b - HH van der Werff 11775: 22; 11776: 22 — CGGJ van Steenis 19516: 13 — JAJ Verheijen 1366: 17; 1367: 17; 1368: 17 — JM Veillon 1406: 2a; 1485: 2a - E Vieillard 336: 20; 1196: 2c; 1197: 22; 1199: 22; 1201: 2a; 2073: 2c; 3197: 2a; 3200: 2b; 3201: 2b; 3202: 22 — K Vollesen MCR 4467: 9a - KM Vongkuna 14: 22.
WL Wagner \& D Lorence 6227: 22 — PP Wan \& KS Chow 79149: 22 — C Wang 33013: 22 - CW Wang 79987: 22 - ZT Wang et al. 395: 21 - BS Wannan 1191: 12 - BS Wannan \& P Graham 2799: 7 - H Wanntorp \& HE Wanntorp 2527: 8 BM Waterhouse \& AD Rice 8064: 12 - JZ Weber 1046: 22 - GL Webster 19325: 2c — GL Webster \& T Jaffré 19253: 2c - K Weinland 241: 22; 389a: 22 - LC Wheeler 12437: 23; 12955: 23; 12961: 23; 12965: 23 — LC Wheeler \& N Balakrishnan 12551: 23; 12590: 23 - R Wight KD 2581: 11; KD 2584: 8 \& 14; KD 2656: 22 — GM Wightman 20: 15 - RL Wilbur 406: 4 - C Wilford 66: 21 - GH Wilkins 109: 7 JS Womersley 11311: 24 — KR Wood 10251: 22; 10289: 22 —KR Wood \& JY Meyer 10516:21 — KR Wood \& S Perlman 6540: 22 — KR Wood et al. 6506: 22 — KR Wood et al. 1760: 4.
K Yonekura 10571: 21 — GC Yong 200643669: 21 — TT Yü 17449: 22 — ML Yu \& PT Li 37: 21; 86: 21 - TG Yuncker 15125: 22; 15339: 22.
PCM Zeng 10302: 22 — CLP Zeyer 1509: 9a - ZQ Zhang 136: 22 - H Zollinger 46: 22.

CHAPTER 5

LECTOTYPIFICATION AND AMENDED DESCRIPTION OF PHYLLANTHUS (PHYLLANTHACEAE) SPECIES DESCRIBED BY KOORDERS FROM SULAWESI, INDONESIA

Roderick W. Bouman, Paul J.A. Keßler, Peter C. van Welzen

Published in Reinwardtia 18 (2): 97-103. 2019
https://doi.org/10.14203/reinwardtia.v18i2.3781

Chapter 5

LECTOTYPIFICATION AND AMENDED DESCRIPTION OF PHYLLANTHUS (PHYLLANTHACEAE) SPECIES DESCRIBED BY KOORDERS FROM SULAWESI, INDONESIA

Short title: On Phyllanthus (Phyllanthaceae) from Sulawesi

Roderick W. Bouman ${ }^{1,2,3}$, Paul J.A. Keßler ${ }^{2,3}$, Peter C. van Welzen ${ }^{1,3}$
${ }^{1}$ Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands
${ }^{2}$ Hortus botanicus Leiden, PO BOX 9500, 2300 RA Leiden, the Netherlands
${ }^{3}$ Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands

Abstract

Two species of Phyllanthus collected and described by Koorders during his travels on the island of Sulawesi (Indonesia) are lectotypified, descriptions amended and their taxonomic affinity is discussed. Phyllanthus mindorensis was found to be too similar to P. celebicus and is placed in the synonymy of the latter. A key is provided to the species of Phyllanthus on Sulawesi.

Keywords: Celebes, Eriococcus, Koorders, Euphorbiaceae s.1., Phyllantheae, Phyllanthus, Sulawesi, Taxonomy

Introduction

The flora of Sulawesi represents an interesting biodiversity hotspot that borders several biogeographical zones, with the Sunda shelf to the west, the Sahul shelf to the east and the Philippines to the north (Stelbrink et al. 2012). It is the largest island of Wallacea, a biogeographic region that also includes the Moluccas, the Lesser Sunda Islands (Dickerson 1928), and botanically usually also the Philippines (van Welzen et al. 2011). While this island has become better explored recently, the flora remains understudied and many taxa did not receive any taxonomic treatment for some time. The enumeration of Euphorbiaceae for Central Malesia by Airy Shaw (1982) lists ten species of Phyllanthus L. for Sulawesi (table 1), but this was only based on a limited number of collections. Airy Shaw (1982) made no redescription of the species and did not treat the Wallacean islands extensively like he did for Borneo (Airy Shaw 1975) and Papua New Guinea (Airy Shaw 1980). Several species are probably still undiscovered and it is important that an adequate comparison can be made between those previously described from the island. Koorders (1898) reported two new species of Phylllanthus (P. celebicus Koord. and P. minahassae Koord.) in his travel account of the island, but only included a brief description of their habit with no mention of flower morphology. During the preparations for

Table 5-1. Species of Phyllanthus in Sulawesi, compiled from Robinson (1909), Airy Shaw (1982) and supplemented by records from the L herbarium. Species are listed by subgenus following Bouman et al. (2018). Phyllanthus mindorensis was listed by Airy Shaw (1982) and is treated here as synonym.

Subgenus	Species
Eriococcus (Hassk.) Croizat \& Metcalf	Phyllanthus buxifolius (Blume) Müll.Arg.
	Phyllanthus celebicus Koord.
	Phyllanthus lamprophyllus Müll.Arg.
	Phyllanthus minahassae Koord.
	Phyllanthus trichosporus Adelb.
Macraea (Wight) Jean F.Brunel	Phyllanthus lancifolius Merr.
	Phyllanthus samarensis Müll.Arg.
	Phyllanthus virgatus G.Forst.
Gomphidium (Baill.) G.L.Webster	Phyllanthus tenuirhachis J.J.Sm.
Kirganelia (A.Juss.) Kurz	Phyllanthus reticulatus Poir.
Emblica (Gaertn.) Kurz	Phyllanthus urinaria L.
 Petra Hoffm.	Phyllanthus amarus Schumach. \& Thonn.
Afroswartziani Ralim. \& Petra Hoffm.	Phyllanthus debilis Klein ex. Willd.

a new classification of the genus Phyllanthus several taxonomic problems were identified, often concerning rare species (Bouman et al. 2018). This included the species of Koorders (1898), which could not yet be placed in any subgeneric group of Phyllanthus (Bouman et al. 2018).

During a recent visit to the Herbarium Bogoriense (BO) on Java by the first author, the types of the Koorders' species could be studied. Here, we place these species in Phyllanthus subgenus Eriococcus (Hassk.) Croizat \& Metcalf section Eriococcus and expand the descriptions of both species. Affinities to, and differences with, other species are discussed and a provisional key to the known Phyllanthus species of Sulawesi is provided.

Taxonomic treatment

Both species discussed here are placed in Phyllanthus subgenus Eriococcus section Eriococcus based on the morphology of the staminate flowers. The staminate flowers in both species consist of four sepals in a cross shape with fimbriate margins, four disc glands and two connate stamens with horizontally dehiscing anthers. This is consistent with Phyllanthus subgenus Eriococcus section Eriococcus (see Müller 1866) and both species are classified here in this taxon. Subgenus Eriococcus section

Chapter 5

Emblicastrum Müll.Arg., which is represented by P. lamprophyllus Müll.Arg. on Sulawesi, differs in the usually upright orientated sepals with entire margins, thicker leaves and the presence of a tubular style. No species of section Eriococcus is endemic to Papua New Guinea (Bouman et al. 2018) and the closest affinity of both species are similar Phyllanthus species of the Philippines. Roughly ten species of section Eriococcus occur on the Philippines and they are very similar in staminate flower and leaf morphology. Unfortunately many of these have been rarely collected. Differences for identification with the Philippine species are discussed below in the notes under the species, but they undoubtedly represent the closest relation to the species of Sulawesi within subgenus Eriocccus. A provisional key for Phyllanthus in Sulawesi is provided. Information for the key was derived from herbarium specimens, Luo et al. (2011a), Robinson (1909) and Verwijs et al. (2019). All acronyms for herbaria follow Thiers (2019, continuously updated).

Key to the Phyllanthus species of Sulawesi

1. Branching non-phyllanthoid (laminate leaves on main axes present, lateral branches subtended by leaves and not deciduous); stamens 3, filaments free; fruits capsules - subgenus Macraea 2
2. Branching phyllanthoid (leaves on main axes reduced to cataphylls, lateral branchlets bear laminate leaves and are deciduous); stamens 2,3 or 5 ; filaments free or connate (or in whorls); fruits capsules or berries. .4
3. Prostrate or erect herbs or subshrubs, up to 1 m high, axes glabrous; pistillate pedicel 3-9 mm long P. virgatus
4. Erect shrubs to trees, up to 2 m high, axes mostly pubescent; pistillate pedicel 8-50 mm long. .3
5. Leaf blades mostly ovate-elliptic, 9-79 mm long, apex acuminate; staminate sepals $1.1-1.4 \times 0.5-0.8 \mathrm{~mm}$; pistillate pedicel $8-50 \mathrm{~mm}$ long...... P. lancifolius
6. Leaf blades elliptic, $7-24 \mathrm{~mm}$ long, apex acute to obtuse or rounded to retuse; staminate sepals $1.2-1.6 \times 0.6-0.8 \mathrm{~mm}$; pistillate pedicel $8-10 \mathrm{~mm}$ long...... P. samarensis
7. Herbs (or only woody at the base) ... 5
8. Shrubs to trees .. 7
9. Pistillate inflorescences at basal part of lateral branchlets; ovary warted; seeds with transverse ridges - subgenus Emblica P. urinaria
10. Pistillate inflorescences at distal part of lateral branchlets; ovary smooth; seeds smooth or with longitudinal striae
11. Leaf blades oblong, apex rounded, upper side green; inflorescences mostly
bisexual; staminate flowers with 5 sepals- subgenus Swartziani.....P. amarus
12. Leaf blades ovate, apex acute, upper side dark green; inflorescences unisexual; staminate flowers with 6 sepals- subgenus Afroswartziani .P. debilis
13. Staminate flowers with 5 sepals, stamens 5 , fused in 2 whorls; stigmas entire; fruits berries- subgenus Kirganelia
P. reticulatus
14. Staminate flowers with 4 or 6 sepals, stamens 2 or 3 , filaments free or connate in one whorl; stigmas bifid or entire (not seen in P. minahassae); fruits capsules . .8
15. Leaves usually symmetric, blade elongated eliptic-ovate, longer than 5 cm ; sepals 6 in both flowers of both sexes; stamens 3, filaments free, anthers dehiscing vertically - subgenus Gomphidium tenuirhachis
16. Leaves usually basally asymmetric, blade elliptic or ovate; shorter than 4.5 cm ; sepals in staminate flowers 4 , pistillate flowers with 5 or 6 sepals; stamens 2, filaments connate, anthers dehiscing horizontally-subgenus Eriococcus. 9
17. Leaves coriaceous; staminate sepals erect, tubular, margins entire
18. Leaves membranous to slightly coriaceous; staminate sepals spreading, margins fimbriate, dentate or laciniate. 11
19. Leaf blades up to 4 cm long; filaments of stamens thickened at apex; ovary 4-8-locular; style absent, stigma almost entire with only a bilobed fold at apex \qquad .P. buxifolius
20. Leaf blades up to 1.2 cm long; filaments of stamens slender; ovary 3-locular; style present, tube of c. 2.2 mm , stigmas entire. .P. lamprophyllus
21. Branchlets $8-10 \mathrm{~cm}$ long, glabrous; capsules glabrous, smooth; seeds c. 1.8 mm high P. trichosporus
22. Branchlets $17-40 \mathrm{~cm}$ long, pubescent; capsules verrucate or smooth and puberulous; seeds c. 2-4.8 mm high. 12
23. Leaf blades shorter than 22 mm ; sepals red to brown; pistillate sepals not enlarged in fruit, shorter than 4 mm ; fruit pedicel up to 3.5 cm long1. P. celebicus
24. Leaf blades longer than 25 mm ; sepals pale green; pistillate sepals enlarged in fruit, up to 16 mm long; fruit pedicel $3-4 \mathrm{~cm}$ long
.2. P. minahassae
Note
Phyllanthus subgenus Kirganelia is represented by P. reticulatus Poir. on Sulawesi, though there is some discussion on how to differentiate it from P. microcarpus (Benth.) Müll.Arg. In the flora of Thailand (Chantaranothai 2007), they are distinguished based on the presence or absence of indumentum while Luo et al.

Chapter 5

(2011a) distinguish them based on habit and floral characters. Specimens from Sulawesi seen for this study were characterized by emergent styles and sometimes bisexual inflorescences while there were both pubescent and glabrous forms present. This conforms to the definition Luo et al. (2011a) for P. reticulatus and it is treated as such here.

Species descriptions of P. celebicus and P. minahassae

1. Phyllanthus celebicus Koord.,

Phyllanthus celebicus Koord., Meded. Lands Plantentuin 19: 588, 627 (Koorders 1898). -

Lectotype (designated here): Indonesia, Sulawesi, Minahasa province (Menado), near Pinomorongan, near Kajoewatoe, H.S. Koorders 16949 (fieldnumber 1917) (lecto BO (BO129623); isolecto L (L.2246433, L.2246434).
Phyllanthus mindorensis C.B.Rob., Philipp. J. Sci., C 4: 82 (Robinson 1909). - Type: L.M. Merritt 5370 (not traced); paratype: Philippines, Mindoro, L.M. Merritt 8789 (K (K001056684)); paratype L.M. Merritt 8606 (not traced). Syn. nov.

Shrubs, $0.5-1 \mathrm{~m}$ high, monoecious, all axes puberulent to pubescent with dark brown short stiff hairs; branching phyllanthoid; branchlets terete, $17-26 \mathrm{~cm}$ long, bearing 32-56 leaves, internodes 2-3 mm long. Cataphyllary stipules triangular, c . $1.5 \times 2 \mathrm{~mm}$, membranous, caducous, base plane, tending to fuse with cataphyll, margin entire, apex acute. Cataphylls triangular, $1-1.5 \times \mathrm{c} .1 \mathrm{~mm}$, membranous, caducous, margin entire, apex acute. Stipules triangular, c. $1 \times 0.5 \mathrm{~mm}$, caducous, membranous, base plane, margin brittle, apex acute. Leaves distichous; sessile to petiole $0.5-1 \mathrm{~mm}$ long, glabrous; blade elliptic, asymmetric, $10-21 \times 5-7.5 \mathrm{~mm}$, 2-3.2 times longer than wide, membranous to slightly coriaceous, base cuneate, margin slightly thickened and slightly revolute, apex rounded, mucronate, mucro $0.1-0.2 \mathrm{~mm}$ long, glabrous except for some hairs on basal part of lower side, upper side darker green; venation pinnate, midrib prominent, flat on both sides, lateral veins 4-6 per side, indistinct. Inflorescences axillary fascicles, usually unisexual and originating from small brachyblasts, up to 4 staminate flowers together near basal part of branchlets, pistillate flowers solitary on distal part of branchlets. Staminate flowers c. 1.1 mm in diameter closed, 2.2-3.5 mm when open; pedicel $4.5-5 \mathrm{~mm}$ long, terete, glabrous, thin; sepals 4 , ovate, $1-1.5 \times 0.8-1.1 \mathrm{~mm}$, spreading, redbrown, margin dentate to laciniate, apex acute, midrib indistinct; disc glands 4 , alternating with sepals, obovate, $0.2-0.3 \times 0.3-0.6 \mathrm{~mm}$, indented from thecae; stamens $2,0.4-0.5 \mathrm{~mm}$ long, filaments and connectives connate, filaments c. 0.2 mm high, anthers slightly stipitate resulting in cross-shaped connective, apically extended for $c .0 .1 \mathrm{~mm}$, thecae oblong, c. $0.3 \times 0.2 \mathrm{~mm}$, hanging above disc gland, dehiscing horizontally via slits. Pistillate flowers: pedicel c. 16 mm long, terete, pubescent, thin; sepals 5 , ovate, c. $1.5 \times 1.1 \mathrm{~mm}$, red-brown, margin fimbriate to
laciniate, apex acute, midrib indistinct; disc annular, strongly star-shaped, c. 0.8 mm in diameter at shortest point, with large oblong lobes alternating with sepals, lobes $0.3-0.7 \mathrm{~mm}$ long and c. 0.2 mm wide, slightly thickened at the end; ovary globose, c. 1.3 mm wide, c. 1.1 mm high, puberulous; style absent; stigmas 3 , bifid for entire length, c. 0.2 mm long, curved upwards. Fruits capsules, only dehisced remains left; pedicel terete, $1.8-3.5 \mathrm{~cm}$ long, greenish, puberulous, rarely glabrous, smooth; sepals not enlarged in fruit, columella triangular, c. 1.2 mm long. Seeds trigonous, c. $2 \times 1 \mathrm{~mm}$, covered with transverse striae that break up epidermis, striae radiating from hilum.

Distribution. Philippines (Luzon, Mindoro) and Sulawesi (Tenga, Utara, Minahassa, Pangkadyeu).

Habitat. This species was collected from fertile turf and dry riverbeds, but it is known only from few specimens in Sulawesi. In the Philippines it was collected also from coastal areas. Altitude: $10-600 \mathrm{~m}$ a.s.l. This species was found with flowers and fruits in February till June, but more specimens could expand on this as we saw now collections from later in the year than June.

Etymology. This species is named after the area where it was found as Celebes is the name formerly used for Sulawesi.

Notes

The collection Koorders 16949 stored at Bogor herbarium (BO) is selected as lectotype, while additional specimens are stored in the Naturalis Biodiversity Center (L). The material at Bogor bears Koorders' handwriting and notes on comparisons with other species, making it likely that it was used in the first description by him (Koorders 1898). Phyllanthus celebicus agrees in almost all characters with P. mindorensis C.B.Rob., which was first described for the Philippines (Robinson 1909) and its distribution was expanded by Airy Shaw (1982) to include Sulawesi. Airy Shaw noted on material of P. celebicus that it was very similar to P. mindorensis and differences between the Koorders specimens and the description by Robinson (1909) only include minor qualitative differences. Pistillate flowers were dissected from specimens from the Philippines and Sulawesi previously assigned to P. mindorensis and these were found to have similarly lobed discs, but with slightly shorter lobes (c. $0.3 \mathrm{vs} 0.6-0.7 \mathrm{~mm}$). Taking into account the similarities in vegetative and floral characters and the variation shown by specimens from Sulawesi, we decided to synonymize P. mindorensis with P. celebicus.

Specimens examined. Indonesia, Sulawesi W.H. de Vries s.n. (L). Indonesia, Sulawesi, Minahassa, Manembo-Nembo A.H.G. Alston 16549 (L). Indonesia, Sulawesi, Road Palu - Donggala, near Loli M.M.J. van Balgooy 2976 (BO, L).

Chapter 5

Indonesia, Sulawesi, Minahasa province (Menado), near Pinomorongan, near Kajoewatoe, H.S. Koorders 16949 (BO, L). Indonesia, Sulawesi, Tengah, Palu G.J. de Joncheere 1024 (L). Indonesia, Sulawesi, Utara, Tondano E.A.Forsten (L). Philippines, Luzon, Batangas prov., Mt. Lobo, PNH (M.D. Sulit)15718 (L). Philippines, Luzon, Mt Arayat, FB (H.M. Curran) 19333 (L). Philippines, Mindoro, Mt. Yagaw, PNH (H.C. Conklin) 18674 (L). Philippines, Rizal Prov., BS (M. Ramos) 731 (L). Philippines, Luzon, BS (M. Ramos) 8194 (L).

2. Phyllanthus minahassae Koord.

Phyllanthus minahassae Koord., Meded. Lands Plantentuin 19: 588, 627 (Koorders 1898). - Lectotype (designated here): Indonesia, Sulawesi, Minahasa province, near camp Totok, Rata Totok, S.H.Koorders 16954 (fieldnumber 2595) (lecto BO (BO1310079); isolecto L (L.2059450).

Shrubs, 1-2 m high, monoecious?, all axes pubescent with dark brown short stiff hairs; branching phyllanthoid; branchlets terete, $20-40 \mathrm{~cm}$ long, bearing 30-52 leaves, internodes 2-3 mm long. Cataphyllary stipules and cataphylls caducous, not seen. Stipules triangular, c. $1.5 \times 0.3 \mathrm{~mm}$, persistent, membranous, pubescent, base plane, margin brittle, apex acute. Leaves distichous; petiole c. 1.8 mm long, pubescent; blade elliptic, asymmetric, $2.6-4.1 \times 1-1.7 \mathrm{~cm}, 2.4-3.4$ times longer than wide, membranous to slightly coriaceous, pubescent, base cuneate, margin slightly thickened and flat, pubescent, apex acute-rounded to obtuse, mucronate, mucro 0.1-0.2 mm long, puberulous at base on lower side, glabrous on upper side, upper side darker green than lower side; venation pinnate, midrib flat on either side, lateral veins 4-6, indistinct. Inflorescences axillary fascicles, usually unisexual, staminate flowers up to 6 together, at basal part of branchlets, pistillate flowers solitary on distal part of branchlets. Staminate flowers c. 1.5 mm in diameter when closed, 3.3-4 mm when open; pedicel 1.3-4 mm long, terete, pubescent, thin; sepals 4, ovate, $1.5-1.6 \times \mathrm{c} .1 \mathrm{~mm}$, spreading, outside covered in short hairs, pale green, margin fimbriate and brittle, apex acute to attenuate, midrib indistinct; disc glands 4 , alternating with sepals, oblong, $0.2-0.4 \times 0.4-0.6 \mathrm{~mm}$, indented from thecae; stamens 2, c. $0.4-0.5 \mathrm{~mm}$ high, filaments and connectives connate, staminal column c. 0.2 mm high, anthers slightly stipitate resulting in cross shaped connective, apically extended for $0.1-0.2 \mathrm{~mm}$, thecae oblong, c. $0.3 \times 0.2 \mathrm{~mm}$, hanging above disc gland, dehiscing horizontally via slits. Pistillate flowers not seen, information derived from fruit; sepals 6, elliptic, enlarged (only in fruit?) to $14-16 \times 5-6 \mathrm{~mm}$, outside covered in short hairs, pale green, margin entire, pubescent, apex acute to obtuse, midrib indistinct; disc, ovary and stigmas not seen. Fruits capsules (already dehisced, only fragments on type), estimated at c. 6 mm in diameter and c. 6 mm high, minutely verrucate; pedicel terete, $3-4 \mathrm{~cm}$ long, puberulous; columella triangular, 4.8-6 mm long. Seeds trigonous, $4.2-4.8 \times$ c. 2.2 mm , covered with transverse striae that break up epidermis, striae radiating from hilum.

Distribution. Known from two collections by Koorders from the same area in Sulawesi, Minahassa province.

Habitat. The label information of the type showed it to be common in forests on fertile vulcanic sand. It was found at c. 200 m a.s.l. Flowering and fruiting is in March, but this is only based on the type specimen and one additional collection around the same time.

Etymology. Named after the province where it was found on Sulawesi.
Notes. The lectotype is here selected from two collections by Koorders, both bear his handwriting, but only the specimen designated here as lectotype possesses remains of fruits and seeds. The staminate flowers were described from the other collection (Koorders 16954; BO1310078), but this specimen is in poorer condition, has less information on the label and has only dehisced fruits without seeds. Phyllanthus minahassae is probably closely related to P. celebicus, but it has larger leaves and very distinct pistillate sepals (at least in fruit). Large pistillate sepals are also found in the Indian species, P. macrocalyx Müll.Arg. (also subgenus Eriococcus) and some species of subgenus Gomphidium (Baill.) G.L.Webster (Schmid 1991), but there they actually enclose the fruit in development (Naveen Kumar et al. 2015).

Specimens examined. Indonesia, Sulawesi, Minahasa province, near camp Totok, Rata Totok H.S. Koorders 16924 (fieldnumber 2430) (BO, L). Indonesia, Sulawesi, Minahasa province, near camp Totok, Rata Totok S.H.Koorders 16954 (fieldnumber 2595) (BO, L).

Discussion

With the rather brief description of P. celebicus and P. minahassae by Koorders (1898), these two species could not be confidently assigned to any subgroup within Phyllanthus. By examining material collected by Koorders including his notes on the labels, we were able to place both species in subgenus Eriococcus. This subgenus is distributed in Asia (and one species in Australia) and its 4-merous staminate flower is a consistent character that can be used to identify them (Bouman et al. 2018). However, while the staminate flower offers more information on subgeneric placement, the pistillate flower is often more useful for species identification as found here for P. celebicus and P. minahassae. Subgenus Eriococcus is mainly known from mainland Asia (see Bouman et al. 2018), but only includes few species from Western Malesia (e.g. P. acutissimus Miq., P. kinabaluicus Airy Shaw, P. singalensis (Miq.) Müll.Arg.), which often have symmetric leaves (pers. obs.). Therefore, the species treated here are most likely closely related to other species from the Philippines, which also have asymmetric leaves that appear quite similar. Some

Chapter 5

species from the Philippines and Sulawesi of section Eriococcus seem to form a complex, all with usually pubescent axes, strongly asymmetric leaves and usually red flowers with fimbriate sepals (some exceptions occur). Other species that form this complex, aside from those already mentioned, include P. laciniatus C.B.Rob., P. leytensis Elmer, P. sibuyanensis Elmer, and perhaps P. blancoanus Müll.Arg. (see Robinson 1909). A thorough revision or phylogenetic study with sampling of these taxa might help to improve some of the species delimitations. This group of species could lend support to the inclusion of the Philippines in Wallacea (see van Welzen et al. 2011). While not many species of Phyllanthus occur on Sulawesi, the two species treated here already highlight the interesting flora found on the island and the need to study it further.

Acknowledgments

This work was done as part of the PhD research of the first author, funded by the Hortus botanicus Leiden and Leiden University. Travel funding granted by the Alberta Mennega foundation to visit herbaria in Indonesia and the Flora Malesiana symposium in Brunei is gratefully acknowledged. The directors and keepers of BO and L are thanked for use of their collections. Deby Arifiani and Michael Mambrasar are thanked for their help at BO herbarium with locating and studying the Koorders collections. Aninda Wibowo and Eka Iskandar helped with the abstract in Indonesian, for which we are very grateful. The second author thanks the Leiden University Fund (LUF) for their support of the chair Botanical gardens and botany of Southeast Asia. The last author thanks the Treub Maatschappij, the Society for the Advancement of Research in the Tropics, for their support of the Ornstein chair in Tropical Plant Biogeography.

CHAPTER 6

Metabolic variation of selected Phyllanthus species and their correlation with antimicrobial activity

Roderick W. Bouman, Hye Kyong Kim, Luis Francisco Salomé-Abarca, Young Hae Choi, Paul J.A. Keßler

Chapter 6

Metabolic variation of selected Phyllanthus species and their correlation with antimicrobial activity

Short title: Metabolic variation in Phyllanthus

Roderick W. Bouman ${ }^{1,2,3}$, Hye Kyong Kim ${ }^{1,4 \star}$, Luis Francisco Salomé-Abarca ${ }^{1,2}$, Young Hae Choi ${ }^{1,4}$, Paul J.A. Kessler ${ }^{1,2}$
${ }^{1}$ Institute of Biology Leiden, Leiden University, PO Box 9500, 2300 RA Leiden, the Netherlands
${ }^{2}$ Hortus botanicus Leiden, PO BOX 9500, 2300 RA Leiden, the Netherlands
${ }^{3}$ Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands
${ }^{4}$ Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands

Abstract

The profiling of medicinal plants has resulted in the finding of many bioactive compounds with possible application in medicine, thereby also often confirming the basis of their pharmacological effects. The genus Phyllanthus has a long history of therapeutic history in Asia, South America and Africa, but the therapeutical species are limited to a few, mostly focusing on their antimicrobial activity. In this study, the metabolic profile of Phyllanthus species selected from several lineages was compared with each other to elucidate their active compounds. By correlating antimicrobial activity with the results from our profiling using Proton Nuclear Magnetic Resonance (H-NMR) spectroscopy, the results suggested that active compounds were most likely plant phenolics. The result of antimicrobial activity in liquid suspension indicated that P. arbuscula, P. muellerianus, P. tenellus and P. urinaria have significant activity on several gram-negative bacterial. Furthermore, Phyllanthus fraternus and P. glaucus also showed activity in initial agar-based assay, but this could not be confirmed in the liquid suspension. To identify the phenolics in detail, subsequent investigation using a targeted approach with high performance thin layer chromatography (HPTLC) showed that the active species differed in the profile of plant phenolics.

Keywords: antimicrobial, Phenolics, Phyllanthaceae, Phyllanthus, high performance thin layer chromatography

Introduction

Natural products have been for long time the most plentiful resource for bioactive or nutritive chemicals utilized in pharmaceutics, cosmetics, foods and agriculture
(Koehn \& Garter 2005; Harvey 2008; Cragg \& Newman 2013; Newman \& Cragg 2016). While recently more diverse natural products are starting to be used as a resource for novel medicines, including microbes, insects and marine organisms (Cragg \& Newman 2013), plants still represent the most sustainable options, particularly with a long history of their utilization. However, the use of natural products does present some difficulties, which include issues with sustainable access and supply, discussions on intellectual property rights, the difficulty of extracting a single active compound from the extracted mixtures and finally the slowness in getting new agents to the market (Koehn \& Garter 2005; Harvey 2008; Wu \& Chappell 2008; Yuliana et al. 2011). Botanical gardens harbour a large diversity of rare plants and are a valuable source for the plant sciences (Shan-An \& ZhongMing 1991; Faraji \& Karimi 2020). Based on the results of recently developed metabolomics, many influential factors on the metabolome could be deduced including the genotype, developmental stage and environmental or external factors (Jahangir et al. 2008; Kim et al. 2011). Not only chemical profiling but also, the correlation between metabolome and bioactivity against bacteria, fungi and viruses has received great attention in the field of metabolomics applications. Previously, there have been many similar approaches, a Mexican medicinal plant, Gaphimia glauca Cav., was investigated for its sedative triterpenoids (Cardoso-Taketa et al., 2008). In the study, a wide range of the accessions of the plants were measured for their sedative activity and correlated with the metabolome detected by ${ }^{1} \mathrm{H}$ NMR. In addition, some methoxy flavonoids of Orthosiphon stamineus Benth. were found to be responsible for Adenosine A1 receptor binding activity by similar ${ }^{1} \mathrm{H}$ NMRbased metabolomics (Yuliana et al., 2011).

Phyllanthus L. is a large genus with more than 800 species that occurs in all tropics and subtropics (Govaerts et al. 2000; Bouman et al. 2018). Several species have a long history in traditional medicine and are used for several purposes (see Unander et al. 1990; Calixto et al. 1999). Some species are well known, such as P. emblica, whose fruits are usually used for their high nutritional content like vitamin C (Masuma et al. 2014; Hasan et al. 2016; Yadav et al. 2017; Lanka 2018). However, most of them are common herbs that are often invasive and therefore have a wide distribution, which might pose interesting questions on differences in activity per locality (see Cardoso-Taketa et al. 2008). Not only are the species used in medicine or as healthy foods, but some species are also known to be used as fish poison in South America (Patiño 1967; van Andel 2000; Neuwinger 2004; Webster 2003).

The interest in Phyllanthus has sparked a great number of studies, which has resulted in more than 500 reported compounds that have been extracted from Phyllanthus (Mao et al. 2016). Phyllanthus species have been found to be very rich in alkoloids, flavonoids, lignans, tannins and triterponoids (Calixto et al. 1999; Mao et al. 2016). Several studies have focused on testing the medicinal effects of Phyllanthus and most studies focus on anti-viral effects (Thyagarajan et al. 1988; Barrio \& Parra 2000; Liu et al. 2001; Alvarez et al. 2009). The medicinal effects of

Chapter 6

many Phyllanthus species have also been demonstrated in some studies that tested against bacteria (Bagalkotkar et al. 2006, Jagessar et al. 2008, Mehta et al. 2014) and fungi (Agrawal et al. 2004). The most interesting application is the activity against hepatitis B using P. amarus (Yeh et al. 1993; Thyagarajan et al. 1998; Patel et al. 2011) and P. niruri L. (Venkateswaran et al. 1987; Thyagarajan et al. 1988; Yeh et al. 1993; Wang et al. 1995; Lee et al. 1996; Wu et al. 2015; Kamruzzaman \& Hoq 2016).

Closely related species of plants may generally have a similar chemical profiling that might results in similar pharmacological activity with some degree of difference (e.g. Beara et al. 2012). However, in the case of Phyllanthus species, compared with other species, the applications of individual species greatly differ from each other, which could propel a detailed study of chemical profiling to cover a broad range of metabolites and the metabolome.

In the past, with the advancement of metabolomics tools, many analytical platforms have been applied to the metabolomics of plants for many purposes e.g., deconvolution of physiological phenomena, chemical taxonomy, and agricultural applications (Choi et al. 2004; Kim et al. 2010a; Kim et al. 2010b). Moreover, a metabolomics tool has been applied in the chemical comparison of a few Phyllanthus species (e.g. Mediani et al. 2005; Wang et al. 2011), but has not yet been applied to a larger number of species. To study the metabolome of these species, ${ }^{1} \mathrm{H}$ NMR was chosen to get information on more groups of metabolites. However, for longer term projects, a fingerprinting approach is required together with the identification of minor compounds.

Previous studies indicated that several species of Phyllanthus might be interesting for their antimicrobial activity. In this study we aim to compare the metabolic profile and potential anti-bacterial and anti-fungal activity of various Phyllanthus spp. from different lineages or geographical areas. Using a diverse selection of species ranging from herbs to shrubs and small trees, some of which with known traditional medical applications we hope to further explore the basis of their medicinal effects and to test these species for bioactive compounds.

Methods

Plant material

Fresh material of all plants used in this study were collected from the Hortus botanicus Leiden (Leiden, The Netherlands). The plants originated from different geographic areas, but were all grown at the botanical garden under similar growing conditions. Eleven species of Phyllanthus that cover a high degree of the variety within the genus were selected, including a few often used in traditional medicine. The age of the selected plants varied depending on the type of lifestyle such as annual herbs, shrubs and one aquatic species. Most of species were collected with three replicates to remove biological variation except for the large species of shrubs (e.g., P. arbuscula, P. juglandifolius, P. glaucus). Samples were taken several times during the span of a year. In total 27 samples from 11 species were selected for the
study (table 6-1).

Preparation of plant samples for metabolomics analysis.

Collected materials were stored in the freezer at $-80^{\circ} \mathrm{C}$ before processing. Materials were ground to a fine powder with mortar and pestle under liquid nitrogen and then transferred to a 50 ml tube and subsequently placed in a freeze drier for 72 hours.

${ }^{1} \mathrm{H}$ NMR experiments

For ${ }^{1} \mathrm{H}$ NMR screening, 20 mg of freeze-dried plant material was extracted with 1 mL of a mixture of $\mathrm{CH}_{3} \mathrm{OH}-d_{4}: \mathrm{KH}_{2} \mathrm{PO}_{4}$ buffer in $\mathrm{D}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v}, \mathrm{pH} 6.0)$ containing 0.29 mM trimethylsilane propionic acid sodium salt (TMSP). The extracts were vortexed and subsequently sonicated for 20 minutes and then centrifuged at 13,000 rpm for 10 minutes. A volume of $300 \mu \mathrm{l}$ of the supernatant of each extract was transferred to 3 mm -NMR tubes. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on a 600 MHz Bruker AV 600 spectrometer (Bruker, Karlsruhe, Germany) equipped with cryo-probe operating at a proton NMR frequency of 600 MHz . The methyl signal of $\mathrm{CH}_{3} \mathrm{OH}-d_{4}$ was used as the internal lock. Each ${ }^{1} \mathrm{H}$ NMR spectrum consisted of 64 scans requiring 5 min acquisition time with the following parameters: $0.25 \mathrm{~Hz} /$ point, pulse width $(P W)=30^{\circ}(10.8 \mathrm{~s})$, and relaxation delay $(R D)=1.5 \mathrm{~s}$. A presaturation sequence was used to suppress the residual $\mathrm{H}_{2} \mathrm{O}$ signal with low power selective irradiation at the $\mathrm{H}_{2} \mathrm{O}$ frequency during the recycle delay. Free induction decays (FIDs) were Fourier transformed with Line Broadening (LB) $=0.3 \mathrm{~Hz}$ and the spectra were zero-filled to 32 K points. The resulting spectra were manually phased and baseline corrected and calibrated to Theory of Spectroscopy and Molecular Properties (TMSP) at 0.0 ppm , using TOPSPIN (version 3.0, Bruker).

High performance thin layer chromatography (HPTLC) and Liquid chromatography-mass spectrometry (LC-MS)

The metabolites of Phyllanthus species were further analysed by high performance thin layer chromatography (HPTLC). The results were compared between active and nonactive samples and used in further antimicrobial activity testing against Staphylococcus aureus Rosenbach. HPTLC chromatographic separation was performed on $20 \times 10 \mathrm{~cm}$ HPTLC silica gel F_{254} plates (Merck, Darmstadt, Germany) and samples were applied using an automatic Thin Layer Chromatography (TLC) sampler (CAMAG, Muttenz, Switzerland). For chemical profiling, we applied $15 \mu \mathrm{l}$ while 35μ was applied for the bioautography tests from $2 \mathrm{mg} / \mathrm{ml}$ methanol extracts. The band length was 6 mm for each sample, and they were spaced 10 mm from the bottom of the plate and 20 mm from the left and right border of the plate. The distance between tracks was 18 mm allowing for 9 samples to be spotted on each plate. To separate non-polar compounds, the mobile phase consisted of toluene-ethyl acetate ($8: 2, \mathrm{v} / \mathrm{v}$). For polar compounds separation, a mixture of ethyl acetate-formic
Table 6-1. List of samples of each species included in this study, for each species the subgenus, habit and life stage is noted along with the Registration number of the Hortus botanicus Leiden.

Sample nr	Species	Subgenus	Habit	life stage	Hortus number
ARB01	P. arbuscula (Sw.) J.F.Gmel	Xylophylla	Shrub	Non-flowering	HBLA00587-02610
ARB02	P. arbuscula (Sw.) J.F.Gmel	Xylophylla	Shrub	Non-flowering	HBLA00587-02610
FLU01	P. fluitans Benth. Ex Müll.Arg.	Isocladus	Aquatic herb	Non-flowering	HBL20150681
FLU02	P. fluitans Benth. Ex Müll.Arg.	Isocladus	Aquatic herb	Non-flowering	HBL20150681
FLU03	P. fluitans Benth. Ex Müll.Arg.	Isocladus	Aquatic herb	Non-flowering	HBL20150681
FRA01	P. fraternus G.L. Webster	Swartziani	Herb	Flowering	HBL20160134
FRA02	P. fraternus G.L. Webster	Swartziani	Herb	Flowering	HBL20160134
FRA03	P. fraternus G.L. Webster	Swartziani	Herb	Flowering	HBL20160134
GLA01	P. glaucus Jabl.	Kirganelia	Shrub	Non-flowering	HBL20160136
JUG01	P. juglandifolius Willd.	Xylophylla	Shrub	Non-flowering	HBL20170041
MIR01	P. mirabilis Müll.Arg.	Phyllanthodendron	Shrub	Non-flowering	HBL20090748

MIR02	P. mirabilis Müll.Arg.	Phyllanthodendron	Shrub	Non-flowering	HBL20090749
MUE01	P. muellerianus (Kuntze) Exell	Kirganelia	Herb	Non-flowering	HBL20160132
MUE02	P. muellerianus (Kuntze) Exell	Kirganelia	Herb	Non-flowering	HBL20160132
MUE03	P. muellerianus (Kuntze) Exell	Kirganelia	Herb	Non-flowering	HBL20160132
PEN01	P. pentandrus Schumach. \& Thonn	Tenellanthus	Herb	Budding flowers	HBL20160133
PEN02	P. pentandrus Schumach. \& Thonn	Tenellanthus	Herb	Budding flowers	HBL20160133
POL01	P. polyspermus Schumach.	Kirganelia	Herb	Non-flowering	HBL20160135
POL02	P. polyspermus Schumach.	Kirganelia	Herb	Non-flowering	HBL20160135
POL03	P. polyspermus Schumach.	Kirganelia	Herb	Non-flowering	HBL20160135
TEN01	P. tenellus Roxb.	Tenellanthus	Herb	Flowering	HBL20140316
TEN02	P. tenellus Roxb.	Tenellanthus	Herb	Flowering	HBL20140316
TEN03	P. tenellus Roxb.	Tenellanthus	Herb	Flowering	HBL20140316
URI01	P. urinaria Beille	Emblica	Herb	Flowering	HBL20140356
URI02	P. urinaria Beille	Emblica	Herb	Fruiting	HBL20140356
URI03	P. urinaria Beille	Emblica	Herb	Fruiting	HBL20140356

Chapter 6

acid-acetic acid-water ($100: 11: 11: 27, \mathrm{v} / \mathrm{v} / \mathrm{v} / \mathrm{v}$) was used. A saturation time of 20 min was set for all chromatographic separations and the solvent migration distance spanned 85 mm from the application point. The plate images were recorded using a TLC visualizer (CAMAG) under 366 nm UV light.

The samples were analysed using liquid chromatography mass spectrometry (LC-MS) using a UHPLC-DAD-QTOF, Thermo Scientific (Dreieich, Germany) UltiMate 3000 system coupled to a Bruker (Bremen, Germany) OTOF-Q II spectrometer with electrospray ionization (ESI). The mass spectrometer parameters were set as follows: nebulizer gas 2.0 bar, drying gas $10.0 \mathrm{~mL} / \mathrm{min}$, temperature $250^{\circ} \mathrm{C}$, capillary voltage 3500 V . The mass spectrometer was operated in positive mode with a scan range of $100-1650 \mathrm{~m} / \mathrm{z}$, and sodium formate was used as a calibrant.

Bioassays

We screened for general antifungal activity for each plant species and this a was conducted by paper diffusion assay against Fusarium oxysporum. To produce spores, two weeks old plates were filled with 25 mL of sterile physiological solution (PS), then the media plates was rubbed with a sterile cotton swab to transfer spores to the PS. After that, the liquid containing the fungal structures was recovered with a sterile pipet and filtered through two layers of sterile miracloth and transferred into a sterile 50 mL -centrifuge tube. The volume was adjusted to 30 mL with sterile water, vortexed for 15 seconds and centrifuged at 4000 rpm for 10 minutes. This process was repeated three times. The supernatant was discarded, and the pellet was re-suspended in 30 mL of sterile PS. After, spore concentration per milliliter was quantified in a cell counter apparatus (Bio Rad). Potato dextrose agar (PDA) was sterilised and cooldown to $60^{\circ} \mathrm{C}$. Then 49 mL of PDA were inoculated with 1 mL of the spore solution and softly homogenized. The final spore concentration in the medium was 2.5×10^{5} spores $/ \mathrm{ml}$. The treatments were sterile 6 mm paper discs loaded with $500 \mu \mathrm{~g}$ of methanol extract. In order to eliminate the methanol from the discs, after loading they were dried at room temperature for 5 min . The negative control consisted of a sterile disc paper with and without methanol processed in the same way of the plant methanol extracts. The plates were incubated at $28^{\circ} \mathrm{C}$ for 39 hours and the diameter of inhibition zones were recorded.

Each sample showed mild activity against Fusarium oxysporum, but effectivity was low in general, so we opted to do further testing for antibacterial effects instead. For the first test, one hundred mg of dried material was extracted with 10 ml of methanol using ultrasonicator for 30 minutes at room temperature. 10 ml of n-hexane was added to remove chlorophyll which may hinder the biological activity. After hexane fraction was discarded, remaining extracts were further evaporated using rotary evaporator. Extracts were transferred to 1.5 mL -microtube tubes after re-dissolving them in 1 mL MeOH , and dried completely by Speed-vac.

In the first test, the antimicrobial activity was tested using the disc-

Figure 6-1. PCA score plot of NMR data, Sample names are shorted from table 1.
diffusion methods against Bacillus subtilis (gram positive) and Escherichia coli (gram negative). Unfortunately, only 20 of the extracts had sufficient material after ${ }^{1} \mathrm{H}$ NMR screening for the bioassay test. The test was performed as described in previous studies (Abreu et al. 2014). All extracts were prepared in MeOH. Each extract was added to previously autoclaved and cooled LB agar in the amount calculated to obtain the required final concentration of 500 ug . Then, 20 mL of medium was poured into 90 mm Petri dishes. The bacterial suspensions were adjusted to 0.5 McFarland standard and seeded over hardened LB agar Petri dishes using a sterilized cotton swab. Sterile blank discs (6 mm diameter; Oxoid) were placed on the agar plate seeded with the respective bacteria. The plates were incubated at $37^{\circ} \mathrm{C}$ for 24 h . After incubation, each inhibition zone diameter (IZD) was recorded and analyzed according to CLSI guidelines (reference above). The results were correlated with the NMR spectra as described below to determine the class of compounds we should focus on.

In the second test, we tested one sample of each species in concentrations of 125,250 and $500 \mu \mathrm{~g} / \mathrm{ml}$ against B. cereus strain NCCB 75009, B. subtilis strain 168 and S. aureus strain ATCC29213 to corroborate the bioactivity of each species of Phyllanthus. This was done using concentrations of $125,250,500$ or $>500 \mu \mathrm{~g} /$ ml of dried extracts in $100 \% \mathrm{MeOH}$ (MIC testing). Dissolved extracts from each concentration was incubated in a liquid medium containing the tested bacteria. To determine the specific compounds underlying the bioactivity of the species

	Sample	Bacteria	Bacteria		${ }_{01}^{\text {A }}$	Bacillus subtilus (+)				B	Escherichia coli (-)			
Nr	name	Gram +	Gram -	Fungal		02	03	04	05	01	02	03	04	05
1	ARB01				\bigcirc		O	8)	0					
2	URI01	+			06	07	08	09	10	06	07	08	09	10
3	JUG01			+	9	0	O)				
4	FRA03	+	+	$+$						11	12	13	14	15
5	FLU03				11	O	13	14						
6	MUE02	+										9		
7	TEN03	+		$+$	16	17	18	19	20	16	17	18	19	20
8	URI02	$+$		$+$										
9	ARB02			+										
10	MIR02				C	Fusa	m ox	oru						
11	MUE03	+			01	02	03	04	05					
12	GLA01	+	+	+										
13	FRA01			$+$	06	07	08	09	10					
14	POLY01													
15	URI03	+	+											
16	FRA02			+	11	12	13	14	15					
17	TEN02	$+$												
18	FLU02			+	16	17	18	19	20					
19	MUE01	+	+											
20	POLY02													

Figure 6-2. Bioactivity testing of various Phyllanthus spp. Extracts listed on the left by sample names with results from bioactivity screening against a gram positive bacteria, gram negative and a fungus strain, activity is only shown when mild (+) or strong (++) activity was recorded. On the right is shown the results from the disc diffusion method for A) against the gram positive bacteria Bacillus subtilis (+), B) against Escherichia coli and C) against Fusarium oxysporum.

Figure 6-3. OPLS-DA plot of activity test against Bacillus subtilis (left, Q2 is 0.526 ,
CV-ANOVA: $\mathrm{P}=0.0183117$) and Escherichia coli (right, Q2: $-0.308, \mathrm{CV}-\mathrm{ANOVA}: \mathrm{P}=1$).

Chapter 6

Figure 6-4. Bioautography with the HPTLC spectra of selected species of Phyllanthus screened for activity against S. aureus. From left to right, the species is P. urinaria (A), P. muellerianus (B), P. tenellus (C) and P. arbuscula (D), active bands extracted for LC-MS in the spectra are highlighted with white boxes.
resulting from test two, we applied in the third step direct testing with a 0.5 McFarland solution of S. aureus that was sprayed on a HPTLC plate following preparations described below. The plates were incubated for 24 hours and checked afterwards for activity under UV light.

Data processing and multivariate data analysis for metabolome and activity correlation

Spectral data was bucketed using the AMIX program ((Bruker Biospin Corp., Billerica MA), bucket size was 0.04 ppm and the areas were normalised to total intensity. Intervals for methanol and water signals were deleted from the bucket data. Multivariate data analysis was performed using SIMCA-P V.14.1 (Umetrics, Umeå, Sweden). Differentiation of the various Phyllanthus species was shown using Principal Components Analysis (PCA) and orthogonal partial least square discriminant analysis (OPLS-DA) and of the ${ }^{1} \mathrm{H}$ NMR data. The samples were divided in two classes for Y-variables in OPLS modeling. PCA and OPLS-DA analysis data was scaled using
the Pareto and unit-variance (UV) scaling method.

Results
 Principal component analysis (PCA)

Principal component analysis (PCA) showed a good separation for each species (Fig. 6-1), but the closeness between species did not follow the previous morphological and genetic data. The top-right corner does show three of the four herbaceous species, but P. fraternus places more closely to some shrubs and small trees from Africa and South America. No clear pattern related to evolution, morphological adaptation or habitat in the greenhouses are evident from the PCA plot.

Biological activity testing

Initial activity testing for anti-fungal properties against F. oxysporum showed low activity for most species, but none of the samples showed a particular strong reaction against the fungi. Strongest activity was seen in all tested samples of P. fraternus, but testing of other species like P. urinaria only showed mild activity in one of the samples. As our anti-fungal testing were largely inconclusive with only mild activity in some species, we opted to do further screening for antibacterial testing instead.

Activity testing against the gram-negative bacteria E. coli and the grampositive bacteria Bacillis subtilis (Fig. 6-2a and b) showed more active species against the latter (Fig. 6-2a and b). During testing against pathogenic fungi, P. fraternus showed a mild activity against Fusarium. Some other species showed some activity against Fusarium, but this was not always consistent for each extract of a specific species. As the plate did not show particularly strong activity as it did not show a significant correlation in the OPLS-DA (not shown here), we continued with the anti-bacterial bioactivity in the following steps. Extracts were divided into two classes, active and non-active, to discriminate metabolites, that were more involved in the antibacterial or antifungal activity. Correlating antimicrobial activity with the ${ }^{1}$ H NMR data using OPLS-DA was not significant against B. subtilis strain 168, but not validated $(\mathrm{P}=0.0183117 ; \mathrm{Q} 2=0.526)$. The significant p -value indicates some biological effect, but to improve the Q 2 value, we would need to increase the sample size. Figure 6-3 shows a good separation of active (red) and non-active (blue) species. In the case of E. coli, the extracts of P. urinaria and P. muellerianus showed some inhibition, but the separation between active and non-active was not validated by OPLS-DA (Fig. 6-3 right). Subsequent testing against more gram-positive bacteria showed the strongest activity against S. aureus and this was selected for further testing using HPTLC to isolate the compounds that could possibly have caused the anti-microbial effects.

Chapter 6

Targeted approach (HPTLC/LC-MS) for compound identification

Samples showed a good separation of bands on the HPTLC profile which were largely similar, but only the extracts run on a polar phase showed some reaction to S. aureus. Activity was tested with both TLC plates using the direct spray method. The non-polar compounds did not show any activity, but some polar compounds showed antimicrobial effects (Fig. 6-4). Due to unavailability of more material from test 1 , only a limited number of species could be tested with the HPTLC and four are shown in figure 6-4. We targeted these for identification using HPTLC coupled with LC-MS, but only one compound could be identified. The highest peak in the LC chromatogram profile of P. tenellus were cross referenced with Buckingham (1993) and indicated flavan-like compounds, but we could not identify other possible fragments due to the low concentration of the extracts.

Discussion

The medicinal value of Phyllanthus has become a field of high interest (Kuttan \& Harikumar 2011; Mao et al. 2016). Many species were already known to have some medicinal effect from traditional medicines (Unander et al. 1990, 1991, 1992, 1995). In this study, several methods were combined to elucidate the potential antimicrobial effect of a few species commonly found in botanical gardens or as invasives. These were also aimed at sampling a larger morphological variety within Phyllanthus instead of focusing on any specific taxon. Proton NMR is a strong tool to study the metabolome and it indicated that phenolics were an important class of compound when it was correlated with activity (Fig. 6-2). Our correlation of activity and the NMR data was used as a tool to predict the active compounds as it has been used before (Eriksson et al. 2006). Accessional differences as shown by figure 6-2 were present within our samples, as antimicrobial activity was not always at the same level between extracts. This was also indicated in the initial general antifungal screening, but the effects were quite low. Our study did not manage to identify all compounds attributed to the antimicrobial effects detected in some species. Only small indications were found for flavan in P. tenellus, which has been found before in this species (Buckingham 1993). Several issues could underlie our inability to identify the remaining compounds. This includes a strong adherence to the plate silica that prevented them from separating well in the TLC, or it is a matter of concentration of the extracts. The strength of activity against S. aureus (Fig. 6-4) was also different from the initial tests with E. coli (Figure 6-2), possibly due to differences in testing method, solvent, or the age of the extracts. The results presented here are quite fragmented as material was not available for all experiments, so future studies would need to gather more fresh material for a more thorough screening of Phyllanthus.

While our approach was unable to identify the antimicrobial compounds in this study, similar research has generated a wealth of knowledge on the bioactivity of other species. Ghafar et al. (2020) similarly used H-NMR coupled liquid
chromatography in P. acidus to identify almost 80 compounds, some of which were involved with antioxidant, anti-diabetic and anti-inflammatory reactions (see also Muthusamy et al. 2017). Of the species from this study, especially the three annual herbs P. urinaria, P. fraternus and P. tenellus are good candidates for their medicinal value due to their rapid growth. Over 90 naturally occurring compounds have been reported for Phyllanthus urinaria (Fang et al. 2008; Geethangili \& Ding 2018), many of which were shown to have an antioxidant effect.

While the genus Phyllanthus with almost 900 species (Bouman et al. 2018) has a long history in traditional medicine, the majority of studies have focused on a few select species, especially more common herbaceous species like P. urinaria (Geethangili \& Ding 2018), P. niruri (Kamruzzaman \& Hoq 2016) and P. amarus (Patel et al. 2011). In this study we attempted to include a broader variety of species of various habits, countries of origins and across the phylogeny of the genus. Unfortunately, due to sampling issues and inconsistent results of bioactivity screening, we were unable to elucidate any compounds with antimicrobial activity. Some activity was found in a few species and future studies might improve upon our work to find those compounds of interest for their medicinal value.

CHAPTER 7

Molecular phylogenetics of Phyllanthus sensu lato (Phyllanthaceae): towards coherent monophyletic taxa

Roderick W. Bouman, Paul J.A. Keßler, Ian R.H. Telford, J eremy J. Bruhl, Joeri S. Strijk, Richard M.K. Saunders, Peter C. van Welzen

Published in Taxon 70 (1): 72-98. 2021
https://doi.org/10.1002/tax. 12424

Chapter 7

Molecular phylogenetics of Phyllanthus sensu lato (Phyllanthaceae): towards coherent monophyletic taxa

Short title: Phylogenetics of the genus Phyllanthus

Roderick W. Bouman ${ }^{1,2,3}$, Paul J.A. Keßler ${ }^{2,3}$, Ian R.H. Telford ${ }^{4}$, Jeremy J. Bruhl ${ }^{4}$, Joeri S. Strijk ${ }^{5,6}$, Richard M.K. Saunders ${ }^{7}$, Peter C. van Welzen ${ }^{1,3}$
${ }^{1}$ Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, the Netherlands
${ }^{2}$ Hortus botanicus Leiden, Leiden University, PO Box 9500, 2300 RA Leiden, the Netherlands
${ }^{3}$ Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA Leiden, the Netherlands
${ }^{4}$ Botany and N. C. W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
${ }^{5}$ Ghent University, Systematics and Evolutionary Botany lab., K.L. Ledeganckstraat 35, 9000 Ghent, Belgium, Ghent University, Gent, Belgium
${ }^{6}$ Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, PO Box 959, 06000 Luang Prabang, Lao PDR
${ }^{7}$ Division of Ecology \& Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China

Abstract

The genus Phyllanthus is paraphyletic as currently circumscribed, with the genera Breynia, Glochidion and Synostemon nested within it. A phylogeny based on nuclear (ITS, PHYC) and chloroplast (matK, accD-psaI, trnS-trnG) markers is presented, including 18/18 subgenera and 53/70 sections. Differences in habit, branching type, floral and fruit characters are discussed, and we find indications for shifts in pollination and dispersal strategies possibly underlying the convergent evolution of these characters in multiple clades. Several taxonomic issues were found in the subgeneric classification of Phyllanthus that will require new transfers and rank changes. Phyllanthus subg. Anesonemoides, subg. Conami, subg. Emblica, subg. Gomphidium, subg. Kirganelia and subg. Phyllanthus are polyphyletic, and several sections appear to be paraphyletic (e.g., P. sect. Anisonema, sect. Emblicastrum, sect. Pseudoactephila, sect. Swartziani, and sect. Xylophylla); P. subg. Phyllanthodendron is furthermore paraphyletic with the genus Glochidion nested within. To create a classification of tribe Phyllantheae that comprises exclusively monophyletic taxa, it is necessary to treat several clades at the same taxonomic rank as the genera Breynia, Glochidion and Synostemon. Since combining all genera would lead to one giant heterogeneous genus that is difficult to define, we recommend dividing Phyllanthus into several monophyletic genera, which have previously

been recognized and often possess diagnostic (combinations of) morphological characters. This new classification is forthcoming.

Keywords: molecular phylogenetics; paraphyly; Phyllanthaceae; Phyllanthus; sections; subgenera; systematics

Introduction

The pantropical family Phyllanthaceae is the second-most species-rich segregate fromEuphorbiaceae sensu lato, to be recognized since the publication of APG II (2003). It currently consists of about 2000 species, with more than 1200 placed in the largest tribe Phyllantheae Dumort (Govaerts et al. 2000; Hoffmann et al. 2006). Phyllantheae have been the focus of extensive discussion concerning the relationships and circumscriptions of genera (e.g., Hoffmann et al. 2006; Pruesapan et al. 2012; Van Welzen et al. 2014a).

Previous phylogenetic studies that focused specifically on the Phyllanthaceae sought to elucidate the structure of the various tribes (mostly of subfamily Phyllanthoideae) (e.g., Kathriarachchi et al. 2005, 2006; Samuel et al. 2005; Vorontsova et al. 2007), leading to revised classifications of the tribes Phyllantheae (Hoffmann 2008; Ralimanana \& Hoffmann 2011, 2014; Ralimanana et al. 2013; Van Welzen et al. 2014a), Poranthereae (Vorontsova \& Hoffmann 2008, 2009) and Wielandieae (Hoffmann \& McPherson 2007). However, tribe Phyllantheae remains problematic, mainly because the largest genus, Phyllanthus L., is paraphyletic (Kathriarachchi et al. 2006).

Phyllanthus contains more than 800 species and has a complex taxonomic history (Govaerts et al. 2000; Bouman et al. 2018a). The main characters used to distinguish Phyllanthus from other genera are the absence of corolla, pistillodes and staminodes; the presence of a disc or disc glands in the flowers and a specialized branching system called phyllanthoid branching (Webster 1956) that is present in the majority of species. Species with phyllanthoid branching have deciduous floriferous branchlets subtended by reduced scale-like leaves (cataphylls) (Fig. $7-1 \mathrm{~F}$) and lack laminate leaves on the main stem (Webster 1956). The genus is morphologically very diverse and shows a large range in habit, flower, seed and pollen morphology (Webster, 1956; Punt, 1967, 1972, 1980, 1986, 1987; Meeuwis \& Punt, 1983; Lobreau-Callen et al. 1988; Stuppy, 1996; Webster \& Carpenter, 2002, 2008; Kathriarachchi et al. 2006). Several morphological characters seem to have evolved or were lost more than once (Kathriarachchi et al. 2006; Falcón et al. 2020), however, rendering the taxonomy complex and identifications difficult. Phyllanthus was shown to be paraphyletic in recent studies, with the genera Synostemon F.Muell., Breynia J.R.Forst.\&G.Forst. (including Sauropus Blume) and Glochidion J.R.Forst. \& G.Forst. nested within it. First indications of paraphyly were found by Wurdack et al. (2004) and Samuel et al. (2005), but the sample sizes were inadequate for effecting taxonomic changes at the generic level (Kathriarachchi et al. 2006).

Chapter 7

During subsequent studies of tribe Phyllantheae with increased sampling, including the majority of subgenera and sections of Phyllanthus, it was confirmed that the genus was indeed paraphyletic (Kathriarachchi et al. 2006; Falcón et al. 2020). Several solutions have been proposed by various authors for handling paraphyletic taxa. Some vouch for the acceptance of paraphyletic taxa (e.g., Brummitt 2002, 2003; Hörandl 2007), while most taxonomists favour recognizing exclusively monophyletic taxa, either by subsuming (e.g., Larridon et al. 2011; Khanum et al. 2016; Bruyns et al. 2017) or dividing (e.g., Ehrendorfer \& Barfuss, 2014; Manning et al. 2014) previously established classifications. The first solution was proposed by Kathriarachchi et al. (2006), resulting in Breynia, Glochidion and Synostemon being subsumed into Phyllanthus to create a single giant genus of more than 1200 species (Hoffmann et al. 2006). New names for local floras were published by several authors who followed their decision (e.g., Chakrabarty \& Balakrishnan 2009b; Wagner \& Lorence 2011; Kurosawa 2016; Govaerts 2018). However, others feel that this would only push the problems to the subgeneric level (Pruesapan et al. 2008; Van Welzen et al. 2014a). They suggested that a more representative phylogeny would be needed to explore the option of creating new monophyletic and morphologically recognizable genera (e.g., Pruesapan et al. 2008). An analysis with increased sampling of the genera nested within Phyllanthus showed that Glochidion was monophyletic, but that Breynia should be combined with Sauropus and that the Australian genus Synostemon should be resurrected (Pruesapan et al. 2008, 2012; changes implemented in Chakrabarty \& Balakrishnan 2012, 2015; Van Welzen et al. 2014a). As a consequence, the genus Phyllanthus remains paraphyletic, but with many morphologically defined subgenera and sections that are potential candidates for new or reinstated genera. Despite the body of work leading up to and including Van Welzen et al. (2014a), there has been some reluctance to follow the revised classification of Synostemon and Breynia due to the issue of the non-monophyly of Phyllanthus (Kato \& Kawakita 2017; Govaerts 2018).

Due to its diversity in habit, flower, pollen and seed morphology (Fig. 7-1), the genus Phyllanthus is currently divided into 18 subgenera with 70 sections and 14 subsections (Bouman et al. 2018a). The first species within the genus were described by Linnaeus (1753), from Neotropical and Indian material. Soon after, many new genera were defined based on differences in flower morphology, specifically the number and fusion of the stamens in staminate flowers (e.g., Jussieu 1824; Baillon 1858). A major change was undertaken by Müller (1863, 1865, 1866), who combined over 10 genera into Phyllanthus s.l. with more than 40 sections. The genus Glochidion was considered to be closer to Phyllanthus than Breynia or Sauropus and was therefore combined with Phyllanthus (Müller 1866), but was segregated again by Hooker (1887). Müller's (1866) classification was further modified by Webster (1979), who reinstated the genus Margaritaria L.f. in his revision of Phyllanthus from the West Indies. Webster $(1956,1957,1958)$ utilized previously established sections and subgenera (Kurz 1873; Croizat \& Metcalf 1942) to create a provisional

Phylogenetics of the genus Phyllanthus

hierarchical classification of subgenera and sections to show the relations between groups. This classification scheme was subsequently expanded by Webster himself (Webster 1967b, 1970, 1978, 1986, 1995, 2001a, 2001b, 2002a, 2002b, 2003, 2004) and various authors in the treatment of Phyllanthus for other areas such as Africa (Brunel \& Roux 1977, 1985; Brunel 1987), Malesia (Airy Shaw 1971, 1975, 1980) and New Caledonia (Schmid 1991). The main characters for this classification were differences in flower, fruit and pollen morphology, and the presence or absence of phyllanthoid branching (Webster 1956). The congruence of this morphology-based classification with molecular phylogenies was evaluated by Kathriarachchi et al. (2006) and Falcón et al. (2020). Several subgenera were found to be polyphyletic, although most of these issues were addressed in subsequent revisions (Webster 2007; Ralimanana \& Hoffmann 2011, 2014; Ralimanana et al. 2013).

Previous classifications and results from phylogenetic studies and subsequent revisions were summarized by Bouman et al. (2018a) (and only a minority of species could not yet be classified due to incomplete data). Previous samplings in phylogenetic studies by Kathriarachchi et al. (2006) and Falcón et al. (2020) have only covered about 10% of the genus. To settle the debate as to whether it is possible to render the undiagnosable Phyllanthus into morphologically diagnosable, monophyletic taxa, a thoroughly sampled phylogenetic analysis of the genus is needed. Such a phylogeny should provide a sound examination of the classification presented by Bouman et al. (2018a). In the present study, we include a much higher sampling, with 220 of the 881 species, with a complete sampling at the subgeneric level (18/18) and with 53 of the currently 70 recognized sections. The subgeneric classification of the species of Phyllanthus included here follows Bouman et al. (2018a).

Materials and methods

Taxon sampling

Increased sampling efforts were undertaken to include Phyllanthus species from the entire distribution range and the majority of taxonomically defined subgroups. Additional sequences used in other studies were obtained from GenBank (Appendix 7-1). Most of the previously unsampled groups listed by Kathriarachchi et al. (2006: Table 7-1) were included. Recently collected silica-gel dried leaf samples were obtained from various contributors from botanical gardens in Europe, Africa and Asia (see Acknowledgments); other DNA samples were obtained from herbarium material. A full list of all samples is given in Appendix 7-1. Ingroup sampling included 32 species of Breynia (43 samples), 7 species of Synostemon (10 samples), 12 species of Glochidion (15 samples) and 221 species of Phyllanthus (312 samples). Several species of Antidesma L., Bridelia Willd., Flueggea Willd., Heterosavia (Urb.) Petra Hoffm., Margaritaria, Notoleptopus Voronts. \& Petra Hoffm. and Plagiocladus Jean F.Brunel were used as outgroups (selection based on previous phylogenies: Wurdack et al. 2004; Pruesapan et al. 2008).

Chapter 7

Phylogenetics of the genus Phyllanthus

Figure 7-1. Major characters of Phyllanthus and related genera Breynia and Glochidion. A. habit of the herbaceous P. tenellus (subgenus Tenellanthus); B. habit of P. watsonii (subgenus Eriococcus); C. habit and fruits of P. emblica (subgenus Emblica); D. non-phyllanthoid branching in P. myrtellus, note the leaves subtending lateral branches (subgenus Macraea); E. sub-phyllanthoid branching in a young plant of P. glaucus, lateral branches are deciduous (subgenus Kirganelia); F. phyllanthoid branching and phylloclades in P. arbucula (subgenus Xylophylla); G. young capsules of P. myrtellus (subgenus Macraea); H. dehisced capsule of P. juglandifolius (subgenus Xylophylla); I. berries on a specialized leafless branchlet of P. microcarpus (subgenus Kirganelia); J. capsules of G. eriocarpum with orange arillate seeds exposed in some (Glochidion); K. staminate flowers of P. pulcher (subgenus Eriococcus); L. pistillate flowers of P. pulcher (subgenus Eriococcus); M. flowers of P. mimosoides (subgenus Xylophylla); N. flowers of P. arbuscula (subgenus Xylophylla); O. staminate flower of P. cf. poilanei (subgenus Phyllanthodendron); P. pistillate flower of B. androgyna (Breynia). Photos A, C-G, I-M,N \& P by R.W.Bouman; photo B © R.-Y. Yu; photo H by J.S. Strijk; photo O ©M.S. Nuraliev .

DNA extraction, amplification and sequencing

DNA was extracted from fresh material using the DNeasy Plant Mini kit (Qiagen, Hilden, Germany) following the manufacturer's protocol, with a modified protocol (Wurdack et al. 2004) adopted for herbarium material. Modifications consisted of an extended lysis step from 10 min to $12-24 \mathrm{~h}$ with the addition of $20 \mathrm{mg} / \mathrm{ml}$ proteinase K and $6.5 \% \beta$-mercaptoethanol. The final elution was extended to $2 \times$ 30 min with each elution step undertaken with only $40 \mu \mathrm{AE}$ buffer. Collection and voucher data are presented in Appendix 7-1. Other samples were extracted with the NucleoMag 96 Tissue kit (Macherey- Nagel, Düren, Germany) following the manufacturer's protocol using a KingFisher Flex magnetic particle processor (Thermo Scientific, Waltham, Massachusetts, U.S.A.), but with an extended lysis step of 12-24 h.

Two nuclear (high-copy spacer ITS, low-copy PHYC) and three chloroplast (accD-psaI, trnS-trnG intergenic spacers, matK with the trnK intron) DNA markers were selected for use in this study based on variability and to complement previously generated data (e.g., Kathriarachchi et al. 2006; Kawakita \& Kato 2009; Pruesapan et al. 2008, 2012). Primers are shown in Table 7-1. Polymerase chain reactions (PCR) were performed in volumes of $25 \mu \mathrm{l}$ consisting of: $15.25 \mu \mathrm{l}$ Milli-Q $\mathrm{H}_{2} \mathrm{O}, 2.5 \mu \mathrm{l} 50 \times$ PCR Buffer, $1 \mu \mathrm{l} 50 \mathrm{mM}$ of $\mathrm{MgCl}_{2}, 1 \mu \mathrm{l}$ each of forward and reverse primers (10 mM), $2 \mu \mathrm{l} 2.5 \mathrm{mMdNTP}, 1 \mu \mathrm{l} 10 \mu \mathrm{~g} / \mu \mathrm{l}$ bovine serum album (BSA), $0.25 \mu \mathrm{l}$ KlearTaq and 1-2 $\mu \mathrm{l}$ of DNA. A standard PCR program was used for amplification, with an initial denaturation for 2 min at $94^{\circ} \mathrm{C} ; 40$ cycles of 1 min
Table 7-1. Primer sequences for the amplification of the various markers with annealing temperatures and references. Primers designed during this study are designated with DH (designed here).

Primer	Forward or reverse primer	Sequence (5' - 3')	Annealing temperature $\left({ }^{\circ} \mathbf{C}\right)$	Source article
PHYC-F	Forward	CCAGCTACTGATATACCTCAAGCTTC	48	Samuel et al. 2005
PHYC-R	Reverse	CCAGCTTCCATAAGGCTATCAGTACT	48	Samuel et al. 2005
PHYC-178F	Forward	TGGGTAC(AGT)AT (GT)GCATCTCTTG	55	DH
PHYC-260F	Forward	AAAATTGTGGGGCTTGGTGG	55	DH
PHYC-439F	Forward	TGCT(CT)CT(CT)AGAGATGCACCT	55	DH
PHYC-260Rev	Reverse	CCACCAAGCCCCACAATTTT	55	DH
PHYC-344Rev	Reverse	CCTGAAC(AC)CCAAACACTTGC	55	DH
PHYC-490Rev	Reverse	CTCCRTCACACTTAACTA(AG)(AG)TCCA	55	DH
			52,5	White et al. 1990
ITS5	Forward	GGAAGTAAAAGTCGTAACAAGG	52,5	White et al. 1990
ITS4	Reverse	TCCTCCGCTTATTGATATGC	52,5	White et al. 1990
ITS2	Reverse	GCTGCGTTCTTCATCGATGC	52,5	White et al. 1990
ITS3	Forward	GCATCGATGAAGAACGCAGC		
			49	Shaw et al. 2007
accD	Forward	AAT(CT)GTACCACGTAATC(CT)TTTAAA	49	Small et al. 1998
psaI-75R	Reverse	AGAAGCCATTGCAATTGCCGGAAA	55	DH
accd-121F	Forward	AGCAAAATAAAAT(AG)CGAAGAGTG	50	DH
accd-151F	Forward	ACGAAAGCCCTATCAACAAGAGA	5	

accd-226R	Reverse	CTCTTGTTGATAGGGCTTTCGT	$50-55$	DH
accd-462Rev	Reverse	TCTGCTCCCGAGAAATTCGT	48	DH
accd-595Rev	Reverse	GGAGTGTAGAACTAAGTAAATGGACT	$50-55$	DH
				55
trnS-F	Forward	GCCGCTTTAGTCCACTCAGC	55	Hamilton 1999
trnG-R	Reverse	GAACGAATCACACTTTTACCAC	55	Hamilton 1999
trnSG-448F	Forward	CCATTTCCATGACCTAGCCCAA	55	DH
trnSG-535R	Reverse	TTCGAATCGAAGAAATCCTTTTATCT	DH	
			55	Samuel et al. 2005
trnK-570F	Forward	TCCAAAATCAAAAGAGCGATTGG	55	Samuel et al. 2005
matK80F	Forward	CTATACCCACTTATCTTTCGGGAGT	55	Samuel et al. 2005
matK390F	Forward	CGATCTATTCATTCAATATTTC	55	Samuel et al. 2005
matK800F	Forward	CATGCATTATGTTAGATATCAAGG	55	Samuel et al. 2005
matK1200F	Forward	GA(CT)TCTGATATTATCAACCGATTTG	55	Samuel et al. 2005
matK190R	Reverse	ATTCGAGTAATTAAACGTTTTACAA	55	Samuel et al. 2005
matK530R	Reverse	GTTCCAATTCCAATACTCGTGAAG	55	Samuel et al. 2005
matK950R	Reverse	AAAAT(AG)ACATTGACATAAATTGACAA(AG)G	55	Samuel et al. 2005
matK1300R	Reverse	CGAAGTATATA(CT)TT(CT)ATTCGATACA	55	Samuel et al. 2005
matK1710R	Reverse	GCTTGCATTTTTCATTGCACACG	55	

Chapter 7

denaturation at $94^{\circ} \mathrm{C}$, annealing for 30 s with the annealing temperature specific for each primer (see Table 7-1) and elongation for 1 min at $72^{\circ} \mathrm{C}$; and a final elongation step of 10 min at $72^{\circ} \mathrm{C}$. New internal primerswere designed for the PHYC, accD$p s a I$ and $\operatorname{trnS} S t r n G$ markers in order to amplify the marker in smaller segments, which proved to be more effective when working with herbarium material. Primers were designed using sequences from several Breynia, Glochidion, Phyllanthus, and Synostemon species with the online application Primer3Plus (bioinformatics.nl/cgibin/primer3plus/ primer3plus.cgi) with default settings (Fig. 7-2).

The length of PCR fragments was verified on a 1\%agarose gel with electrophoresis. Successful PCR samples were subsequently analyzed on either an ABI3730xl automated sequencer (Applied Biosystems, Forster City, California, U.S.A.) by using ABI BigDye terminator chemistry, or aMegaBACE 1000 automated sequencer (Amersham Bioscience, now GE Healthcare Europe, Diegem, Belgium) using DYEnamic ETDye Terminators chemistry following the manufacturers' protocols by another company (BaseClear, Leiden, the Netherlands). Primer combinations used during sequencing were dependent on DNA quality, and markers of herbarium specimens were often amplified in segments of 200-300 nucleotides.

Sequence cleaning, alignment and resulting datasets

Forward and reverse sequences were combined, primers trimmed and cleaned of reading errors using the program Sequencher v.4.14 (GeneCodes Corp., http:// www.genecodes.com/) and aligned using the program ClustalW v.2.1. (Larkin et al. 2007) on the CIPRES (Cyber Infrastructure for Phylogenetic RESearch) gateway (https://phylo.org/) using default settings. The subsequent alignment file was checked and manually corrected using a similarity criterion for obvious alignment errors in PAUP v.4.0a (Swofford, 2002). Some ambiguous alignment positions were encountered in the trnS - $\operatorname{trn} G$ spacer, which varied greatly in sequence length from positions 259 to 413 in the alignment, and these were excluded before analysis.

For analysis, ends of the data matrices (suppl. Appendices S1-S5) were truncated to match sequences generated here and those retrieved from GenBank. The individual marker trees (suppl. Figs. 7-S1-7-S7) were visually inspected for incongruence before combining the datasets. Several species were included from GenBank or with only partial sequences obtained from herbarium species; this resulted in some missing data for a number of taxa (see Appendix 7-1). To check for the effect of missing data on the relationships between major groups, two separate datasets were prepared. A full dataset, which contained all specimens from the individual marker analyses and a trimmed dataset that only included samples of which at minimum four of the five markers were sequenced. The full dataset contained 396 terminals, while the trimmed dataset contained 290 terminals.

Figure 7-2. Schematic design for the spacer $\operatorname{PHYC}(\mathrm{A}), a c c D-p s a I(B)$ and $t r n S-$ $\operatorname{trn} G(\mathrm{C})$ spacer with newly designed primers indicated by arrowheads. Number behind primer names indicates approximate nucleotide position within the marker including insertions in the matrix. PHYC figure adapted from Samuel et al. (2005).

Phylogenetic analyses

Analyses of the individual markers, the combined and combined reduced datasets were run under Bayesian inference using MrBayes v.3.2.7 (Ronquist et al. 2012) and maximum likelihood using RAxML v.8.2.12 (Stamatakis, 2014) via the CIPRES gateway.Missing sequences due to amplification problems or those that could not be obtained from GenBank, were recorded as missing data following Wiens (2003). MrModeltest v. 2 (Nylander 2004) was used on the dataset for each marker set to obtain the best-fitting model for Bayesian inference. All best models were the mostparameterized models, which include a Gamma distribution (Γ) (coded as: nst $=6$, rates $=$ gamma for ITS, $a c c D-p s a I$ and $\operatorname{trnS}-\operatorname{trn} G$, rates $=$ equal for PHYC and matK), and all individual analyseswere run for 10 million generations on two parallel runs of four Markov chains (CIPRES default). An initial burnin of 25% was used. Each marker was run as a separate partition in the concatenated

Chapter 7

Table 7-2. Summary of individual marker datasets used in the analyses. Number of generated sequences shows between brackets the number of missing nucleotide sequences.

Marker	Nr. of sequences in dataset (Missing)	Max. sequence length (bp)	Alignment length (bp)	Nr of informative sites
ITS	$352(42)$	$304-650$	732	451
PHYC	$335(49)$	$134-581$	589	329
matK	$369(35)$	$732-1791$	2170	1179
accD-psaI	$321(73)$	$197-546$	1036	552
trnS-trnG	$272(122)$	$209-635$	$1233(1078)$	732

matrix following previously determined rates. Effective sampling sizes (ESS) and convergence of the two runs were checked via the resulting ". p " files using Tracer v.1.7.1 (Rambaut \& Drummond, 2018). The maximum likelihood tree was reconstructed under the GTRCAT model and CIPRES default settings to accelerate computation of our dataset. The analysis was run with a concatenated dataset partitioned by marker with 1000 bootstrap iterations.

Results

Analysis of the individual and combined nuclear/combined chloroplast markers
Due to the use of herbarium material and data available from GenBank, the majority of taxa lacked comprehensive data for all markers. Table 7-2 shows the number of contigs for each marker and the number of informative sites. We generated 1349 new sequences during this study and included 300 sequences from GenBank. Non-coding regions such as the accD-psaI spacer had many more gaps than the coding region of PHYC. Results for individual markers recovered similar clades, but lacked adequate support to provide reliable and stable relationships between clades. Clade A (Figs. 7-3, 7-4; suppl. Figs. S1-S7) was recovered as sister to the remainder of the genus Phyllanthus with maximum support (suppl. Fig. 7-S7-7-S3; PP 1.0) in the ITS topology, but with lower support in the other markers. There is consistently high support for clade B ($\mathrm{PP}>0.99$), but resolution within the clade differs between markers. Phyllanthus subg. Kirganelia (A.Juss.) Kurz (clade C1 in Fig. $7-4 ;$ PP 1.0) was consistently retrieved as sister to a clade comprising subg. Eriococcus (Hassk.) Croizat \& Metcalf (clade C3) and sect. Lysiandra (F.Muell.) G.L.Webster + sect. Antipodanthus G.L.Webster (C2; discussed below) (PP > 0.66) (suppl. Figs. 7-S3-7-S7, except in suppl. Fig. 7-S4). The relationships between clades D, E and F (Fig. 7-4) were generally poorly supported, although clade D was

Phylogenetics of the genus Phyllanthus

confirmed as monophyletic in most datasets (PP >0.89) except for the nuclear, ITS, PHYC and accD-psaI topologies. Support for the relationship between P. subg. Phyllanthodendron and Glochidion was obtained from all markers (clade H; PP 1.0). Similarly, the relationship between the genera Breynia and Synostemon was also recovered in all markers (clade I; PP >0.97), except for trnS - trnG, where it was part of a larger polytomy with the genus Glochidion.

Incongruence

During the Bayesian analyses of the individual markers, some incongruence was found, but mostly between chloroplast and nuclear markers. The most significant incongruence found was between the ITS dataset (suppl. Fig. 7-S3) and the other four markers (suppl. Figs. 7-S4-7-S7) and affected mainly Phyllanthus subg. Gomphidium (Baill.) G.L. Webster and subg. Betsileani (Jean F.Brunel) Ralim. \& Petra Hoffm. Phyllanthus subg. Betsileani was recovered as sister to subg. Gomphidium sect. Gomphidium and sect. Nymania (suppl. Fig. 7-S3; PP 1.0), while in the concatenated dataset, these taxa were in the neighbouring clades F 2 and F1, respectively (Fig. 4). In the analysis of PHYC, accD-psaI, matK and our concatenated datasets (except concatenated nuclear dataset), P. subg. Betsileani was always recovered as sister to other species of Madagascar from subg. Menarda and part of subg. Anesonemoides and subg. Gomphidium. Kathriarachchi et al. (2006) opted to exclude ITS sequences of P. subg. Betsileani in their concatenated analysis. Branch lengths were here observed to be quite short, indicative of a more recent split, with the ITS marker lacking accumulated additional mutations. We, therefore, decided to combine the datasets without excluding specific markers for certain species, resulting in a consensus tree of all markers that showed a similar relationship between P. subg. Gomphidium, subg. Anesonemoides, subg. Betsileani and subg. Menarda (Comm. ex A.Juss.) Ralim. \& Petra Hoffm. (Clade F) to that found in the PHYC and chloroplast marker sets. The nuclear (suppl. Fig. 7-S1) and chloroplast (suppl. Fig. 7-S2) datasets differed in the relationship between clades D-F. In the nuclear phylogeny, clade F is sister to clades D, E \& G-I (suppl. Fig. 7-S1; PP 0.99), while the chloroplast phylogeny is similar to the concatenated dataset with clade D sister to clades E-I (suppl. Fig. 7-S2; Fig. 4). Additional incongruence was found in the relationships between P. subg. Tenellanthus, subg. Swartziani and subg. Afroswartziani (Fig. 7-4, clade D; but see suppl. Figs. 7-S1 \& 7-S2). In the chloroplast dataset, P. subg. Swartziani is recovered as sister to a clade comprising subg. Tenellanthus and subg. Afroswartziani. This is in contrast with the combined dataset (Fig. 4), in which P. subg. Tenellanthus is recovered as sister to the other subgenera.

Concatenated datasets

Our total dataset of all markers combined resolved Phyllanthus in eight major clades (Figs. 7-3, 7-4; suppl. Fig. 7-S8), but the genus, like in all former analyses, was found

Chapter 7

Figure 7-3. Molecular phylogenetic relationships of tribe Phyllantheae, simplified from Fig. 7-4 showing genera and subgenera. Colouring of clades follow Fig. 7-4 and paraphyly is highlighted with a red triangle (\varangle). Several morphological characters and character states are shown: (B) branching non-phyllanthoid (O), sub-phyllanthoid (\bigcirc) or phyllanthoid (\bigcirc); (D) disc present (O), absent (\bigcirc) or when both variations occur in the clade (O); (A) androphore filaments free (O), fused (Θ) or when both are present (\bigcirc),whorled stamens (\otimes); (F) fruit capsules (O), or berries (\bigcirc); (S) average stamens number.

Phylogenetics of the genus Phyllanthus

to be paraphyletic. While the majority of relationships between groups remained largely unchanged (Figs. 7-3, 7-4), internal support of species relations within major groups differed between the analyses of the total and reduced datasets. Posterior probabilities of major nodes differed, and clade E was more resolved in the analysis of the reduced dataset (suppl. Fig. 7-S8). The relationship between clades A-I did not differ when comparing the reduced dataset with the total dataset. In Fig. 7-4, the relationship between clades E1, E2 and E3 was not resolved. In the reduced dataset (suppl. Fig. 7-S8), clade E2, including P. subg. Conami sect. Nothoclema G.L. Webster and subg. Emblica sect. Microglochidion (Müll. Arg.) Müll.Arg., was resolved as sister to clade E3 (PP 0.89). This might be an artifact of the number of markers available for taxa in clade E in the total dataset. The reduced dataset also achieves greater resolution of clade F, particularly in P. subg. Gomphidium and the relationship between its sections Gomphidium and Nymania. Phyllanthus sect. Nymania is found to be paraphyletic (see suppl. Fig. 7-S8) with sect. Gomphidium nested within (PP 1.0). Other clades did not show changes in the relationships between major groups in the reduced dataset, with only support levels differing between matrices.
Comparing Bayesian inference (Fig. 7-4) with maximum likelihood (suppl. Fig. 7-S9) of our total dataset did not result in significant differences. The same larger clades A-I were retrieved (though weakly supported for the relationship between clades D-G). Internal relationships between species differed slightly, often not significantly ($\mathrm{BP}<50$). Aside from differences in node support, clades A-D, did not differ between Bayesian inference and maximum likelihood. Clade E was similarly resolved between the two analysis methods, but was more weakly supported in the ML analysis. The support for the relationship between clades E1-E3 was too low to be informative. Similar to the analysis of our reduced dataset (suppl. Fig. 7-S8), part of P. subg. Gomphidium sect. Nymania was found to be sister to all other species of sect. Gomphidium, but other relationships within this part of clade F2 were only resolved with low support. Aside from internal relationships between species (with weak support, $\mathrm{BP}<50$), clade G-I did not differ between Bayesian inference and maximum likelihood.

Discussion

Phyllanthus is a paraphyletic conglomerate of multiple subgenera and (sub) sections, which together are presently classified as one genus. Glochidion and Breynia (including Sauropus and previously Synostemon) were treated separately on the basis of a loss of the nectar disc (Glochidion, part of Synostemon) or due to a functional change, with disc glands becoming scales that close the staminate flowers until the pollen is mature (part of Breynia, part of Synostemon) (Radcliffe- Smith, 2001; Van Welzen et al. 2014a). For a sound discussion on any possible combination or separation, the flaws of the current system need to be discussed, as well as the morphological distinctness of the various groups and clades. Floral convergence or

Chapter 7

Figure 7-4. Bayesian majority rule consensus tree of the full combined nuclear (ITS and PHYC) and chloroplast ($a c c D-p s a I$, matK and $\operatorname{trnS}-\operatorname{trn} G$) datasets for Phyllanthus and related genera, posterior probabilities (PP) are displayed at the nodes, infrageneric classification follows Bouman et al. (2018a); subgenera are given above colored clades, sections to the right. Outgroups and some ingroup genera are collapsed (see full tree in Suppl. Figs. 7-S10). New species are indicated with an asterisk (*).

Phylogenetics of the genus Phyllanthus

Chapter 7

Figure 7-4. Continuation.

Phylogenetics of the genus Phyllanthus

Chapter 7

Clade F to I

Clade F

Xylophylla (3)

Microglochidion

Figure 7-4. Continuation.

Phylogenetics of the genus Phyllanthus

Chapter 7

Figure 7-4. Continuation.
conservation of floral morphology appears to be a general pattern within the tribe Phyllantheae. In our phylogeny with denser taxon sampling presented here, several paraphyletic and polyphyletic subgenera and sections were discovered in various clades. These non-monophyletic groups were originally classified together on the basis of morphological ancestral commonality, but these patterns are the results of

Phylogenetics of the genus Phyllanthus

convergent evolution. Several morphological characters, such as branching type and changes in floral morphology, are indicative of various clades and are discussed below.

Non-monophyletic taxa and the subgeneric classification of Phyllanthus

 Phyllanthus consists of eight clades in our phylogeny, but our results indicate the existing subgeneric classification as summarized by Bouman et al. (2018a) still contains several problems. Several subgenera are polyphyletic, and the paraphyly of several sections is furthermore confirmed here (Fig. 7-3). Kathriarachchi et al. (2006) already encountered issues in several clades, but subsequent revisions (Hoffmannet al. 2006; Ralimanana\& Hoffmann, 2011, 2014; Ralimanana et al. 2013) only addressed some (most with the species from Madagascar), while others remained unresolved.The relationships previously recovered (Kathriarachchi et al. 2006; Falcón et al. 2020) between the genera Margaritaria, Flueggea, Heterosavia and Plagiocladus are confirmed here, but the relationship of Lingelsheimia as sister to Flueggea and the other genera is only weakly supported (suppl. Fig. 7-S10; $\mathrm{PP}=0.58$, but see suppl. Fig. 7-S9). Six species of Margaritaria were included. Margaritaria rhomboidalis (Baill.) G.L.Webster from Madagascar is sister to all other species of the genus. Interestingly, M. nobilis L.f. form the Americas seems to be closely related to the Australian species M. dubium-traceyi Airy Shaw \& B. Hyland indicating some recent long-distance dispersal. Clade A consists of Phyllanthus maderaspatensis of subg. Isocladus together with one species from North America, P. polygonoides Nutt. ex Spreng., and two from Africa, P. mendoncae Jean F.Brunel and P. magudensis Jean F.Brunel (currently a synonym of P. maderaspatensis). Ralimanana \& Hoffmann (2011), based on recommendations by Kathriarachchi et al. (2006), removed all other species from P. subg. Isocladus, but as demonstrated here, this was premature. All species resolved here in clade A were previously classified in P. subg. Isocladus by different authors (Brunel, 1987; Webster, 2001b). Phyllanthus subg. Isocladus is here found to be larger than the monospecific definition proposed byRalimanana \& Hoffmann (2011), but smaller than Webster's (1956) original conspectus (which includes former sections currently recognized as distinct subgenera).
Clade B contains 13 sampled species of Phyllanthus subg. Macraea, which are sister to four sampled species of subg. Ceramanthus (Fig. 7-4; PP 1.0). Three sections were included, of which P. subg. Ceramanthus sect. Cluytopsis Müll.Arg. was found to be sister to a clade comprising sect. Anisolobium Müll. Arg. and sect. Bivia Jean F.Brunel \& Jacq.Roux. Unfortunately, we were not able to sample the type of P. subg. Ceramanthus, P. albidiscus (Ridl.) Airy Shaw. However, similarities in habit, branching type, flower morphology, most notably the fused connectives, rather large anthers and pantoporate pollen with macro-reticulate exine (Punt 1972; Wu et al. 2016), are synapomorphies for P. subg. Ceramanthus, confirming that these species belong to the same group. Phyllanthus virgatus G.Forst. is currently regarded

Chapter 7

as a widespread species occurring from India to the Pacific. This study includes samples from Asia and Australia, which were found to be non-monophyletic. Given the morphological variation exhibited across this complex, several other species have been proposed and some subsequently subsumed (e.g., Hunter \& Bruhl, 1997; Verwijs et al. 2019). Denser sampling across French Polynesia and including the type region is needed to improve species delimitation. Phyllanthus subg. Kirganelia was found to be polyphyletic with species found in clades C and F (Figs. 7-3, 7-4). Phyllanthus sect. Anisonema (A.Juss.) Griseb. and sect. Polyanthi Jean F. Brunel were furthermore found to be paraphyletic, with sect. Brazzeani Jean F.Brunel \& Jacq.Roux, sect. Hemicicca (Baill.) Müll.Arg. and sect. Omphacodopsis Jean F.Brunel nested within each, respectively ($\mathrm{PP}=1.0$ for both). In the phylogeny of Kathriarachchi et al. (2006), P. acidus (L.) Skeels was part of a clade separate from other species of P. subg. Kirganelia, but no subsequent transfers were made. The sole species of P. subg. Kirganelia sect. Ciccopsis G.L.Webster, P. pseudocicca Griseb., has only been collected once and has not been included in any phylogenetic study. Based on its Neotropical distribution, free stamens and inflorescence structure, it is likely related to species of clade F. Phyllanthus subg. Kirganelia (clade C) is sister to a clade that includes subg. Eriococcus and part of subg. Phyllanthus. All sections of P. subg. Eriococcus were sampled (clade C2) and sect. Eriococcus and sect. Emblicastrum were found to be paraphyletic (Fig. 7-4). Phyllanthus sect. Scepasma (Blume) Müll.Arg., sect. Nymphanthus (Lour.) Müll.Arg. and sect. Eriococcodes should be subsumed within sect. Emblicastrum and sect. Eriococcus, respectively. Clade C also consists of a clade of Australian species (clade C3), which are all currently placed in the polyphyletic P. subg. Phyllanthus. The majority of species belong to P. sect. Lysiandra (F.Muell.) G.L.Webster, originally published at subgeneric rank by Mueller (1859) with P. subcrenulatus F.Muell. as the type. Two species in this clade were placed by Webster (2001a, b) in P. subg. Phyllanthus sect. Antipodanthus G.L.Webster, together with several Neotropical species. However, the Neotropical samples are nested within the strongly supported American clade E (PP 1.0). The Australian species of P. sect. Antipodanthus should be transferred to sect. Lysiandra (see Webster [2020], undated manuscript "Outline of Australian Phyllanthus"), and clades C1, C2 and C3 should be treated at the same taxonomic rank as they are each morphologically very different (see below).

In clade D, Phyllanthus subg. Tenellanthus is sister to a clade containing subg. Swartziani (G.L.Webster) Ralim. \& Petra Hoffm. and subg. Afroswartziani (PP 1.0), although there is some incongruence between the nuclear and chloroplast datasets (suppl. Figs. $\mathrm{S} 1, \mathrm{~S} 2$; see above). In our analysis, the sampling of P. subg. Swartziani was only expanded with two extra species (P. fraternus G.L.Webster, P. phillyreifolius Poir.). The position of P. phillyreifolius in subg. Swartziani as sister to the other species (Fig. 7-4, PP 0.98) is unexpected. This species from the Mascarenes was placed in P. subg. Afroswartziani by Bouman et al. (2018a), which was confirmed in the nuclear dataset (suppl. Fig. 7-S1), but not in the

Phylogenetics of the genus Phyllanthus

chloroplast or total datasets (suppl. Fig. 7-S2; Figs. 7-3, 7-4). In the nuclear dataset, P. phillyreifolius was resolved as sister to a clade comprising Madagascan species (suppl. Fig. 7-S1, PP 1.0), which is geographically more congruent. The Neotropical species P. stipulatus (Raf.) G.L.Webster was resolved as part of subg Afroswartziani. This indicates a dispersal separate from clade E to the Neotropics (also found by Falcón et al. 2020: see Small Neptropical Clade). Falcón et al. (2020) did not include more African taxa in their phylogenetic study, but suggested to include the Neotropical P. subsect. Pentaphylli within subg. Afroswartziani without discussing placement in any extant section. The sampling of P. subg. Afroswartziani was greatly expanded in this study, with additional samples from sect. Callidisci Jean F.Brunel, sect. Odontadenii Jean F.Brunel and sect. Praephyllanthus Jean F.Brunel. Aside from these sections, there are currently no other (sub-)sectional groupings within P. subg. Afroswartziani, but our results show that this subgenus comprises two major clades. To retain previously defined sections, new groups should be defined that can be morphologically distinguished. Brunel (1987) proposed several groups, but did not validate the names. A new study of these mostly African species could result in a viable sectional classification, but we raise serious doubt whether the sections should be retained in their current form.

Clade E consists of species from the Neotropics and West Indies, but some were originally classified in mostly Palaeotropical subgenera (e.g., Phyllanthus subg. Emblica and subg. Gomphidium). The phylogenetic study of Falcón et al. (2020) also focused on this clade, and they included more species of Phyllanthus from the West Indies, but not from South America. Three main groups are distinguished in clade E , but the relationship between them is only resolved in our analysis based on the reduced dataset (suppl. Fig. 7-S8), designated as clades E1-E3. Clade E1 consists of low sprawling shrubs (P. subg. Emblica sect. Pityrocladus) and herbs (P. subg. Phyllanthus) and was found to be sister to a clade of P. subg. Conami sect. Nothoclema (E2) and a large part of subg. Xylophylla (E3) (Fig. 7-4, PP 1.0). Phyllanthus subg. Phyllanthus, as discussed above, is polyphyletic with other species resolved in clades C3 and F1. Phyllanthus subg. Phyllanthus in clade E contains the type, P. niruri L., and sect. Antipodanthus, sect. Loxopodium G.L.Webster (with sect. Salviniopsis Holm-Niels ex Jean F.Brunel nested within) and sect. Choretropsis Müll.Arg. Phyllanthus subg. Conami is retrieved in clades E2 and E3, each clade containing species of different sections (sect. Nothoclema and sect. Hylaeanthus G.L.Webster, respectively). The sister relationship of P. subg. Conami sect. Hylaeanthus and subg. Xylophylla sect. Brachycladus G.L.Webster is surprising: while they are similar in vegetative characters and staminate flowers (Webster, 2004), they differ in pollen, inflorescence structure and fruit type, possibly indicating a shift in pollinator and/or seed disperser. Phyllanthus subg. Xylophylla as defined by Webster (1958) is morphologically heterogeneous, including species with phylloclades (Fig. 7-1), non-phyllanthoid branching (sect. Elutanthos), and very variable floral characteristics. This might underlie the apparent polyphyly

Chapter 7

of the subgenus. The majority of species are found in clade E3, with P. purpusii Brandegee sister to all other species of clade E (PP 1.0). The placement of P. sellowianus (Klotzsch) Müll.Arg. received low support by Kathriarachchi et al. (2006) and Falcón et al. (2020) and was not confirmed here, instead being resolved as sister to other species of clade E1 (Fig. 7-4; PP 0.83). Clade E3, excluding P. vaccinifolius (Müll. Arg.)Müll.Arg., should be treated as subg. Xylophylla, but several issues need to be addressed. Falcón et al. (2020) did not suggest many changes to the sectional classification of P. subg. Xylophylla compared to Webster (1958). Phyllanthus subg. Cyclanthera was found both here and by Falcón et al. (2020) to be nested within clade E3 with a particularly long branch. Other parts of clade E (Fig. 7-4) do not differ much from clades I-IV of Falcón et al. (2020), but we do find that P. sect. Williamia (Baill.) Müll.Arg. is paraphyletic, while Falcón et al. (2020) found a weakly supported monophyletic group sister to sect. Orbicularia (Baill.) Griseb. Our results indicate that P. subg. Xylophylla is best to be circumscribed and restricted to clade E3 similar to Falcón et al. (2020), but that subg. Cyclanthera and subg. Conami sect. Hylaeanthus should be subsumed within it. Phyllanthus subg. Xylophylla, as defined by Webster (1958), has clypeate pollen as an apomorphy, but the apparent polyphyly and inclusion of other groups found here to be nested within it, indicates that this feature was lost independently several times. Webster (2002b) treated P. sect. Microglochidion (Müll.Arg.) Müll.Arg. and sect. Pityrocladus G.L.Webster within the Palaeotropical subg. Emblica, thereby creating a group with a disjunct distribution. The Neotropical sections are here found to be part of clades E3 and E1 and should be treated separately from other species of P. subg. Emblica (clade G). The Palaeotropical species of P. subg. Emblica (clade G) formed a monophyletic group, with the exception of P. rufuschaneyi, which was classified in subg. Gomphidium (Bouman et al. 2018b). This woody shrubwas retrieved as sister to the herbaceous P. subg. Emblica sect. Urinaria (PP 1.0) and should be transferred. Phyllanthus sect. Emblica also consists of woody shrubs and trees, and it is likely that P. urinaria shows a shift to herbaceous habit from a woody ancestor. If P. rufuschaneyi is treated in sect. Urinaria, then the group becomes even less distinguishable from sect. Emblica and both could be combined.

The species of Phyllanthus from Madagascar have received recent taxonomic revisions (Ralimanana \& Hoffmann 2011, 2014; Ralimanana et al. 2013) that also updated several subgenera following the results of Kathriarachchi et al. (2006). Previous placements in P. subg. Afroswartziani are confirmed and they formed a single clade (PP 1.0) related to other African species. Other subgenera were here retrieved in clade F1, but not all are monophyletic. The relationship found here in clade F represents the highest contrast with the phylogeny presented by Kathriarachchi et al. (2006). Support for the relationships between clades H-O in their phylogeny (Kathriarachchi et al. 2006: fig. 3) was lower for major clades. The topological changes, found here with stronger support, probably result fromthe increased number of markers and samples used. Clade F1 here consists
of several sections of P. subg. Kirganelia (discussed above) and subg. Betsileani, subg. Menarda, subg. Anesonemoides and part of subg. Gomphidium, all from Madagascar. Phyllanthus subg. Menarda is nested within a clade of Madagascan species in subg. Gomphidium, which is also mixed with the polyphyletic subg. Anesonemoides. This is a complicated group, and for the remaining species of P. subg. Gomphidium in Madagascar (Hoffmann \& McPherson 2003; Ralimanana \& Hoffmann 2011), a different name should be selected with some scrutiny on how many groups should be retained. Phyllanthus subg. Gomphidium was presumed to have a pantropical distribution with one species from Guatemala (P. tuerckheimii G.L.Webster, here found to be related to subg. Conami sect. Nothoclema; clade E2, PP 0.97), some from Madagascar (clade F1), East Malesia and New Caledonia (clades F2 and G). The majority of species in P. subg. Gomphidium were retrieved in clade F2 (PP 1.0), which contains four sections divided into two major clades all from Australia, East Malesia and NewCaledonia. Phyllanthus sect. Leptonema was found to be nested within sect. Adenoglochidion as sister to P. vulcani Guillaumin (Fig. 7-4; PP 0.67),while sect. Nymania was resolved as paraphyletic in the reduced dataset (suppl. Fig. 7-S8) with regard to sect. Gomphidium. The New Caledonian species were extensively treated by Schmid (1991), who recognized some groups, but opted not to classify them in separate subsections. The high diversity of species (>100) in P. subg. Gomphidium in Asia and the Pacific has been linked to a possible co-diversification event with its mutualistic moth pollination (Kawakita \& Kato 2004a). Three herbaceous desert species from Australia, doubtfully considered as part of P. subg. Phyllanthus sect. Lysiandra by Bouman et al. (2018a), were found to be closely related to species of subg. Gomphidium from New Caledonia (Fig. 7-4; PP 0.7), and they should be transferred. The Australian desert species appear to represent a specialized offshoot within P. subg. Gomphidium, possibly driven by aridification. We confirm previously found relationships between the genera Breynia, Synostemon, Glochidion and Phyllanthus subg. Phyllanthodendron from Pruesapan et al. (2012) (here as clades H and I). Phyllanthus subg. Phyllanthodendron is paraphyletic and consists of two clades, with species of sect. Phyllanthodendron sister to a clade containing species of sect. Pseudoactephila Croizat and the genus Glochidion into which they should be transferred.

Morphological character evolution

Several morphological characters have been shown to be useful when distinguishing the various infrageneric taxa within Phyllanthus. A recent study by Gama et al. (2016) suggested that the two perianth whorls in P. urinaria-and by extension in subg. Emblica and the genera Breynia and Glochidion-could be distinguished as petals and sepals. However, a perianth with two whorls is also found in P. subg. Macraea, subg. Ceramanthus (Brunel 1987), subg. Gomphidium (1991) and several others. They are often indistinguishable (except in P. subg. Ceramanthus and subg. Gomphidium) and are perhaps better referred to as tepals (see Ralimanana

Chapter 7

\& Hoffmann 2011), but are generally treated as sepals in taxonomic treatments (Webster 1956; Chakrabarty \& Balakrishnan 2018; Verwijs et al. 2019). Structures identified as petals also occur adjacent to the sepal whorl in other genera within Phyllanthaceae such as the genera Actephila Blume, Bridelia Willd. and Cleistanthus Hook.f. ex Planch. As the floral ontogeny has only been studied in a limited number of species, we cannot draw any conclusion on whether this is a true synapomorphy, as suggested by Gama et al. (2016). Phyllanthoid branching occurs in the majority of Phyllanthus species but, as found by Kathriarachchi et al. (2006), with several independent reversals, including desert species with a more sprawling habit and the aquatic species P. fluitans Benth. ex Müll.Arg. The functional "advantage" of phyllanthoid branching has not been extensively studied, although from the few studies available, it does not seem to be related to chromosome number (see Webster \& Ellis 1962; Bancilhon 1971). Individual plants often exhibit subphyllanthoid branching within the first few nodes (Fig. 7-1E) (Webster 1956). Some species, such as those in P. subg. Kirganelia sect. Pseudomenarda Müll.Arg. (clade C 1) and species in clade C3, retain sub-phyllanthoid branching in maturity (Brunel 1987; Telford et al. unpub. data).

Loss of nectar secretion in Breynia, Synostemon and Glochidion was interpreted as a synapomorphy for these genera, distinguishing them from Phyllanthus (Radcliffe-Smith 2001). The loss of the nectar disc in Glochidion is likely to have occurred independently as Glochidion is more closely related to the paraphyletic P. subg. Phyllanthodendron (Fig. 7-4). The loss of the disc has also been correlated within Glochidion to the presence of a pollination mutualism with moths (Kawakita \& Kato, 2009), which might have led to a co-diversification of plant and pollinator. Moths were also found to pollinate flowers in P. subg. Gomphidium (clade F2) (Kawakita \& Kato 2004a). A similar loss or reduction of the nectar disc is found in several species (Fig. 7-4) (Schmid, 1991; Kawakita \& Kato 2004a). The nectar disc has been lost independently at least four times (clades F1, F2, H and I). Whether this loss in P. acidus is related to a similar pollination system requires investigation (cf. Webster 1958).

Fruit types within the genus Phyllanthus are sometimes characteristic of taxonomic groups. They are usually explosive schizocarpic capsules that rarely exceed 1 cm in diameter (Fig. 7-1H). Berries have evolved several times independently and are found in the genus Flueggea and within Phyllanthus clades C1, E3 and F1. Some species in Breynia produce tardily dehiscent, berry-like fruits. Berries in Phyllanthus are often small and hypothesized to be associated with dispersal by birds (Luo et al. 2011a). A marked transition in fruit morphology is found in P. subg. Kirganelia sect. Polyanthi and sect. Omphacodopsis (clade F1): species of sect. Omphacodopsis are characterized by inflated capsules with a very thin exocarp, whereas species in sect. Polyanthi have apple-like berries (Brunel 1987), which indicates a remarkable shift in dispersal strategy. Similarly, the sister relationship between P. subg. Conami sect. Hylaeanthus and subg. Xylophylla sect.

Phylogenetics of the genus Phyllanthus

Brachycladus (clade E3) is accompanied by marked differences in fruit (capsules vs. berries) and pollen morphology (clypeate vs. porate) (Webster \& Carpenter 2002; Webster 2004). The potential correlation between these morphological shifts and their ecology requires field study to understand these interesting systems of evolutionary biology.

Staminate flowers show more morphological variation between clades than pistillate flowers and are often more informative for distinguishing taxa. Pistillate flowers are usually composed of two whorls of tepals, an annular nectar disc and the 3-locular ovary with bifid stigmas (although exceptions characterize certain groups). The number of stamens is variable between the genera Plagiocladus to Flueggea, but within Phyllanthus and the genera nested within, the presence of mainly three stamens appears to be conserved (Fig. 7-3). Phyllanthus subg. Kirganelia (clade C) is characterized by staminate flowers with usually five stamens fused in two whorls (two outer free stamens and three inner with fused filaments). It is sister to P. subg. Eriococcus (clade C2), which has staminate flowers with four sepals arranged in a cross (Fig. 7-1J) and two fully connate stamens, and a clade C3, in which the species all have three stamens with more or less fused filaments and sometimes enlarged connectives (Telford, unpub. data). The number of pollination studies within Phyllanthus is expanding (e.g., Kato et al. 2003; Kawakita \& Kato 2004a, 2009; Luo et al. 2011a; Kato \& Kawakita 2017; Kawakita et al. 2019), but most have recovered variations within the mutualism with moths while the pollination system in many taxa is still unknown. In clade C, flowers of P. subg. Kirganelia (clade C1) are pollinated by mutualistic moths (Kawakita \& Kato 2009), but the pollination system is not known in clades C2 and C3. With recent findings of a New World dispersal and pollination by leafflower moths (Kawakita et al. 2019), the question arises of how prolific this mutualism is and whether other pollination systems might depart from the standard mechanism. Unfortunately, the pollination system of other genera in tribe Phyllantheae including Margaritaria and Heterosavia remains unknown, although species in cladeAare often parasitized (not actively pollinated) by Epicephala moths (Kato \& Kawakita 2017). Webster (1957, 1958) created many new sections for the West Indian species of P. subg. Phyllanthus and subg. Xylophylla, mainly because he encountered a large variation in habit and flowers: shrubs with phylloclades and flowers with three stamens and six sepals in sect. Xylophylla (Fig. 7-1) to low shrubs with whorled stamens, sometimes more than 10, in sect. Orbicularia (Webster 1958). The morphological reconstruction done by Falcón et al. (2020: figs. 4 \& 5) shows shifts in the West Indian species in disc morphology, stamen number and branching type. With more information on the ecology of the various species, this group might be ideal to study island diversification and its causes.

Three main types of pollen are found in tribe Phyllantheae, viz. pantoporate, porate with usually three colpi, or clypeate (Webster \& Carpenter 2002, 2008). Colporate pollen is found in almost all clades except in clade B, in

Chapter 7

which species of Phyllanthus subg. Macraea are characterized by clypeate pollen, whilst those of subg. Ceramanthus have pantoporate pollen without distinct colpi (Punt, 1972; Webster \& Carpenter 2008). Clypeate pollen has evolved independently in clade E (in P. purpusii, which is sister to all other species of clade E), P. sellowianus of clade E1 and the majority of species in clade E3 (see Webster 1958; Webster \& Carpenter 2008). Webster \& Carpenter (2002) offered several hypotheses on the origin of clypeate pollen in Neotropical Phyllanthus species, but these require further study. The absence of clypeate pollen in P. subg. Cyclanthera and subg. Conami sect. Hylaeanthus indicates two independent losses of this particular pollen type in clade E3. Pollen in P. subg. Cyclanthera is characterized by a central raised pilum, which is unique among angiosperms (Webster \& Carpenter 2002; Webster 2002b). Species of P. subg. Cyclanthera are herbs, and the staminate flowers have a transformed disc-like androecium (Webster 1957, 1958, 2002b), all in stark contrast to other species in clade E3, which are all woody.

New issues are identified in the infrageneric classification of Phyllanthus, calling for a re-assessment of the diagnostic characters previously used. Many previous classifications relied on the branching system or pollen morphology (Webster 1956, 1957, 1958; Brunel, 1987), but the independent losses of character states have obfuscated relations between various groups.

Conclusion

Resolving the paraphyly of the genus Phyllanthus has been the topic of discussion in several phylogenetic studies of tribe Phyllantheae (Kathriarachchi et al. 2006; Pruesapan et al. 2008, 2012; Van Welzen et al. 2014a). Similar situations occur in other giant genera, like Euphorbia L. and Syzygium Gaertn., which were found to be paraphyletic and subsequently combined with the genera nested within (see Bruyns et al. 2006; Craven \& Biffin 2010; Ahmad et al. 2016). Seemingly, suggestions for combining taxa often provide less objections, especially if one group is already large, than doing the opposite, which would lead to recognizable units. Breynia, Synostemon and Glochidion are currently retained as distinct genera from Phyllanthus (Van Welzen et al. 2014a), while the clades that comprise Phyllanthus can be differentiated by looking at several characters. The morphological patterns and taxonomic problems highlighted here and by Kathriarachchi et al. (2006) support the recognition of individual clades as distinct taxa. In fact, many of the now recognized infrageneric taxa have to be redefined after our analysis as they are poly- or paraphyletic. Based on the recognizability of the monophyletic groups, redefining them as genera (which was once the case) is the best option, as, in spite of the many name changes, it provides a better reflection of the evolutionary history of Phyllanthus s.l. and will in the future improve identifications greatly. Instead of one giant genus, where identification is difficult and evolution is only depicted by the various subgenera, it is more sensible and worthwhile to recognize separate genera that highlight the morphological variation within the tribes. Additionally,
patterns of floral convergence can be discussed in the light of separate lineages, highlighting the complex diversity of tribe Phyllantheae. Before Müller (1863, 1865, 1866) created a single large genus with many sections, several groups were treated as separate genera. The subgeneric classification proposed by Webster (1956, 1957, 1958), and expansions incorporating results from various morphological studies (notably Punt 1967, 1972, 1980, 1986, 1987), laid the foundation for discussing species relationships within this large group. Building on the framework presented by Webster (1956) and accommodating recent phylogenetic data will result in a useful evolutionary classification for tribe Phyllantheae. A number of morphological characters, such as branching, habit, floral and fruit morphology help to distinguish the groups, and we illustrate many of these characters in Figs. $7-1$ and 7-3. The current study clarifies the classification uncertainty around Phyllanthus s.l. and provides biologists and ecologists (e.g., Kato \& Kawakita 2017) with a sound and useful phylogenetic and taxonomic framework. The sampling of about 10% of Phyllanthus in Kathriarachchi et al. (2006) would have resulted in a larger number of genera needing to be recognized, but our current phylogeny shows good support at major nodes, and we therefore recommend dismantling Phyllanthus into nine genera for which names are already available. These will roughly be clades A-I (Figs. 7-3, 7-4), while retaining Synostemon as separate from Breynia, and treating P. subg. Kirganelia (clade C1), subg. Eriococcus (clade C2) and sect. Lysiandra (clade C3) as separate taxa. We will formalize these changes in a separate paper, which is in preparation.

Acknowledgments

This work was done as part of the Ph.D. research of the main author, funded by the Hortus botanicus Leiden (Leiden University) and hosted by Naturalis Biodiversity Center. Fieldwork was funded by the Alberta Mennega Stichting, which is gratefully acknowledged. The second author thanks the Leiden University Fund (LUF) for their support of the Chair Botanical Gardens and Botany of Southeast Asia. The last author thanks the Treub Maatschappij, the Society for the Advancement of Research in the Tropics, for their support of the Ornstein Chair in Tropical Plant Biogeography. The material for this project was gathered thanks to a large list of contributors. The DNA banks of Kew and Missouri Botanical Garden are gratefully acknowledged for allowing us to use some of their DNA samples. Sampling of herbarium material was done at the Naturalis Biodiversity Center (L) and the N.C.W. Beadle Herbarium (NE). Critical samples of rare tropical American species were kindly provided by Ellen Dean and Jean Shepard, Herbarium of the University of California, Davis (DAV). The following contributors are thanked for their generous help in supplying us with plant material for our DNA work: Shuichiro Tagane (Center for Asian Conservation Ecology, Kyushu University), Mark Reynders (Meise Botanical Garden), Mark Nicholson (Plants for Life), the botanical garden of Ghent, Kate Armstrong (NY), David Orr (Waimea Valley), Renyong Yu

Chapter 7

(Naturalis Biodiversity Center), Anett Krämer (Botanischer Garten der Universität Bonn), Stig Pederson (Booderee Botanic Garden), Richard Chung (Forest Research Institute Malaysia),Marianne Lauerer (Ökologisch Botanischer Garten Universität Bayreuth), Peter Brownless (Royal Botanic Garden Edinburgh), Holly Forbes (University of California, Botanical Gardens at Berkeley), Reinout Havinga (Hortus botanicus Amsterdam), Hans Persoon (Utrecht Botanical Gardens),Michael Jay Calaramo (Northwestern University Ecotourism Park and Botanic Garden), Antony van der Ent (University of Queensland). The photos supplied by M.S. Nuraliev were made during expeditions of the Joint Russian-Vietnamese Tropical Scientific and Technological Center, which are gratefully acknowledged. Open Access funding enabled and organized by ProjektDEAL.

Phylogenetics of the genus Phyllanthus

Appendix 7-1. GenBank accessions numbers used in phylogenetic analyses. Taxon name, origin, collector and collection number, herbarium code, accession numbers for ITS, PHYC, accD-psaI, matK, trnS-trnG. Newly generated sequences are in bold. Accessions from DNA banks of Kew and Missouri Botanical Garden are underscored. The majority of published sequences were taken from Kathriarachchi et al. (2006), Pruesapan et al. $(2008,2012)$ and Kawakita \& Kato (2009).

Actephila excelsa (Dalzell)Müll.Arg., China, Yunnan, Xishuangbanna Tropical Botanical Garden, Bouman \& Yong RWB057 (HITBC), -,MN904188,MN915296, MN916079, -; Antidesma bunius (L.) Spreng., Unknown, Ghent living collection xx0Gent 19002015, no voucher, -,MN904189, -,MN916080, -; Breynia amoebiflora (Airy Shaw) Welzen \& Pruesapan, Thailand, Chiang Mai, Maxwell 90-721 (L), -, -, -, EU643747, -; B. amoebiflora (Airy Saw) Welzen \& Pruesapan, Thailand, Kerr 19655 (P), GQ503379, GQ503437, GQ503498, -, GQ503562; B. androgyna (L.) Chakrab. \& N.P.Balakr. (Breynia androgyna 1), Thailand, Chachoengsao, Van Welzen 2006-4 (L), U623563,GQ503439,GQ503500, EU643748, GQ503564; B. androgyna (L.)Chakrab.\&N.P.Balakr. (Breynia androgyna 3), Sri Lanka, Kathriarachchi et al. 40 (K), AY936747, GQ503459, GQ503517, -, GQ503588; B. asteranthos (Airy Shaw)Welzen \& Pruesapan, Thailand, Nakhon Sawan, Esser 99-13 (L), EU623565, -, GQ503501, EU643751, -; B. bicolor (Craib) Chakrab. \& N.P.Balakr., Thailand, ChiangMai, Esser 99-21 (L), EU623567, -, GQ503503, EU643754, -; B. brevipes (Müll.Arg.) Chakrab. \& N.P.Blakr., Thailand, Phetchaburi, Middleton et al. 974 (L), EU623568, -, -, EU643755, -; B. discigera Müll.Arg., Indonesia, N. Sumatra, Takeuchi et al. 18873 (L), EU623550, GQ503410, -, EU643736, -; B. discocalyx (Welzen)Welzen \& Pruesapan, Thailand, Ranong, Beusekom \& Phengklai 566 (L), GQ503387, -, -, EU643757, GQ503569; B. disticha J.R.Forst. \& G.Forst. (Breynia disticha 1), Netherlands, Utrecht botanical garden, Bouman \& Verwijs RWB024 (L),MN915814,MN904191,MN915298,MN916082, MN915581; B. disticha J.R.Forst.\& G.Forst. (Breynia disticha 2), Singapore, Singapore botanical garden, Yu 63 (L), MN915815, MN904192, MN915299, MN916083, MN915582; B. fruticosa (L.) Müll.Arg., China, Hong Kong, Bouman et al. RWB025 (L), MN915816, MN904193, MN915300, MN916084, MN915583; B. garrettii (Craib) Chakrab. \& N.P.Balakr., China, Guinzhou, Sino-American Guizhou Botanical Expedition 1872 (L), EU623570, GQ503444, GQ503507, EU643760, GQ503572; B. glauca Craib, Thailand, Nong Khai, Pooma et al. 2702 (L), EU623551, GQ503411, -, EU643737, GQ503532; B. hirsuta (Beille) Welzen \& Pruesapan, Thailand, Larsen et al. 33993 (P), GQ503391, GQ503445, -, EU643762, -; B. kerrii (Airy Shaw) Welzen \& Pruesapan, Thailand, Tak, Van Beusekom \& Phengklai 1065 (P), EU623574, GQ503452, -, EU643764, GQ503579; B. lanceolata (Hook.f.) Welzen \& Pruesapan, Thailand, Chanthaburi, Esser 2001-4 (L), EU623584, -, -, EU643774, -; B. lithophila Welzen \& Pruesapan, Thailand, Phonsena et al. 5595 (L), -, GQ503464, GQ503522, -, GQ503595; B. macrantha (Hassk.) Chakrab.

Chapter 7

\&N.P.Balakr.,Ausralia,Queensland, Telford\&Bruhl 13107 (L),GQ503396, -, -, -, -; B. macrantha (Hassk.) Chakrab.\&N.P.Balakr., Thailand, Maxwell 95-1125 (L), -, -, -, MT551232, -; B. cf. macrantha (Hassk.) Chakrab. \& N.P.Balakr., China, Yunnan, Xishuangbanna Tropical Botanical Garden, Bouman \& Yong RWB050 (HITBC), MN915813, MN904190, MN915297, MN916081, MN915580; B. micrasterias Breynia micrasterias (Airy Shaw) Welzen \& Pruesapan, Malaysia, Sarawak, Erwin \& Chai S 27479 (L), EU623578, GQ503455, -, EU643768, GQ503582; "B. novoguineensis" msc. name, sp. nov., Indonesia, Papua, Baker et al. 37 (L), EU623549, GQ503409, GQ503472, -, GQ503530; B. oblongifolia (Müll.Arg.) Müll. Arg., Australia, Forster 32745 (NE), GQ503355, GQ503414, GQ503475, -, GQ503534; B. orbicularis (Craib) Welzen \& Pruesapan, Laos, Vientiane, Soejarto \& Southavong 10792 (L), EU623580, GQ503456, GQ503513, AY936645, GQ503584; B. poomae (Welzen \& Chayam.) Welzen \& Pruesapan, Thailand, Chiang Rai, Phonsena et al. 5245 (L), EU623582, GQ503457, GQ503515, EU643771, GQ503586; B. repens Welzen \& Pruesapan, Thailand, Middleton et al. 2287 (L), GQ503385, -, -, -, GQ503566; B. retusa (Dennst.)Alston, Sri Lanka, Kathriarachchi et al. 43 (K), -, -, -,AY936565, -; B. retusa (Dennst.)Alston, Laos,Vientiane, Soejarto \& Southavong 10783 (L), GQ503358, GQ503417, GQ503477, -, GQ503536; B. rostrata Merr., China, Yunnan, Xishuangbanna Tropical Botanical Garden, Bouman \& Yong RWB055 (HITBC), MN915817, MN904194, MN915301, MN916086, MN915585; B. similis (Craib) Welzen \& Pruesapan (Breynia similis 1), Chiang Mai, Thailand, Larsen et al. 46639 (L), GQ503399, GQ503462, GQ503520, EU643778, GQ503592; B. similis (Craib) Welzen \& Pruesapan (Breynia similis 2), China, Yunnan, Xishuangbanna Tropical Botanical Garden, Bouman \& Yong RWB054 (HITBC), MN915818, MN904195, MN915302, MN916085, MN915584; B. spatulifolia (Beille) Welzen \& Pruesapan, USA, Honolulu, Wong s.n. (L), EU623588, -, GQ503523, AY936647, GQ503596; B. stipitata Müll. Arg., UK, RBG Kew, living collection from Australia, Queensland, Chase 14461 (K), -, -, -, AY552422, -; B. stipitata Müll.Arg., Australia, Bruhl 2478 (NE), GQ503359, GQ503418, GQ503478, -, GQ503537; B. thorelii (Beille) Welzen \& Pruesapan, Thailand, Chiang Mai, Van Welzen 2006-1 (L), EU623590, GQ503468, GQ503526, EU643782, GQ503600; B. thyrsiflora (Welzen) Welzen \& Pruesapan, Thailand, Kanchanaburi, Kostermans 765 (L), EU623591, GQ503469, GQ503527, EU643783, GQ503601; B. vestita Warb., Indonesia, Papua, Barker \& Beaman 70 (L), EU623553, GQ503419, GQ503480, EU643738, GQ503540; B. villosa (Blanco)Welzen \& Pruesapan, Thailand, Phengklai et al. 12122 (BKF), EU623593, -, -, EU643786, -; B. vitis-idea (Burm.f.)
C.E.C.Fisch. (Breynia vitis-idea 1), Vietnam, Tagane et al. V388 (L), MN915819, MN904184, MN915303, MN916087, -; B. vitis-idea (Burm.f.) C.E.C.Fisch. (Breynia vitisidea 2), Vietnam, Tagane et al. V404 (L), MN915820,
MN904185,MN915304,MN916088, MN915586; B. vitis-idea (Burm.f.) C.E.C.Fisch. (Breynia vitis-idea 3), Philippines, Majaducon 5676 (L), MN915821,MN904186, MN915305,MN916089, -; B. vitis-idea (Burm.f.) C.E.C.Fisch. (Breynia vitis-idea 4),

Phylogenetics of the genus Phyllanthus

Singapore, Singapore botanical garden, Yu 157 (L), MN915822, MN904187, MN915306, MN916090, MN915587; Bridelia tomentosa Blume, China, Yunnan, Xishuangbanna TropicalBotanicalGarden, Bouman\&Yong RWB063 (HITBC), -,MN904196,MN915307,MN916359, -; Flueggea virosa (Roxb. ex Willd.) Royle (Flueggea virosa 1), China, Yunnan, Xishuangbanna Tropical Botanical Garden, Bouman \& Yunhong RWB068 (HITBC), MN915824, MN904197, MN915308, MN916091, -; Flueggea virosa (Roxb. ex Willd.) Royle (Flueggea virosa 2), Australia, Mitchel 2890 (BRI), MN915823, -, -, MN916104, -; Flueggea virosa (Roxb. ex Willd.) Royle (Flueggea virosa 3), Indonesia, Chase 2104 (K), -, -, -, AY552426, -; Flueggea virosa (Roxb. ex Willd.) Royle (Flueggea virosa 3), Thailand, Larsen et al. 45328 (L), -, GQ503420, GQ503481, -, -; Flueggea virosa (Roxb. ex Willd.) Royle (Flueggea virosa 4), Singapore, Singapore botanical garden, Yu 64 (L), MN915825, MN904198, -, MN916092, MN915588; Glochidion benthamianum Domin, Australia, Bruhl 1026 (NE), GQ503363, -, GQ503482, -, GQ503541; G. ellipticum Wight (Glochidion ellipticum 1), China, Yunnan, Xishuangbanna Tropical Botanical Garden, Bouman \& Yong RWB058 (HITBC), MN915826, MN904199, MN915310, MN916093, MN915589; G. ellipticum Wight (Glochidion ellipticum 2), China, Yunnan, Xishuangbanna Tropical Botanical Garden, Bouman \& Yong RWB061
(HITBC),MN915827,MN904200,MN915311,MN916094,MN915590; G. ellipticum Wight (Glochidion ellipticum 3), China, Yunnan, Xishuangbanna Tropical Botanical Garden, Bouman \& Yong RWB062 (HITBC), MN915829, MN904202, MN915309, MN916096, MN915591; G. eriocarpum Champ. ex Benth., China, Hong Kong, Bouman et al. RWB027 (L), MN915828, MN904201, -, MN916095, MN915592; G. ferdinandi (Müll.Arg.) Pax \& K.Hoffm., Australia, Bruhl 2457 (NE), GQ503366, GQ503421, GQ503484, -, GQ503543; G. harveyanum Domin, Australia, Bruhl 2527 (NE), GQ503368, GQ503423, GQ503486, -, GQ503545; G. lanceolarium (Roxb.) Voigt, China, Yunnan, Xishuangbanna Tropical Botanical Garden, Bouman \& Yong RWB064
(HITBC),MN915830,MN904203,MN915312,MN916097,MN915593; G.
lanceolatum Hayata, New Caledonia, Kawakita 116 (KYO), AY525687, FJ235327, -, FJ235235, -; G. lobocarpum (Benth.) F.M.Bailey, Australia, Bruhl 1146 (NE), GQ503371, GQ503424, GQ503488, -, GQ503548; G. philippicum (Cav.) C.B.Rob., Australia, Forster 29379 (NE), GQ503373, GQ503426, GQ503490, -, GQ503550; G. puberumGlochidion puberum (L.) Hutch., China, Guizhou, Chase 11460 (K), AY936659, -, -, AY552428, -; G. sphaerogynum (Müll.Arg.) Kurz (Glochidion sphaerogynum 1), Thailand, Van der Scheur 128 (L),MN915831, MN904204,MN91 5313,MN916280,MN915594; G. sphaerogynum (Müll.Arg.) Kurz (Glochidion sphaerogynum 2), Thailand, Van Welzen 2003-21 (L), EU623555, GQ503427, -, EU643740, GQ503551; G. wrightii Benth., China, Hong Kong, Bouman \& Liu RWB032 (L), MN915832, MN904205, MN915314, MN916098, MN915595; Heterosavia bahamensis (Britton) Petra Hoffm., USA, Fairchild tropical garden

Chapter 7

(cultivated), Wurdack D048 (US), AY936749, AY830381, -, AY830284, -; Leptopus chinensis (Bunge) Pojark., UK, Edinburgh Botanical garden (cultivated), Brownless s.n. (L), MN915833, MN904206, MN915315, MN916099, -; Lingelsheimia sp., Madagascar, Rabenantoandro et al. 1115 (MO), AY936662, AY830375, -, AY830272, -; Margaritaria anomala (Baill.) Fosberg, Madagascar, Ramison 413 (MO),MN915834, -, -,MN916100, -; M. discoidea (Baill.) G.L.Webster (Margaritaria discoidea 1), Kenya, Nicholson 1 (L), -,MN904208, MN915317,MN916102, -; M. discoidea (Baill.) G.L.Webster (Margaritaria discoidea 1), Kenya, Nicholson s.n. (L), -, MN904207, MN915316, MN916101, -; M. discoidea (Baill.) G.L. Webster (Margaritaria sp. Uganda), Uganda, Nicholson 3a (L), MN915835, MN904211, MN915320, MN916107, MN915597; M.
dubiumtraceyi Airy Shaw \& B. Hyland, Australia, Forster 29387 (BRI), -, -, MN935815, MN916103, -; M. indica (Dalzell) Airy Shaw, Singapore, Singapore botanical garden, Orr 80532, no voucher, -, MN904209, MN915318, MN916105, -; M. nobilis L.f., Puerto Rico, Orr 875422, no voucher, -, MN904210, MN915319, MN916106, MN915596; M. rhomboidalis (Baill.) G.L.Webster, Madagascar, Rabenantoandro et al. 656 (K), AY936665, -, -, AY936571, -; Notoleptopus decaisnei (Benth.) Vorontsov. \& Petra Hoffm., Australia, Evans 3222 (K), AM745836, -, -,AM745833, -;N. decaisnei (Benth.) Vorontsov.\&PetraHoffm.,Austr alia, Fraser 267 (L), -, GQ503431, GQ503491, -, GQ503555; Phyllanthus acidus (L.) Skeels, Thailand, VanWelzen 2003-14 (L),MN915836, GQ503432,GQ503492,MN916108, GQ503556; P. acuminatus Vahl (Phyllanthus acuminatus 1),Venezuela, Breteler 4238(WAG),MN915837,MN904212,MN915321, MN916109,MN915598; P. acuminatus Vahl (Phyllanthus acuminatus 2),Guatemala, Wallnöfer 6031 (U), MN915838, MN904213, MN915322, MN916110, MN915599; P. acutissimus Miq., Thailand, TRP-5004102 (BK), AB550090, -, -, -, -; P. aeneus Baill., New Caledonia, Kawakita 272 (KYO), -, FJ235352, -, FJ235260, -; P. amarus Schumach. \& Thonner (Phyllanthus amarus 1), Thailand, Van Welzen 2006-5 (L), EU623557, GQ503433, GQ503493, EU643742, GQ503557; P. amarus Schumach. \& Thonner (Phyllanthus amarus 2), Gabon, Wieringa 8189 (WAG), MN915847, MN904217, MN915331, MN916114, -; P. ambatovolanus Leandri, Madagascar, Randriamampionona et al. 51 (K), MN915848, MN904218,MN915332,MN916115, MN915605; P. angustifolius (Sw.) Sw., Germany, Bayreuth botanical garden living collection, Lauerer 091479, no voucher, MN915849, MN904219, MN915333, MN916116, MN915606; P. anisolobus Müll.Arg., Costa Rica, Liesner 14363 (U), MN915850, MN904220, MN915334, MN916117, MN915607; P. ankarana Leandri, Madagascar, Ralimanana et al. 663 (K), MN915851, MN904221, MN915335, MN916118, MN915608; P. ankaratrae (Leandri) Petra Hoffm. \& McPherson, Madagascar, Rakotonasolo \& Zachary 802 (K), MN915852, MN904222, MN915336, MN916119, MN915609; P. annamensis Beille (Phyllanthus annamensis 1), Vietnam, Yahara et al. V3843 (L), MN915853, MN904223, MN915337, MN916120, -; P. annamensis Beille (Phyllanthus annamensis 2), Vietnam, Tagane et al. V3863 (L),

Phylogenetics of the genus Phyllanthus

MN915854, MN904224, MN915338, MN916121, -; P. arbuscula (Sw.) J.F.Gmel., Belgium, Meisse living collection, Reynders 19074182 (L),MN915855,MN904226,M N915339,MN916123,MN915610; P. arenicola Casar., Brazil, Maas \& Carauta s.n. (U), -, MN905071, MN915340, MN916124, MN915611; P. attenuatus Miq., Venezuela, Breteler 4696 (WAG), MN915856, MN904304, MN915341, MN916125, MN915612; P. baccatus F.Muell. ex Benth., Australia, Mitchell PRP1514 (NE), -, -, MN915342, MN916126, MN915613; P. balgooyi Petra Hoffm. et a.J.M.Baker (Phyllanthus balgooyi 1),Malaysia, Sabah, Van der Ent, no voucher,MN915857, MN904227,MN915343,MN916300, MN915614; P. balgooyi Petra Hoffm. et a.J.M.Baker (Phyllanthus balgooyi 2), Malaysia, Sabah, Yu 192 (L),MN915858, MN904228, MN915344, MN916301, MN915615; P. balgooyi Petra Hoffm. et a.J.M.Baker (Phyllanthus balgooyi 3), Philippines, Yu 259 (L), MN915859, MN904229, MN915345, MN916324, MN915616; P. balgooyi Petra Hoffm. et a.J.M.Baker (Phyllanthus balgooyi 4), Philippines, Agoo 5700 (L), MN915860, MN904230, MN915346, MN916325, MN915617; P. beckleri Müll.Arg., Australia, Hosking 2680 (NE), MN915861, MN904231, MN915347, MN916127, MN915618; P. bernieranus Baill. ex Müll.Arg., Madagascar, Phillipson 5373 (K), MN915862, MN904232, MN915348, MN916128, MN915619; P. betsileanus Leandri, Madagascar, Labat 2402 (K), MN915863, MN904233, MN915349, MN916360, MN915620; P. boehmii Pax var. boehmii (Phyllanthus boehmii 1), Tanzania, Gereau 5007 (WAG), MN915864, MN904254,MN915350,MN916302,MN915621; P. boehmii Pax var. boehmii (Phyllanthus boehmii 2),Kenya,Wieringa 8841 (WAG),MN915865,MN904234, MN915351,MN916129,MN915622; P. boehmii Pax var. humilis Radcl.-Sm. (Phyllanthus boehmii 3), Tanzania, Bidgood 6838 (WAG),MN915866,MN904235, MN915352,MN916130, MN915623; P. boehmii Pax var. humilis Radcl.-Sm. (Phyllanthus boehmii 4), Zaire, Lisowski 13765 (WAG), MN915867, MN904303, MN915353, MN916131, MN915624; P. cf. boehmii Pax, Ethiopia, Friis 13159 (WAG), MN915883, MN904249, MN915371, MN916143, MN915635; P. bokorensis Tagane, Cambodia, Toyama et al. 1740 (FU), -, -, MN915354, MN916132, -; "P. bongensis" msc. name, sp. nov., Ethiopia, de Wilde 7858 (WAG), MN915868, MN904305, MN915355, MN916284, -; P. botryanthus Müll.Arg., Curacao, de Wilde 31 (WAG), MN915869, MN904255, MN915356, MN916133, MN915625; P. bourgeoisii Baill., New caledonia, McMillan 5201 (WAG), MN915870, MN905064, MN915357, MN916134, -; P. brasiliensis (Aubl.) Poir., Peru, Loreto, Pongo de Cainarachi, Ule 6408 (L),MN915871,MN904236, MN915358,MN916135, MN915626; P. bupleuroides Baill., New Caledonia, McPherson 18692 (MO),MN915872,MN904237,MN915359,MN916136, -; P. buxifolius (Blume)Müll.Arg. (Phyllanthus buxifolius 1), Singapore, Singapore botanical garden, Yu 163 (L), MN915873, MN904240, MN915360,MN916326, MN915627; P. buxifolius (Blume) Müll.Arg. (Phyllanthus buxifolius 2), Singapore, Singapore botanical garden, Yu 167 (L), MN915874, MN904241, MN915361, MN916285, MN915628; P. cf. buxifolius (Blume) Müll.Arg. (Phyllanthus cf.

Chapter 7

buxifolius 1), Philippines, Agoo 5659 (L), MN915884, MN904238, MN915372, MN916286, MN915636; P. cf. buxifolius (Blume) Müll.Arg. (Phyllanthus cf. buxifolius 2), Philippines, Agoo 5683 (L), MN915885, MN905070, MN915373, MN916287, MN915637; P. cf. buxifolius (Blume) Müll.Arg. (Phyllanthus cf. buxifolius 3), Philippines, Agoo 5738 (L), MN915886, MN904239, MN915374, MN916328, MN915638; P. caesiifolius Petra Hoffm. \& Cheek, Cameroon, Cheek 10376 (WAG), MN915875, MN904242, MN915362, MN916137, MN915629; P. calycinus Labill., Australia, Chase MWC 2163 (K), AY936674, AY579869, -, AY552446, -; P. carinatus Beille, Cambodia, Toyama et al. 3212 (FU), -, MN904243, MN915363, MN916138, -; P. caroliniensis Walter, Suriname, Groenendijk 55 (WAG), MN915876, -, MN915364, MN916139, MN915630; P. carpentariae Müll. Arg., Australia, Clarkson \& Neldner 8410 (L), MN915877, MN905063, MN915365, MN916140, MN915631; P. cf. carpentariae Müll.Arg., Australia, Hyland 8033 (L), MN915888, MN904256, MN915376, MN916147, MN915639; P. casticum P. Willemet, Madagascar, Wolhauser SW60172 (WAG), MN915878, MN904244, MN915366, MN916141, -; P. castus S.Moore (Phyllanthus castus 1),NewCaledonia, Mackee 16581 (L),MN915879,MN904246,MN915367,MN916327,MN915632; P. castus S.Moore (Phyllanthus castus 2), New Caledonia, McPherson 19255 (MO), MN915880, MN904245, MN915368, MN916304, -; P. caudatus Müll.Arg., New Caledonia, Kawakita 278 (KYO), -, FJ235351, -, FJ235259, -; P. cauticola J.T.Hunter \& J.J.Bruhl, Australia, Mitchell 837 (NE), MN915881, MN904247, MN915369, MN916303, MN915633; P. ceratostemon Brenan, Tanzania, Bidgood 6776 (WAG), MN915882, MN904248, MN915370, MN916142, MN915634; P. chacoensisMorong, Paraguay, Krapovickas et al. 45628 (K),AY936677, -, -, AY936582, -; P. chamaecerasus Baill.,NewCaledonia,Munzinger\&McPherson 573 (MO), AY936678, -, -, AY936583, -; P. chamaecristoid Urb., Cuba, van Ee et al. 404 (K), AY936679, -, -, AY936584, -; P. chrysanthus Baill., New Caledonia, Munzinger \& McPherson 796 (MO), AY936680, -, -, AY936585, -; P. chryseus Howard, Cuba, Van Ee et al. 387 (K), AY936681, MN904257, MN915379, AY936586, MN915644; P. ciccoides Müll. Arg, Australia, Paijmans 2876 (DAV), MN915891, -, -, MN916150, -; P. cinctus Urb., Cuba, Ekman 19166 (K), MN915892, MN904258, MN915380, MN916151, MN915645; P. cinereus Müll.Arg., Sri Lanka, Kathriarachchi et al. 66 (K), AY936682, MN904259, MN915381, AY936587, -; P. clamboides (F.Muell.) Diels, Australia, Forster 26376 (L), MN915893, MN904260, MN915382, MN916152, MN915646; P. claussenii Müll.Arg., Brazil, Minas Gerais, Hatschbach 64117 (U), MN915894, MN904261, MN915383, MN916153, MN915647; P. cochinchinensis Spreng., China, Hong Kong, Bouman et al. RWB026 (L),MN915895,MN904262,M N915384,MN916154,MN915648; P. aff. cochinchinensis Spreng. (Phyllanthus aff. cochinchinensis 1), China, Yunnan, Xishuangbanna Tropical Botanical Garden, Bouman \& Yong RWB052 (HITBC), MN915840,
MN904250,MN915324,MN916144, MN915601; P. aff. cochinchinensis Spreng. (Phyllanthus aff. cochinchinensis 2), China, Yunnan, Xishuangbanna Tropical

Phylogenetics of the genus Phyllanthus

Botanical Garden, Bouman \& Yong RWB065 (HITBC), MN915841, MN904251, MN915325, MN916145, MN915602; P. aff. cochinchinensis Spreng. (Phyllanthus aff. cochinchinensis 3), China, Yunnan, Xishuangbanna Tropical Botanical Garden, Bouman \& Yong RWB060 (HITBC), MN915842, MN904252, MN915326, MN916146, MN915603; P. collinsae Craib, Thailand, Middleton 3302 (L), MN915896, MN904263, MN915385, MN916155, MN915649; P. collinus Domin, Australia, Telford \& Bruhl 13119 (L), -,MN904264, MN915386,MN916156, MN915650; P. columnaris Müll.Arg. (Phyllanthus columnaris 1), Myanmar, Fujikawa et al. 095327 (L), -, MN904302, MN915387, MN916157, MN915651; P. columnaris Müll.Arg. (Phyllanthus columnaris 2), Myanmar, Funakoshi et al. 085264 (L),MN915897, -,MN915388,MN916283,MN915652; P. aff. columnaris Müll.Arg. (Phyllanthus aff. columnaris 1), Thailand,Middleton 1715 (L),MN915843, MN904215,MN915327,MN916112,MN915600; P. aff. columnaris Müll.Arg. (Phyllanthus aff. columnaris 2), Thailand, Tagane et al. T570 (L), MN915844, MN904216, MN915328, MN916113, -; P. comosus Urb., Cuba, Gutierrez et al. 81777 (WIS), AY936685, -, -, AY936590, -; P. coursii Leandri, Madagascar, Razafindrahaja 184 (MO),MN915898, MN904266, MN915389,MN916329, -; P. cryptophilus (Comm. ex A.Juss.) Müll.Arg., Madagascar, Dumetz 593 (WAG), MN915899, MN904265, MN915390, MN916358, MN915653; P. aff. curranii C.B.Rob., Philippines, Yu 261 (L), MN915900, MN904267, MN915391, MN916158, MN915604; P. cuscutiflorus S.Moore, Singapore, Singapore botanical garden, Yu 61 (L), MN915901, MN904268, MN915392, MN916299, MN915654; P. dallachyanus Benth., Australia, Forster 32938 (NE), -, -, MN915393, MN916298, MN915655; P. dawsonii Steyerm., Brazil, da Silva 2073 (DAV),MN915902, -, -,MN916159, -; P. debilis J.G.Klein exWilld. (Phyllanthus debilis 1),China,HongKongUniversity campus, Bouman \&LiuRWB037 (L),MN915903,MN904269,MN915394,MN916330, MN915656; P. debilis J.G.Klein exWilld. (Phyllanthus debilis 2), China, Hong Kong University campus, Bouman RWB071 (L),MN915904, MN904270, MN915395,MN916331, MN915657; P. debilis J.G.Klein exWilld. (Phyllanthus debilis 3), Philippines, Kamarudim et apok s.n. (L),MN915905,MN904271,MN9153 96,MN916332, MN915658; P. delpyanus Hutch. (Phyllanthus delpyanus 1), Republic of the Congo, Kami et al. 1215 (WAG),MN915906, -,MN915397,MN916161,MN915659; P. delpyanus Hutch. (Phyllanthus delpyanus 2), Republic of the Congo, M’Boungou 659 (WAG), -, MN904272, MN915398, MN916160, -; P. dictyospermus Müll.Arg., Brazil, Santos 5712 (DAV), MN915907, -, -, MN916162, -; P. dinklagei Pax (Phyllanthus dinklagei 1), Gabon, Bissiengou (WAG), MN915908, MN904273, MN915399, MN916333, MN915660; P. dinklagei Pax (Phyllanthus dinklagei 2), Gabon, Maas 9993 (WAG),MN915909, MN904274,MN915400, MN916334,MN915661; P. dinteri Pax (Phyllanthus dinteri 2), Namibia, Damaraland,Wilhemstal, Dinter 213 (WAG), MN915910, -, MN915401, MN916335, MN915662; P. dinteri Pax (Phyllanthus dinteri 1), Namibia, Oliver 6543 (WAG), MN915911,MN905069,MN915402, MN916336,

Chapter 7

MN915663; P. discolor Poepp. ex Spreng, Cuba, Berazain et al. 71878 (K), AY936688, MN904275, MN915403,AY936593,MN915664; P. distichusHook.\&Arn., USA, Hawai'i,Harold st. John 17.985 (L) (L),MN915912,MN904276,MN915404,MN 916163, MN915665; P. dzumacensis M.Schmid,NewCaledonia, Jaffre 2412 (L),MN9 15913,MN905065,MN915405,MN916164,MN915666; P. elegans Wall. exMüll. Arg. (Phyllanthus elegans 1), Vietnam, Yahara et al. V3499 (L),MN915914, -,MN915406,MN916165, -; P. elegansWall. exMüll.Arg. (Phyllanthus elegans 2), Vietnam, Yahara et al. V5597 (L), MN915915, MN904277, MN915407, MN916166, -; P. elsiae Urb., Venezuela, Davidse \& Gonzalez 13359 (L), MN915916, MN904278, MN915408, MN916337, MN915667; P. emblica L. (Phyllanthus emblica 1), Myanmar, Makino banical garden expedition(2015) 103008 (MBK), MN915917, MN904279, MN915409, MN916167, MN915668; P. emblica L. (Phyllanthus emblica 2), Thailand, Phu Kae botanical garden, Van Welzen 2003-11 (L), GQ503378, GQ503434, GQ503494, EU643743, GQ503558; P. engleri Pax, Tanzania, Mwangulango 1138 (WAG), -, MN905066, MN915410, MN916168, MN915669; P. epiphyllanthus L. (Phyllanthus epiP. 1), Germany, Bayreuth botanical garden, living collection, Lauerer 080405, no voucher, MN915918, MN904225, MN915411, MN916122, MN915670; P. epiphyllanthus L. (Phyllanthus epiP. 2), Belgium, Meisse, living collection, Reynders IPEN: XX-0-BR-19840633 (L), MN915919, MN904280, MN915412, MN916169, MN915671; P. erwinii J.T.Hunter \& J.J.Bruhl, Australia, Mitchell PRP1456 (NE), MN915920, MN904281, MN915413, MN916338, -; P. evanescens Brandegee, Nicaragua, Stevens 32461 (MO), MN915921, MN904282, MN915414, MN916339, -; P. exilis S.Moore, Australia, Hunter et al. 1528 (L), MN915922, MN904283, -, MN916362, MN915672; P. favieri M.Schmid, New Caledonia, McPherson \& Munzinger 18028 (MO), AY936690, -, -, AY936596, -; P. filicaulis Benth., Australia, Telford 13516 (NE), MN915923, MN904284, MN915415, MN916170, MN915673; P. finschii K.Schum., Papua New Guinea, Takeuchi et ama 15603 (L), MN915924, MN904285, MN915416, MN916171, MN915674; P. fischeri Pax, Tanzania, Gereau 1996 (WAG), MN915925, MN904286, MN915417, -, MN915675; P. cf. fischeri Pax, Ethiopia, de Wilde 4391 (WAG), MN915887, MN905067, MN915375, MN916343, MN915725; P. flagellaris Benth., Australia, Fryxell \& Craven (L), MN915926, MN904287, MN915418, MN916307, MN915676; P. flexuosus (Siebold \& Zucc.) Müll.Arg. (Phyllanthus flexuosus 1), China, Chow 132 (L), MN915927, MN904289, MN915419, MN916173, MN915677; P. flexuosus (Siebold \& Zucc.) Müll.Arg. (Phyllanthus flexuosus 2), USA, Berkely, Cultivated, Mcnamara 162 Living collection Berkeley, no voucher,MN915928,MN9 04290,MN915420,MN916174,MN915678; P. flexuosus (Siebold\&Zucc.)Müll.Arg. (Phyllanthus flexuosus 3), Myanmar, Aung et al. 092433 (MBK), MN915929, MN904288, MN915421, MN916172, MN915679; P. fluitans Benth. ex Müll.Arg., Germany, Cultivated Botanical garden Bonn, Krämer xx-0-Dath-518 (L), MN915930, MN904292, MN915422, MN916176, MN915680; P. fraternus G.L.Webster, Pakistan, Nooteboom 3010 (L), MN915931, -, MN915423,

Phylogenetics of the genus Phyllanthus

MN916306, MN915681; P. friesii Hutch., Zambia, Harder et al. 2778 (WAG), MN915932, MN904293, MN915424, MN916177, MN915682; P. fuernrohrii F. Muell., Australia, Coveny 13478 (NE), -, MN904294, -, MN916178, -; P. fuscoluridus Müll.Arg. var. fuscoluridus (Phyllanthus fuscoluridus 2), Madagascar, Schatz 1737 (WAG), MN915934, MN904296, MN915426, MN916179, -; P. fuscoluridus Müll.Arg. var. villosus (Leandri) Ralim. \& Petra Hoffm. (Phyllanthus fuscoluridus 1), Madagascar, Dorr 3650 (WAG), MN915933, MN905068, MN915425, MN916180, -; P. aff. fuscoluridus Müll.Arg., Madagascar, Ravelonarivo 3808 (MO), MN915845, MN904295, MN915329, MN916282, -; P. gabonensis Jean F.Brunel (Phyllanthus gabonensis 1), Gabon, Maas 10095 (WAG), -, MN904299, MN915427, MN916181, MN915683; P. gabonensis Jean F.Brunel (Phyllanthus gabonensis 2), Gabon, Wieringa 8492 (WAG), -, MN915935, MN904313, MN915428, MN916182; P. gardnerianus (Wight) Baill., Sri Lanka, Kathriarachchi et al. 42 (K), AY936694, MN904314, MN915429, AY936598, MN915684; P. geoffrayi Beille, Thailand, Larsen et al. 3259 (L), MN915936, MN904315, MN915430, MN935816, MN915685; P. gillettianus Jean F.Brunel, Namibia, Germishuizen 9727 (WAG), MN915937, MN904316, MN915431, -, MN915686; P. glaucophyllus Sond. (Phyllanthus glaucophyllus 1), Guinea, Van der Brugt 1156 (WAG), MN915938, MN904317, MN915432, MN916183, MN915687; P. glaucophyllus Sond. (Phyllanthus glaucophyllus 2), Guinea, Haba 123 (WAG), MN915939, MN904318, MN915433, MN916340, MN915688; P. glaucus Wall. ex Müll.Arg. (Phyllanthus glaucus 2), China, Hong Kong, Bouman \& Liu RWB028 (L), MN915940, MN904291, MN915434, MN916175, MN915689; P. [subg. Gomphidium] sp. (Phyllanthus cf. Gomphidium sp.), Philippines, Yu 250 (L), MN915889, MN904253, MN915377, MN916148, MN915640; P. gomphocarpus Hook.f., Malaysia, Klackenberg \& Lundin 579 (L), MN915941, MN905073, MN915435, MN916184, -; P. grandisepalus F.Muell. ex Müll.Arg., Australia, Albrecht 13268 (NE), MN915942, MN904319, MN915436, MN916289, MN915690; "P. graniticola" msc. name, sp. nov.,Australia, Telford 13004 (NE),MN915943,MN904320,MN915437,MN916185, MN915691; P. graveolensKunth, Ecuador, Klitgaard et al. 399 (K), AY936696, MN904321, MN915438, AY936600, MN915692; P. guillauminii Däniker, New Caledonia, Kawakita 273 (KYO), -, FJ235353, -, FJ235261, -; P. gunnii Hook.f., Australia, Coveny 11474 (L), MN915944, MN904322, MN915439, MN916290, MN915693; P. harrisii Radcl.- Sm., Tanzania, Zanzibar, Faulkner 3179 (WAG), MN915945, MN904323, MN915440, MN916341, MN915694; P. hebecarpus Benth., Australia, Copeland NE66669 (NE), -, MN904324, -, MN916308, MN915695; P. heliotropus C.Wright ex Griseb., Cuba, Maas et al. 7762 (U), MN915946, MN904325, MN915441, MN916186, MN915696; P. hirtellus F.Muell. ex Müll.Arg., Australia, Pedersen 1328 (L), MN915947, MN904326, MN915442, MN916187, MN915697; P. humbertii (Leandri) Petra hoffm. \& McPherson, Madagascar, Kawakita 235 (KYO), -, FJ235345, -, FJ235253, -; P. hutchinsonianus S.Moore (Phyllanthus hutchinsonianus 1), Zimbabwe, Poilecot 7974 (K), AY936697,

Chapter 7

MN904327, MN915443, AY936601, MN915698; P. hutchinsonianus S.Moore (Phyllanthus hutchinsonianus 2), Zimbabwe, Bamps 88 (WAG), MN915948, MN904306, MN915444, -, -; P. hypospodius F.Muell., Australia, Bruhl et al. 1123 (L), -, GQ503435, GQ503495, EU643744, GQ503559; P. juglandifolius Willd., Netherlands, Hortus botanicus Amsterdam, cultivated, Bouman RWB16 (L), MN915949, MN904328, MN915445, MN916188, MN915699; P. kaessneri Hutch., Tanzania, Pocs 89182 (K), AY936700, -, -, AY936603, -; P. kanalensis Baill., New Caledonia, McPherson \& Van der Werff 17886 (K), AY936701, -, -, AY936604, -; P. kaweesakii Pornp., Chantar. \& J.Parn., Thailand, Pornpongrungrueng \& Triyuttachai 1174 (KKU), KY091120, -, -, KY091108, -; P. kerstingii Jean F.Brunel (Phyllanthus kerstingii 1), Guinea, Darbyshire 562 (WAG), MN915950, MN905074, MN915447,MN916189,MN915701; P. kerstingii Jean F.Brunel (Phyllanthus kerstingii 2), Guinea, Malaisse 14792 (WAG),MN915951, -,MN915448, -,MN915702; P. kidna Challen\&PetraHoffm., Cameroon, Cheek 11531 (K), FR715993, -, -, FR715992, -; P. kinabalucius Airy Shaw, Malaysia, Sabah, Van der Ent (Kinabalu Parcs living collection), no voucher, MN915952, MN904330, MN915449, MN916190, MN915703; P. klotzschianus Müll.Arg., Brazil, Grappo et al. 780 (K), AY936702, -, -, AY936605, -; P. cf. klotzschianus Müll.Arg., Brazil, Carneiro 1010 (K), -, -, MN915450, -, MN915641; P. koniamboensis M.Schmid, New Caledonia, Kawakita 277 (KYO), -, FJ235350, -, FJ235258, -; P. koumacensis Guillaumin, New Caledonia, McPherson 19163A (MO), MN915953, MN904331, MN915451, MN916191, -; P. laciniatus C.B.Rob., Philippines, Agoo 5660 (L), MN915954, MN904332, MN915452, MN916192, MN915705; P. lacunarius F.Muell., Australia, Bates 62700 (NE), MN915955, MN904333, MN915453, MN916312, MN915706; P. lacunellus Airy Shaw, Australia, Bates 62500 (NE), MN915956, MN904334, MN915454, MN916313, MN915707; P. lamprophyllus Müll.Arg. (Phyllanthus lamprophyllus 1), Philippines, Agoo 5592 (L), MN915957, MN904335, MN915455, MN916193, MN915708; P. lamprophyllus Müll.Arg. (Phyllanthus lamprophyllus 2), Australia, Telford \& Bruhl 13049 (L), MN915958, MN904336, MN915456, MN916194, MN915709; P. lamprophyllus Müll.Arg. (Phyllanthus lamprophyllus 3), Australia, Telford \& Bruhl 13051 (L), MN915959, MN904337, MN915457, MN916195, MN915710; P. lamprophyllus Müll.Arg. (Phyllanthus lamprophyllus 4), Singapore, Singapore botanical garden, Yu 161 (L), MN915960, MN904338, MN915458, MN916309, MN915711; P. leptoclados Benth., China, Yunnan, Xishuangbanna Tropical Botanical Garden, Bouman \& Yong RWB051 (HITBC), MN915961, MN904339, MN915459, MN916196, MN915712; P. leucanthus Pax (Phyllanthus leucanthus 1), Eritrea, de Wilde 4604 (WAG), MN915962, MN904300, MN915460, MN916149, MN915642; P. leucanthus Pax (Phyllanthus leucanthus 2), Ethiopia, Friis 8619 (WAG), MN915963, MN904340, MN915461, MN916344, MN915713; P. leucocalyx Hutch. (Phyllanthus leucocalyx 1), Tanzania, Bidgood 7161 (WAG), -, MN904341, MN915462, MN916197, -; P. leucocalyx Hutch. (Phyllanthus leucocalyx 2), Tanzania, Bidgood 6969 (WAG),

Phylogenetics of the genus Phyllanthus

MN915964, MN904342, MN915463, MN916198, -; P. lichenisilvae (Leandri ex Humbert) Petra Hoffm. \& McPherson, Madagascar, Antilahimena 7638 (MO), -, MN904343, MN915464, MN916199, -; P. ligustrifolius S.Moore (Phyllanthus ligustrifolius 1), New Caledonia, McPherson 19091 (MO), MN915965, MN904344, MN915465, MN916310, -; P. ligustrifolius S.Moore (Phyllanthus ligustrifolius 2), New Caledonia, McPherson 5025 (L), MN915966, MN904309, MN915466, MN916311, MN915714; P. limmuensis Cufod., Ethiopia, de Wilde 6524 (WAG), MN915967, MN904345, MN915467, MN916291, MN915715; P. lindenianus Baill., Dominican Republic, Fuertes 345 (K), -, -, MN915468, MN916200, MN915716; P. loandensis Welw. ex Müll.Arg. (Phyllanthus loandensis 1), Malawi, Pawek R597 (WAG), MN915968, MN904346, MN915469, MN916201, MN915717; P. loandensis Welw. ex Müll.Arg. (Phyllanthus loandensis 2), Malawi, Pawek 12535 (WAG), MN915970, MN904297, MN915470, MN916202, MN915718; P. loandensis Welw. ex Müll.Arg. (Phyllanthus loandensis 3), Mozambique, Nuvunga 526 (WAG), MN915969, MN905072, MN915471, MN916203, MN915719; P. lokohensis Leandri, Madagascar, Antilahimena 8041 (MO), MN915971, MN904347, -, MN916316, -; P. loranthoides Baill., New Caledonia, MacKee 31810 (K), AY936705, -, -, AY936607, -; P. macranthus Pax, Zimbabwe, Biegel et al. 4847 (WAG), MN915972, MN905075, MN915472, MN916292, MN915720; P. madagascariensis Müll.Arg., Madagascar, McPherson 18925 (MO), MN915973, MN904348, MN915473, MN916317, -; P. madeirensis Croizat, Brazil, Vincentini 1206 (U), MN915974, MN905078, MN915474, MN916293, MN915721; P. maderaspatensis L., Madagascar, Hunter et al. 1532 (K), AY936707, -, -, AY936609, -; P. magnificens Jean F.Brunel \& J.P.Roux, Guinea, van der Burgt 1196 (WAG), MN915975, MN904349, MN915475, MN916345, MN915722; P. magudensis Jean F.Brunel, Sudan, Blokhuis 50 (WAG), MN915976, MN904350, MN915476, MN916318, MN915723; P. mangenotii M.Schmid, New Caledonia, Kawakita 270 (KYO), -, FJ235349, -, FJ235257, -; P. mannianus Müll.Arg. (Phyllanthus mannianus 1), Cameroon, Raynal 12256 (WAG), MN915977, MN904351, MN915477, MN916347, MN915724; P. mannianus Müll. Arg. (Phyllanthus mannianus 2), Cameroon, Biye 129 (WAG),MN915978,MN90435 2,MN915478, -,MN915726; P. mantadiensis Ralim. \&PetraHoffm. (Phyllanthus mantadiensis 1),Madagascar, Rasoazanany 110 (MO),MN915979,MN904353,MN91 5479,MN916204, -; P. mantadiensis Ralim. \& Petra Hoffm. (Phyllanthus mantadiensis 2), Madagascar, Rasoazanany 514 (MO), MN915980, MN904354, MN915480, MN916319, -; P. marojejiensis (Leandri) Petra Hoffm. \& McPherson, Madagascar, Kawakita 243 (KYO), -, FJ235346, -, FJ235254, -; P. matitanensis Leandri, Madagascar, Ravelonarivo 4276 (MO), MN915981, MN904355, MN915481, MN91602.

Chapter 7

Supplementary figure 7-S1. A. Bayesian majority-rule consensus tree with branches transformed of the nuclear (ITS, PHYC) dataset for Phyllanthus and related genera, posterior probabilities (PP) are displayed at the nodes, clade labels follow Fig. 7-4; B. Bayesian majority-rule consensus displaying branch length. New undescribed species are indicated with an asterisk. tax12424-sup-0006-FigureS1.pdf

Supplementary figure 7-S2. A. Bayesian majority rule consensus tree with branches transformed of the chloroplast (accD-psaI, matK and trnS-trnG) dataset for Phyllanthus and related genera with branches transformed, posterior probabilities (PP) are displayed at the nodes, clade labels follow Figure 7-4; B. Bayesian majority rule consensus displaying tree branch. - New undescribed species are indicated with an asterisk.
tax12424-sup-0007-FigureS2.pdf

Supplementary figure 7-S3. A. Bayesian majority rule consensus tree with branches transformed of the nuclear (ITS) dataset for Phyllanthus and related genera with branches transformed, posterior probabilities (PP) are displayed at the nodes, clade labels follow Figure 7-4, relationship between subgenus Betsileani and part of subgenus Gomphidium is highlighted in colour; B. Bayesian majority rule consensus displaying branch length. - New undescribed species are indicated with an asterisk.
tax12424-sup-0008-FigureS3.pdf
Supplementary figure 7-S4. A. Bayesian majority rule consensus tree with branches transformed of the nuclear (PHYC) dataset for Phyllanthus and related genera with branches transformed, posterior probabilities (PP) are displayed at the nodes, clade labels follow Figure 7-4; B. Bayesian majority rule consensus displaying branch length. - New undescribed species are indicated with an asterisk. tax12424-sup-0009-FigureS4.pdf

Supplementary figure 7-S5. A. Bayesian majority rule consensus tree with branches transformed of the chloroplast (accD-psaI) dataset for Phyllanthus and related genera with branches transformed, posterior probabilities (PP) are displayed at the nodes, clade labels follow Figure 7-4; B. Bayesian majority rule consensus displaying branch length. - New undescribed species are indicated with an asterisk.
tax12424-sup-0010-FigureS5.pdf

Supplementary figure 7-S6. A. Bayesian majority rule consensus tree with

Phylogenetics of the genus Phyllanthus

branches transformed of the chloroplast (matK) dataset for Phyllanthus and related genera with branches transformed, posterior probabilities (PP) are displayed at the nodes, clade labels follow Figure 7-4; B. Bayesian majority rule consensus displaying branch length. - New undescribed species are indicated with an asterisk. tax12424-sup-0011-FigureS6.pdf

Supplementary figure 7-S7. A. Bayesian majority rule consensus tree with branches transformed of the chloroplast ($\operatorname{trnS}-\operatorname{trn} G)$ dataset for Phyllanthus and related genera with branches transformed, posterior probabilities (PP) are displayed at the nodes, clade labels follow Figure 7-4; B. Bayesian majority rule consensus displaying branch length. - New undescribed species are indicated with an asterisk.
tax12424-sup-0012-FigureS7.pdf
Supplementary figure 7-S8. Bayesian majority rule consensus tree with branches transformed of the combined nuclear (ITS and PHYC) and chloroplast (accD-psaI, mat K and $\operatorname{trnS}-\operatorname{trn} G$) datasets for Phyllanthus with related genera reduced to only include samples with 3 out of 5 markers, posterior probabilities (PP) are displayed at the nodes, infrageneric classification follows Bouman et al. (2018a); subgenera are given above colored clades, sections to the right. - New undescribed species are indicated with an asterisk.
tax12424-sup-0013-FigureS8.pdf
Supplementary figure 7-S9. Maximum Likelihood bipartitions tree with branches transformed of the combined nuclear (ITS and PHYC) and chloroplast (accD-psaI, matK and $\operatorname{trnS}-\operatorname{trn} G$) datasets for Phyllanthus and related genera with branches transformed, ML scores are displayed at the nodes, clade labels follow Figure 7-4. New undescribed species are indicated with an asterisk. tax12424-sup-0014-FigureS9.pdf

Supplementary figure 7-S10. Basis for Figure 7-4, bayesian majority rule consensus tree of the full combined nuclear (ITS and PHYC) and chloroplast (accD-psaI, matK and $\operatorname{trnS}-\operatorname{trnG}$) datasets for Phyllanthus and related genera, posterior probabilities (PP) are displayed at the nodes, infrageneric classification follows Bouman et al. (2018a); subgenera are given above colored clades, sections to the right.
tax12424-sup-0015-FigureS10.pdf

Supplementary appendix S1. DNA matrix of ITS marker of Phyllanthus and related genera.

Chapter 7

tax12424-sup-0001-AppendixS1.nex
Supplementary appendix S2. DNA matrix of PHYC marker of Phyllanthus and related genera.
tax12424-sup-0002-AppendixS2.nex
Supplementary appendix S3. DNA matrix of accD-psaI marker of Phyllanthus and related genera.
tax12424-sup-0003-AppendixS3.nex
Supplementary appendix S4. DNA matrix of matK marker of Phyllanthus and related genera. tax12424-sup-0004-AppendixS4.nex

Supplementary appendix S5. DNA matrix of $\operatorname{trnS}-\operatorname{trn} G$ marker of Phyllanthus and related genera. A section of ambiguous alignment was excluded from our analyses, but is still included here in the matrix at positions 259-413. Matrix used for analysis used the positions as specified in the charactersets.
tax12424-sup-0005-AppendixS5.nex

Phylogenetics of the genus Phyllanthus

CHAPTER 8

A revised phylogenetic classification of tribe Phyllantheae (Phyllanthaceae)

Roderick W. Bouman, Paul J.A. Keßler, Ian R.H. Telford, Jeremy J. Bruhl, Joeri S. Strijk, Richard M.K. Saunders, Hans-Joachim Esser, Banessa Falcón-Hidalgo, Peter C. van Welzen

Published in Phytotaxa 540: 1-100. 2022
https://doi.org/10.11646/phytotaxa.540.1.1

Chapter 8

A revised phylogenetic classification of tribe Phyllantheae (Phyllanthaceae)

Short title: Revised phylogenetic classification of tribe Phyllantheae
Roderick W. Bouman ${ }^{1,2,3}$, Paul J.A. Keßler ${ }^{2,3}$, Ian R.H. Telford ${ }^{4}$, Jeremy J. Bruhl ${ }^{4}$, Joeri S. Strijk ${ }^{5,6}$, Richard M.K. Saunders ${ }^{7}$, Hans-Joachim Esser ${ }^{8}$, Banessa Falcón-Hidalgo ${ }^{9}$, Peter C. van Welzen ${ }^{1,3}$
${ }^{1}$ Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
${ }^{2}$ Hortus botanicus Leiden, Leiden University, PO Box 9500, 2300 RA Leiden, The Netherlands
${ }^{3}$ Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
${ }^{4}$ Botany and N. C. W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
${ }^{5}$ Institute for Biodiversity and Environmental Research, Jalan Tungku Link, Universiti Brunei Darussalam, Brunei Darussalam
${ }^{6}$ Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, PO Box 959, 06000 Luang Prabang, Lao PDR
${ }^{7}$ Division of Ecology \& Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
${ }^{8}$ Botanische Staatssammlung München, Menzinger Strasse 67, D-80638 München (Munich) Germany
${ }^{9}$ Jardin Botánico Nacional, Unisversidad de La Habana, Carretera "El Rocío" km 3.5, Calabazar, Boyeros, La Habana, Cuba

Abstract

The majority of tribe Phyllantheae (Phyllanthaceae) is currently placed in the paraphyletic genus Phyllanthus and discussions have persisted on how to resolve this issue. Here, we split Phyllanthus into ten monophyletic genera, which are all reinstatements of former genera, but with changes made to the circumscription and constituent species of each group. The genera Breynia, Glochidion and Synostemon were recently found to be nested within Phyllanthus and discussions ensued whether or not to subsume everything into Phyllanthus s.l. Instead of combining all these genera, we here implement the solution of splitting Phyllanthus into strictly monophyletic genera to ensure that the classification is consistent with the latest phylogenetic results. The new classification is based on a phylogenetic framework combined with differences in habit, branching type, floral, fruit and pollen morphology. With this new division of the genus Phyllanthus, tribe Phyllantheae will consist of the following 18 genera: Breynia, Cathetus, Cicca, Dendrophyllanthus,

Revised phylogenetic classification of Phyllanthus

Abstract

Emblica, Flueggea, Glochidion, Heterosavia, Kirganelia, Lingelsheimia, Lysiandra, Margaritaria, Moeroris, Nellica, Nymphanthus, Phyllanthus, Plagiocladus and Synostemon. As a result of the reinstated genera, five new names for illegitimate combinations or previous overlooked nomenclatural anomalies and 645 new combinations are proposed. Several keys are provided to distinguish the reinstated genera. Full species lists are given for the reinstated genera treated here except for Breynia, Synostemon and Glochidion.

Keywords: monophyly; paraphyly; Phyllanthaceae; Phyllanthus; systematics

Introduction

The classification of the family Phyllanthaceae by Hoffmann et al. (2006) was a comprehensive work that brought together results from morphological and phylogenetic studies. However, discussions have persisted regarding the largest tribe of the family, as its largest genus, Phyllanthus Linnaeus (1753: 981), is paraphyletic (Kathriarachchi et al. 2006). The genera Breynia Forster \& Forster (1776: 145) (including species formerly assigned to Sauropus Blume 1826: 595), Glochidion Forster \& Forster (1776: t.57) and Synostemon Mueller (1859: 32) are nested within Phyllanthus (Kathriarachchi et al. 2006), which has sparked discussion on how to resolve this. Although Kathriarachchi et al. (2006) and Hoffmann et al. (2006) proposed combining Phyllanthus with the genera nested within it, this would lead to a morphologically heterogeneous genus with more than 1200 species (van Welzen et al. 2014a). Some name changes for this decision have already been implemented for local floras (e.g., Chakrabarty \& Balakrishnan 2009b; Wagner \& Lorence 2011; Kurosawa 2016). However, some argue that this would make Phyllanthus s.l. too variable and an unwieldy genus (e.g., Pruesapan et al. 2008, 2012). An alternative approach to resolving paraphyly is to retain the nested genera as distinct taxa and to split Phyllanthus into new, monophyletic and morphologically recognizable genera (Pruesapan et al. 2008, 2012; van Welzen et al. 2014; Bouman et al. 2021). Pruesapan et al. (2012), in a more extensive phylogeny of Breynia (including Sauropus) and Synostemon, resolved these genera as monophyletic and suggested they be retained as genera, which incurred further name changes (Chakrabarty \& Balakrishnan 2012; van Welzen et al. 2014a). Unfortunately, this still leaves the remainder of the genus Phyllanthus as a paraphyletic group, badly in need of resolution.

The genus Phyllanthus as currently circumscribed contains almost 900 species (Bouman et al. 2018b), and displays an enormous diversity both in vegetative and floral characters (Webster 1956). Some species were originally placed in separate genera due to their morphological distinctiveness (see Baillon 1858), but were combined in a broad definition of Phyllanthus by Müller (1863, 1866). The extensive morphological diversity within Phyllanthus was reflected in numerous sections (Müller 1866), which were usually former genera. These sections were

Chapter 8

subsequently grouped into subgenera (Webster 1956, 1957, 1958), but new insights from palynological (Punt 1967, 1972, 1980, 1986, 1987; Meewis \& Punt 1983; Lobreau-Callen et al. 1988; Webster \& Carpenter 2002, 2008) and phylogenetic research (Kathriarachchi et al. 2006; Pruesapan et al. 2008, 2012; Falcón et al. 2020; Bouman et al. 2021) resulted in many changes to this classification. A large number of species transfers were not implemented and there were no lists of the species in each group. Bouman et al. (2018) compiled a list that shows the placements of almost all Phyllanthus species based on previous morphological, phylogenetic and taxonomic work. The paper aimed to correct some common misconceptions and provide a workable system for the rest of Phyllanthus. Still some remaining issues were discussed in the paper and these require taxonomic and nomenclatural changes (e.g., previously paraphyletic sections and possibly polyphyletic subgenera). Nevertheless, the various subgenera and sections are based on genera formerly recognized as separate from Phyllanthus (e.g., Cicca in Ridley 1924) and these names provide ideal candidates when deciding on new generic boundaries. According to the synopsis of Bouman et al. (2018), Phyllanthus consisted of 18 subgenera and 70 sections. Several subgenera are similar as they are sister clades (e.g., subgenus Swartziani (G.L.Webster 1955: 53) Ralimanana \& Hoffmann (2013: 536) and subgenus Afroswartziani Ralimanana \& Hoffmann 2013: 538), while others are superficially similar due to convergent evolution (e.g., subgenus Macraea (Wight 1852: 27) Brunel (1987: 293) and subgenus Phyllanthus section Loxopodium Webster 1955: 46). Related and morphologically similar subgenera do not warrant separate recognition. This approach will result in fewer new genera than the estimated 20 clades in Kathriarachchi et al. (2006).

Here we aim to resolve the paraphyly of Phyllanthus and address all known subgeneric problems in the genus. As we consider that subsuming Breynia, Synostemon and Glochidion in Phyllanthus is unwarranted and maintaining a paraphyletic genus is also not a desirable solution, we implement an alternative solution, a new classification of 18 genera in tribe Phyllantheae: Breynia, Cathetus Loureiro (1790: 608), Cicca Linnaeus (1767: 124), Dendrophyllanthus Moore (1921: 395), Emblica Gaertner (1790: 122), Flueggea Richard (1807: 8), Glochidion, Heterosavia (Urbach 1902: 284) Hoffmann (2008: 152), Kirganelia de Jussieu (1789: 387), Lingelsheimia Pax (1909b: 317), Lysiandra (Mueller 1859: 108) R.W.Bouman, I.Telford \& J.J.Bruhl, Margaritaria L.f. (1782: 428), Moeroris Rafinesque (1838: 91), Nellica Rafinesque (1838: 92), Nymphanthus Loureiro (1790:543), Phyllanthus, Plagiocladus Brunel (1987: 260) and Synostemon (Table 1). Many new nomenclatural combinations are necessary to implement this taxonomic change, which are here included for each group together with all currently accepted species (except for Glochidion, Breynia and Synostemon).

Methods and results

The following new classification is based on Falcón et al. (2020) and Bouman et

Figure 8-1. (A) Summary phylogeny showing relations between genera in tribe Phyllantheae from Bayesian and Maximum Likelihood analysis of five markers (ITS, PHYC, accD-psaI, trnS-trnG, matK), modified from Supplementary figure 8-1. Classification is shown of genera (right column), subgenera (middle column) and sections (except for the genus Phyllanthus. Sections not included in phylogenetic analyses and those for the genus Flueggea were omitted.

Chapter 8

Figure 7-4. Continuation. (B) summary phylogeny of the genus Phyllanthus as envisioned here with subgenera and sections of groups included in phylogenetic studies shown.
al. (2021) and a new phylogenetic analysis using the data from both studies. This combinend dataset comprises two nuclear DNA regions (the Internal Transcribed Spacers region referred to as ITS, including 5.8S, and the low copy PHYC) and three plastid regions (accD-psaI, trnS-trnG intergenic spacers, and matK with portions of the flanking $\operatorname{trn} K$ intron). GenBank accession numbers are given in Appendix $8-2$. Alignment length of ITS and matK did not change from Bouman et al. (2021) after incorporating relevant sequences from Falcón et al. (2020). Sequences were downloaded from Genbank and added to the matrices available from Bouman et al. (2021, Appendices S1-S5) using Mesquite V. 3.61 (Maddison \& Maddison 2019). The new sequences were aligned to the existing matrices using the Pairwise Aligner tool and then manually corrected for alignment errors in PAUP v4.0a (Swofford 2002). The combined dataset containing 416 terminals was analysed with Bayesian inference using MrBayes v.3.2.7 (Ronquist et al., 2012) and maximum likelihood using RAxML v.8.2.12 (Stamatakis, 2014) via the CIPRES gateway following methods described in Bouman et al. (2021).

A summary tree showing the generic relationships between groups is presented in Fig. 8-1. Compared to Bouman et al. (2018b), a few species are treated here in different groups as a result of new phylogenetic and morphological
information. These are not discussed in the text, but are briefly highlighted in Appendix 8-1. The latest phylogeny of Phyllanthus and its related genera (the basis for figure 8-1) is presented in Supplementary Figure 1 with the voucher data summarized in Appendix 8-2. The addition of new sequences from Falcón et al. (2020) had some effect on node support, but did not affect relationships between major groups and the phylogeny was comparable to Bouman et al. (2021). Descriptions of groups are compiled from personal observations in combination with past taxonomic treatments (e.g., Webster 1956, 1957, 1958, 2001a, b, 2002a, b, 2003, 2004, Airy Shaw 1975, 1980, Brunel \& Roux 1977, 1981, McPherson \& Schmid 1991, Radcliffe-Smith 2001, Santiago et al. 2006, Ralimanana \& Hoffmann 2011, 2014, Ralimanana et al. 2013, Verwijs et al. 2019, Ralimanana \& Cable 2020). Pollen data is gathered from several studies (e.g., Meewis \& Punt 1983; Brunel 1987; Lobreau-Callen et al. 1988; Webster \& Carpenter 2002, 2008; Sagun \& van der Ham 2003; Wu et al. 2016). A key for all genera in subtribe Phyllanthaeae is provided as well as keys for the three major distribution areas, Americas, Africa to Middle East and Asia to Pacific.

Taxonomic treatment

The following is the implementation of a new classification for Phyllanthus s.l. including Breynia, Glochidion and Synostemon. The application of the Shenzhen Code (Turland et al. 2018) results in name changes to several autonymic sections following article 22.1, such as Kirganelia section Anisonema, which becomes Kirganelia section Kirganelia. Some reinstated genera have different names than their subgeneric names as part of Phyllanthus due to the priority of the oldest name per classification level (e.g., the genera Cathetus, Dendrophyllanthus, Moeroris and Nymphanthus). Other genera, not part of the former Phyllanthus complex, were already previously separated and treated by other authors (e.g., Flueggea, Webster 1984, Heterosavia, Hoffmann 2008, Margaritaria, Webster 1979, Plagiocladus, Brunel 1987, Hoffmann et al. 2006). The genera Breynia, Synostemon and Glochidion are also mentioned briefly, but a more complete treatment of the nomenclature for the genera Breynia and Synostemon can be found in van Welzen et al. (2014). Species transfers follow the format of the new combination name followed by the basionym and, if different, the synonym under Phyllanthus that was previously used. For each taxonomic group, all currently accepted species are included and also listed with the taxonomic changes, species numbers per genus are given in brackets after the header "Included species and taxonomic changes" and shown in Table 8-1. Where appropriate, notes are given to explain the placement or transfer of species and the affinities between various groups. Examples of representative members of the various genera are shown in Figure 8-2.

1. Key to the genera of tribe Phyllantheae

Table 8-1. List of genera in tribe Phyllantheae with global distribution and (estimated) number of species for each group.

Genus	Distribution	Number of species
Breynia J.R.Forst. \& G.Forst.	Australia, mainland Asia, Malesia	89
Cathetus Lour.	Africa, mainland Asia, Malesia, Australia and Pacific	40
Cicca L.	Africa, Asia, Madagascar, South America (1 widely cultivated species)	45
Dendrophyllanthus S.Moore	Australia, (Eastern) Malesia, Pacific	161
Emblica L.	Australia, mainland Asia, Malesia (1 invasive and 1 widely cultivated species)	45
Flueggea Willd.	Pantropical	24
Glochidion J.R.Forst. \& G.Forst.	Australia, mainland Asia, Malesia, Pacific	16
Heterosavia (Urb.) Petra Hoffm.	West Indies	~ 350
Kirganelia A.Juss.	Africa, Madagascar, mainland Asia, Malesia and Australia	4
Lingelsheimia Pax	Madagascar, Tropical Africa	24
Lysiandra (F.Muell.) J.J.Bruhl	Australia	25
Margaritaria L.f.	Pantropical	13
Moeroris Raf.	South, Central, North America, Tropical Africa, Madagascar (few widely invasive species)	199

Nellica Raf.	Africa, Central and North America	20
Nymphanthus Lour.	Australia, mainland Asia, Malesia	86
Phyllanthus L.	Americas, West Indies (some tropical invasives)	213
Plagiocladus Jean F.Brunel	Tropical Africa (Gabon)	1
Synostemon F.Muell.	Australia, mainland Asia, Malesia	41

Chapter 8

Figure 8-2. Images of representative members of tribe Phyllantheae. (A) Flowers of Nellica maderaspatensis. (B) Pistillate flowers of Cathetus gracilis, note the unique disc covering the ovary. (C) Pistillate and staminate flowers of Cathetus glaucophyllus. (D) Staminate flowers of Nymphanthus glaucescens. (E) Fruits of Kirganelia muelleriana. (F) Fruits of Lysiandra subcrenulata. (G) Phylloclade with flowers of Phyllanthus angustifolius. (H) Flowering branchlet of Phyllanthus incrustatus, note the ornamentation on the axes. (I) Habit of Moeroris tenella. (J) Fruiting branch of Dendrophyllanthus tenuirhachis. (K) Fruits of Cicca profusa. (L) Fruiting branch of Emblica officinalis. (M) Flowering plant of Emblica urinaria. (N) Pistillate flower of Breynia disticha. (O) Staminate flower of Breynia disticha. (P) flower of Glochidion dunnianum. (Q) Staminate of Glochidion lanceolarium. (R) Dehisced capsule of Glochidion sp. showing seeds covered with a red sarcotesta. Photos: A \& F by J.J. Bruhl; B \& P by M.S. Nuraliev; C by T. Williams; E \& K by C. Jongkind; H by B. Falcón; J by R.-Y. Yu; D, G, I, L, M, N, O, Q \& R by R.W.Bouman.

With the following key the genera of tribe Phyllantheae can be identified, but it does not take into account any exceptions or subgenera and (sub)sections. An asterisk (*) denotes parts of the key that are not dichotomous.

1. Pistillode present in staminate flowers.. 2
2. Pistillode absent in staminate flowers ... 5
3. Stamens > 10 - Africa \& Madagascar.. Lingelsheimia
4. Stamens 4-7 .. 3
5. Branching non-phyllanthoid (laminate leaves and flowers on all axes, branchlets not deciduous); staminate sepals 4-7 (usually 5), stamens 4-7, filaments free or fused for half of length; anther connectives non-apiculate; fruits capsules or baccate.

> 3. Branching phyllanthoid (leaves on main stem reduced to scales, = cataphylls, laminate leaves and flowers on lateral axes, lateral branchlets deciduous); staminate sepals 4, stamens 4, filaments connate, anther connectives apiculate; fruits capsules - Asia... Glochidion (G. moi)

4. Petals absent; fruits with 2 seeds per locule; pollen exine verruculose
Pantropical
5. Petals present; fruits with 1 or 2 seeds per locule; pollen exine reticulate - West Indies
6. Disc absent (sepal scales may be present, these close flower when anthers are unripe, no glandular function). 6
7. Disc / disc glands present 10

Chapter 8

8. Staminate sepals spreading or united in a tubular shape; disc lobes present; filaments free; ovary 3-5-locular- MalesiaDendrophyllanthus
8. Staminate sepals often recurved; disc absent; filaments tightly together
(separating as flowers age); ovary 3-15-locular - Australia, mainland Asia,
Malesia, Pacific ..
9. Sepal scales often present in staminate flowers; fruits wider than long; seeds smooth

Breynia
9. Sepal scales absent in staminate flowers (except in Synostemon bacciformis);
fruits longer than wide; seeds sculptured .. Synostemon
10. Branching non-phyllanthoid or sub-phyllanthoid (leaves at base of branchlets not reduced to scales (often in juveniles), lateral branchlets deciduous) 11
10. Branching phyllanthoid... 19
11. Stamens > 10 - Africa \& Madagascar... Lingelsheimia
11. Stamens 2-5.. 12
12. Sepals 4; staminate disc entire; stamens 4, filaments free; seeds with blue
sarcotesta - Pantropical... Margaritaria
12. Sepals 5 or 6 (rarely 4 , but then with 2 stamens); staminate disc entire or
segmented; stamens 2 or 3, filaments free or connate; seeds with no or
whitish sarcotesta.. 13
13. Staminate disc entire (H-shaped in Moeroris arenaria).................................. 14
13. Staminate disc segmented into glands.. 15
14^{*}. Sepals 6 in both sexes; staminate disc urceolate; stamens 3, filaments connate - Asia.

Cathetus

Revised phylogenetic classification of Phyllanthus

14^{*}. Sepals 6 in both sexes; staminate disc not urceolate; stamens 2, filaments free- AfricaPlagiocladus
14^{*}. Sepals 4 in staminate flowers, 6 in pistillate flowers; staminate disc H-shaped around filaments; stamens 2, filaments free - North America
Moeroris (M. arenaria)
15. Sepals 5; stamens 5, filaments free - Africa
Kirganelia subgenus Kirganelia section Pseudomenarda
15. Sepals 5 or 6 ; stamens usually 3 (rarely 2), filaments connate (free in Moeroris rosmarinifolius) - Africa to Asia 16
16. Plagiotropic branchlets caducous, usually fascicled (non-phyllanthoid in section Elutanthos, but then with paniculate inflorescences); fruits capsules or berries Phyllanthus
16. Plagiotropic branchlets persistent; inflorescences axillary fascicles, never paniculate; fruits capsules 17
17. Leaves on all axes spirally arranged; filaments connate; pistillate disc consisting of free glands - (North America, Africa and Asia/Australia) Nellica
17. Leaves on all axes distichous (except at basal nodes in Cicca); filaments free or connate; pistillate disc mostly entire (when segmented then filaments mostly free and leaves always distichous) 18
18*. Leaves distichous; pollen 4-colporate; seeds smooth or verrucate - Americas Phyllanthus subgenus Phyllanthus section Loxopodium
18*. Leaves distichous; pollen clypeate; seeds smooth or verrucate - Africa, Asia, Australia and Pacific Cathetus subgenus Macraea
18*. Leaves spiral at basal nodes, distichous at upper nodes; pollen grains perisyncolporate with median pores, colpi bordered by parallel muri; seeds smooth or striate - Madagascar Cicca subgenus Betsileani
19. Herbs or subshrubs (small plants with woody base) 20
19. Shrubs to trees, rarely climbers 25
20. Inflorescences unisexual 21
20. Inflorescences bisexual 2421. Pistillate inflorescences on proximal position and staminate inflorescences ondistal position on plagiotropic branchlets; seeds transversely ribbed - ovaryoften covered with tubercles - pantropical, but origin AsiaEmblica section Urinaria

Chapter 8

21. Pistillate inflorescences on distal position and staminate inflorescences on proximal position on plagiotropic branchlets; seeds smooth or longitudinallyor transversely striate, but not ribbed22
22. Cataphyllary stipules not auriculate Phyllanthus
23. Cataphyllary stipules (unilaterally) auriculate 23
24. Filaments connate, anthers free; seeds smooth or longitudinally striate Africa Moeroris
25. Filaments usually free, sometimes connate, anthers free or connate in a synandrium; seeds smooth, striate or verrucate - South AmericaPhyllanthus
24^{*}. Stamens 3, filaments free, anthers dehiscing vertically; pistillate disc entire; pollen 3-syncolporate, exine reticulate; stigmas entire or emarginate; seeds smooth or with faintly striate - Australia, Malesia, Pacific
Dendrophyllanthus section Leptonema
24^{*}. Stamens 2 or 3, filaments entirely or partially connate (free in M. arenaria), anthers dehiscing oblique to horizontally (vertically in M. arenaria); pistillate disc entire; pollen 3-colporate, exine reticulate; seeds smooth or longitudinally striate - North America, pantropical invasive \qquad .Moeroris subgenus Swartziani
24^{*}. Stamens 3, filaments free, anthers dehiscing horizontally; pistillate disc segmented; pollen grains brevicolporate and diorate or porate, exine pilate; seeds verruculose - South America. Phyllanthus subgenus Conami section Apolepsis
26. Sepals 4 in staminate flowers; stamens 2, filaments connate, anthers dehiscing horizontally (Nymphanthus or Phyllanthus chryseus) or vertically (Phyllanthus section Thamnocaris) — pollen pantoporate or clypeate................................ 26
27. Sepals 5 or 6 in staminate flowers (4 in Cicca acida, but then stamens 4, filaments free); stamens 3-15, filaments free or connate, anthers dehiscing mostly vertically, sometimes horizontally
28. Inflorescences mostly unisexual; staminate disc segmented; anthers dehiscing horizontally (except in N. ruber \& N. touranensis); pollen pantoporate - Asia Nymphanthus
29. Inflorescences unisexual (P. chryseus) or bisexual; staminate disc entire (P. chryseus) or segmented; anthers dehiscing horizontally (P. chryseus) or vertically (P. section Thamnocaris); pollen clypeate - South America. Phyllanthus
30. Filaments fused in sets, rarely free (K. glauca \& K. flexuosa), stamens 2 (K.

flexuosa) or 5, connectives not apiculate; fruits baccate - Africa to Australia
Kirganelia

27. Filaments never in sets, free or connate, stamens 3-20, connectives sometimes apiculate; fruits capsules or baccate (then with 3 connate stamens) 28
28. Plagiotropic branchlets sometimes differentiated in vegetative (with larger leaves) and floriferous (with smaller leaves) branchlets, pinnatiform; stamens 3, filaments connate, anthers dehiscing vertically, connectives apiculate; pistillate disc segmented - Asia \& Pacific \qquad Glochidion
29. Plagiotropic branchlets not differentiated and all with leaves of similar size (or unifoliate), sometimes bipinnatiform; stamens 3-20, filaments connate or free, anthers dehiscing horizontally to vertically, connectives apiculate or not; pistillate disc entire 29
30. Branchlets (bi-)pinnatiform; sepals often biseriate (inner whorl much longer); staminate disc often of 3 massive emarginate (or 5 separate) segments to absent, stamens may be inserted on a wide receptaculum; stamens usually 3 or 5 (up to 20 in Pacific species); stigmas mostly entire, rarely bifid - pollen 3-(syn-)colporate 30
31. Branchlets pinnatiform; sepal whorls indistinct; staminate disc segmented or entire; stamens 2-7(-15 in species of South America and West Indies) stigmas usually bifid or lacerate
32. Inflorescences fascicles or panicles; sepals 5 or 6 , filaments free or connate, anthers dehiscing vertically to obliquely, connectives usually apiculate; pollen 3 - or 4 -syncolporate, exine rugulose-reticulate, vermiculate, pilate or \pm vermiculate - Calyx in fruit sometimes saccate - Malesia, Australia, Pacific Dendrophyllanthus
33. Inflorescences fascicles; sepals 6 (5 in P. tuerckheimii), filaments connate (free in P. tuerckheimii), anthers dehiscing horizontally (vertically in in P. tuerckheimii), connectives rarely elongated; pollen diverse, often 3-colporate or porate with diorate colpi (see Webster \& Carpenter 2002), exine vermiculate to pilate - Fruits conspicuously veined - South and Central America Phyllanthus subgenus Conami section Conami

31*. Branchlets never transformed to phylloclades; sepals 6 ; staminate disc segmented; stamens 3 , filaments connate, anthers dehiscing vertically, connectives often apiculate; fruits capsules (drupe in E. officinalis) - Asia

Emblica
31^{*}. Branchlets never transformed to phylloclades; sepals 5 or 6; staminate disc segmented; stamens 3 , filaments connate, anthers dehiscing mostly

Chapter 8

horizontally to obliquely, connectives rarely apiculate; fruits capsules mainly Africa

Moeroris

Abstract

31*. Branchlets sometimes transformed to phylloclades; sepals 4-8; staminate disc mostly segmented, sometimes entire; stamens 3-15, filaments free or fused, sometimes fused in several whorls, anthers dehiscing horizontally to vertically, connectives sometimes apiculate; fruits capsules or berries Americas

Phyllanthus

2. Keys to the genera based on geographical distribution

The keys below are designed to identify the regional Phyllantheae floras. Some areas have been treated together (i.e., the Americas and the West Indies) as they have many groups in common. For a key to the species of Madagascar, which are markedly different from Africa, it is best to use the key of Ralimanana \& Hoffmann (2011), which includes all morphological exceptions to the various (sub)genera. Adjustments need to be considered as some of the subgenera treated for the flora of Madagascar (Ralimanana \& Hoffmann 2011, 2014; Ralimanana et al. 2013; Ralimanana \& Cable 2020) are now in separate genera.

The most difficult groups to recognize are the same ones that provide identification issues in their current state. These are the species with a herbaceous or subshrub habit, a character that has evolved several times. This problem is exacerbated by the fact that many of these herbs have become invasive and have become pantropical.

Africa

1. Branching non-phyllanthoid (laminate leaves and flowers on all axes; branchlets not deciduous) 2
2. Branching phyllanthoid (leaves on main stem reduced to scales, the cataphylls; laminate leaves and flowers on lateral axes; lateral branchlets deciduous) or sub-phyllanthoid (leaves at base of branchlets not reduced to scales (often in juveniles); lateral branchlets deciduous) 8
3. Stamens >10
4. Stamens 2-7. 3
5. Pistillode present in staminate flowers Flueggea
6. Pistillode absent in staminate flowers 4
7. Leaves on all axes spirally arranged 5
8. Leaves on all axes distichous. 6
9. Sepals 5 ; stamens 5 , filaments free Kirganelia section Pseudomenarda
10. Sepals 5-6; stamens usually 3 (sometimes 2 or 4), filaments connate
Nellica
11. Sepals 4 in both sexes; staminate disc entire; stamens 4, filaments free; seeds with blue sarcotesta. Margaritaria
12. Sepals 5 or 6 (4 in staminate flowers of C. ussuriensis and C. petraeus, but then 2 stamens in staminate flowers and 6 sepals in pistillate flowers); staminate disc entire or segmented; stamens 2 or 3, filaments free or connate; seeds with no or whitish sarcotesta 7
13. Sepals 4-6, staminate disc segmented, stamens 2 (but then staminate sepals 4) or 3 Cathetus
14. Sepals 6 , staminate disc entire, stamens 2 Plagiocladus
15. Stamens 4-6, filaments free or partly fused (2 free, 3 fused) 9
16. Stamens usually 3, filaments connate 11
17. Herbs or subshrubs, filaments free Moeroris
18. Shrubs, sometimes climbing, to small trees, filaments free or fused in two sets10
19. Stamens $2-5$; filaments free; fruits inflated capsules or drupaceous (apple-like)Cicca subgenus Cicca
20. Stamens 5; filaments outer 2 free, inner 3 fused in a central column); fruits baccate Kirganelia11. Pistillate inflorescences on proximal position and staminate inflorescences ondistal position of plagiotropic branchlets; seeds transversely ribbed - ovarycovered with tuberclesEmblica (E. urinaria)
21. Pistillate inflorescences on distal position and staminate inflorescences on proximal position of plagiotropic branchlets; seeds longitudinally or transversely striate, but not ribbed Moeroris

Asia (India to Southeast Asia), Australia and Pacific

1. Branching non-phyllanthoid (laminate leaves and flowers on all axes; branchlets not deciduous) or sub-phyllanthoid (leaves at base of branchlets not reduced to scales (often in juveniles); lateral branchlets caducous) 2
2. Branching phyllanthoid (leaves on main stem reduced to scales, the cataphylls; laminate leaves and flowers on lateral axes; lateral branchlets caducous) 7

Chapter 8

2. Disc absent Synostemon
3. Disc present. 3
4. Pistillode present in staminate flowers Flueggea
5. Pistillode absent in staminate flowers 44. Leaves on all axes spirally arranged; filaments connate; pistillate discsegmented
Nellica
6. Leaves on all axes distichous; filaments free or connate; pistillate disc usuallyentire (when segmented then filaments free, except in Cathetus womerleyiand Cathetus ussuriensis)5
7. Sepals 4 in both sexes; staminate disc entire; stamens 4, filaments free; seeds with blue sarcotesta. Margaritaria
8. Sepals 5 or 6 (4 in staminate flowers of Cathetus ussuriensis, but then only 2stamens in staminate flowers and 6 sepals in pistillate flowers); staminate discsegmented (urceolate in Cathetus gracilis (Hassk.) R.W.Bouman); stamens 2or 3, filaments free or connate; seeds with no or whitish sarcotesta6
9. Branchlets not caducous; stipule base mostly auriculate; filaments free orconnate, anther connective not enlarged; seeds smooth or longitudinallyverrucate.
.Cathetus
10. Branchlets caducous; stipule base truncate; filaments free, anther connectiveoften enlarged; seeds smooth or transversely striate
Lysiandra
11. Disc absent 8
12. Disc present 118. Flowers without sepal scales; anthers sometimes apiculate; stigmas usuallyentire; ovary 3-15-locular9
13. Flowers often with sepal scales; anthers not apiculate; stigmas usually bifid; ovary 3-locular 10
14. Staminate sepals spreading or tubular; filaments free; ovary 3-5-locular.
Dendrophyllanthus
15. Staminate sepals often recurved; filaments connate; ovary 3-15-locular.

\qquad Glochidion
10. Sepal scales often present in staminate flowers; fruits wider than long; seeds smooth. Breynia
10. Sepal scales absent in staminate flowers (except in S. bacciformis); fruits
longer than wide; seeds sculptured Synostemon
11. Herbs or subshrubs 12
11. Shrubs to trees, rarely climbers 14
12. Pistillate inflorescences on proximal position and staminate inflorescences ondistal position on plagiotropic branchlets; seeds transversely ribbed - ovaryoften covered with tuberclesEmblica
12. Pistillate inflorescences on distal position and staminate inflorescences on proximal position of plagiotropic branchlets; seeds longitudinally or transversely striate, but not ribbed 14
13. Cataphyllary stipules (unilaterally) auriculate; filaments connate Moeroris
13. Cataphyllary stipules not auriculate; filaments free.

\qquad
Phyllanthus14. Sepals 4 in staminate flowers; stamens 2, filaments connate, anthersdehiscing horizontally (except in Nym. ruber \& Nym. touranensis) - pollenpantoporate or clypeatefilaments free); stamens 3-15, filaments free or connate, anthers dehiscingmostly vertically, sometimes horizontally.1515. (Climbing) shrubs; inflorescences axillary or on specialized leaflessbranchlets; stamens 2 or 5, filaments free or fused in two sets (outer 2 free,inner 3 united), connectives not apiculate; fruits baccateKirganelia
15. (Climbing, but then stamens 3 and connate) shrubs to trees; inflorescencesaxillary or on specialized leafless branchlets (then stamens 3 or 4); stamen3-20 (when 5 then inflorescences axillary, fruits capsules), filaments free orconnate, but not in sets, connectives sometimes apiculate; fruits capsules ordrupaceous (baccate in Cicca pinnata and C. orientalis, but then stamens 6)16
16*. Branchlets pinnatiform; inflorescences axillary or on separate leafless plagiotropic axes; stamens 4 (in C. acida) or 6 (in C. Pinnata and C. orientalis), filaments free; fruits baccate (spherical $<2 \mathrm{~cm}$ in diam. in C. pinnata and C. orientalis; star-shaped in C. accida) Cicca
16*. Branchlets (bi-)pinnatiform; inflorescences axillary or sometimes paniculate; sepals 4-6; staminate disc segmented, 4-6 or 3 bilobed segments; stamens mainly 3 or 5 , (in some species up to 20), filaments free (when connate then stamens 3, disc of 3 bilobed segments); stigmas entire, rarely bifid; fruits capsules Dendrophyllanthus
16^{*}. Branchlets pinnatiform; inflorescences axillary on leafy plagiotropic branches (floriferous branchlets sometimes with smaller leaves); sepals (4)5 or 6;

Chapter 8

staminate disc of 5 or 6 glands; stamens 3 or 4, filaments connate; stigmasmostly bifid; fruits (inflated) capsules (except in Emblica officinalis, therespherical drupe $2-3 \mathrm{~cm}$ in diam.)1717. (Climbing) shrubs to trees; floriferous branchlets sometimes with smaller leaves, Glochidion subg. Phyllanthodendron); stamens 3 or 4, connectives apiculate; pistillate disc segmented, segments linear; fruits (inflated) capsules Glochidion (subgenera Phyllanthodendron \& Pseudoactephila)
18. Shrubs to trees; all branches with same size of leaves; stamens 3, connectives apiculate or not; pistillate disc entire; fruits capsules (drupaceous in Emblica officinalis) 18
19. Sepals 6; anthers dehiscing vertically, connectives often apiculate; fruits capsules (drupaceous in E. officinalis) Emblica
20. Sepals 5 or 6 ; anthers dehiscing obliquely to horizontally, connectives not apiculate; fruits capsules Moeroris
Americas (North America, Central America, South America) \& West Indies
21. Branching non-phyllanthoid (laminate leaves and flowers on all axes; branchlets not deciduous) or sub-phyllanthoid (leaves at base of branchlets not reduced to scales (often in juveniles); lateral branchlets deciduous) 2
22. Branching phyllanthoid (leaves on main stem reduced to scales, the cataphylls; laminate leaves and flowers on lateral axes; lateral branchlets deciduous) 6
23. Pistillode present in staminate flowers 3
24. Pistillode absent in staminate flowers 4
25. Petals absent; fruits with 2 seeds per locule; pollen exine verruculose Flueggea3. Petals present; fruits with lor 2 seeds per locule; pollen exine reticulate
\qquadHeterosavia
26. Sepals 4 in both sexes; staminate disc entire; stamens 4, filaments free; seeds with blue sarcotesta.Margaritaria (Pantropical)
27. Sepals 5 or 6 in both sexes (sometimes 4 in staminate flowers, but then 2 stamens); staminate disc entire (H -shaped with 2 stamens); stamens usually 3 , filaments free or connate; seeds with no or whitish sarcotesta .5
28. Leaves on all axes spirally arranged; sepals 4 in staminate flowers, 6 in pistillate flowers; staminate disc entire, H-shaped around filaments; stamens 2, filaments free Moeroris (M. arenaria)
29. Leaves on all axes distichous or spiral; sepals 5 or 6 in both sexes; staminate disc segmented or entire (but then filaments connate), never H-shaped; stamens 2, 3 or 5 (when 2 then filaments connate), filaments free or connate ..
Phyllanthus
30. Herbs or subshrubs ... 7
31. Shrubs to trees, rarely climbers ... 12
32. Inflorescences unisexual... 8
33. Inflorescences bisexual... 11
34. Pistillate inflorescences on proximal position and staminate inflorescences on distal position of plagiotropic branchlets; seeds transversely ribbed - ovary often covered with tubercles .. Emblica urinaria (Pantropical, but origin Asia)
35. Pistillate inflorescences on distal position and staminate inflorescences on proximal position of plagiotropic branchlets; seeds smooth or longitudinally or transversely striate, but not ribbed 9
36. Cataphyllary stipules not auriculate Phyllanthus
37. Cataphyllary stipules (unilaterally) auriculate 10
38. Inflorescences unisexual or bisexual; filaments connate, anthers free; seeds smooth or longitudinally striate. Moeroris
39. Inflorescences usually unisexual; filaments usually free, sometimes connate, anthers free or connate in a synandrium; seeds smooth, striate or verrucate ...

Phyllanthus
11. Stamens 2 or 3, filaments entirely or partially connate (free in M. arenaria), anthers dehiscing oblique to horizontally (vertically in M. arenaria); pistillate disc entire; pollen 3-colporate, exine reticulate; seeds smooth or longitudinally striate - North America, pantropical invasive

Moeroris subgenus Swartziani
11. Stamens 3, filaments free, anthers dehiscing horizontally; pistillate disc
segmented; pollen grains brevicolporate and diorate or porate, exine pilate;
seeds verruculose - South America.. subgenus Conami section Apolepsis
12. Inflorescences axillary fascicles on specialized leafless branchlets or cauliflorous; staminate disc absent; stamens 3 or 4, filaments free (3, filaments connate in C. pseudocicca); ovary 2- or 3-locular; fruits baccate; seeds without sarcotesta.
12. Inflorescences axillary fascicles, sometimes paniculate; staminate disc

Chapter 8

present; stamens 2-15, filaments free or connate; ovary 3-6-locular; fruits baccate (inflorescences then shortly stalked) or capsules; seeds with or without sarcotesta

Phyllanthus

Clade A - Figs. 1, 2A (supplementary fig. 1)

Nellica Raf.
Nellica Rafinesque (1838: 92). - Type: Nellica maderaspatensis (Linnaeus 1753: 982) Raf. ('maderaspatana', based on Phyllanthus maderaspatensis L.).

Maschalanthus Nuttall (1837: 175), nom. illeg., non Maschalanthus Sprengel ex Schultz (1806: 356). - Andrachne L. section Maschalanthus (Nutt.) Pax (1890: 15). - Savia Willd. section Maschalanthus (Nutt.) Pax \& Hoffmann (1922: 183). - Lectotype (designated by Webster 1970): Maschalanthus polygonoides (Nutt. ex Sprengel 1826: 23) Nuttal (1837: 175) (based on Phyllanthus polygonoides Nutt. ex Spreng.) = Nellica polygonoides (Nutt. ex Spreng.) R.W.Bouman. Phyllanthus Linnaeus subgenus Isocladus Webster (1956: 345); (1970: 55); Brunel (1987: 317); Ralimanana \& Hoffmannn (2011:334). - Phyllanthus L. section Paraphyllanthus Müller (1863: 3); (1866: 355); Bentham (1873: 94); Hooker (1887: 285); Boerlaage (1900: 213); Webster (1956: 345); (1997: 209). Phyllanthus L. section Isocladus: Brunel (1987:318). - Type: Phyllanthus maderaspatensis Linnaeus $=$ Nellica maderaspatensis (L.) Rafinesque ('maderaspatana').

Diagnostic features: Herbs or subshrubs, monoecious, branching non-phyllanthoid. Brachyblasts absent. Leaves spirally arranged on all axes. Inflorescences axillary, unisexual or bisexual fascicles. Staminate flowers: sepals 6 ; disc glands 6, alternating with sepals; stamens 3 , filaments connate, anthers dehiscing longitudinally, vertically, connectives not apiculate, not fused; pollen prolate, 3-colporate, colpi monoporate, exine reticulate; pistillode absent. Pistillate flowers: sepals 6; disc glands 6 , alternating with sepals; ovary 3 -locular; style present; stigmas apicallly bifid. Fruits capsules. Seeds trigonous, verrucate along longitudinal rows. Distribution: Mainly Africa, Central and North America (USA and Mexico), with one widespread species occurring in Asia and Australia.
Notes - 1. Phyllanthus maderaspatensis L. of subgenus Isocladus G.L.Webster was found to be sister to all other species of Phyllanthus (Kathriarachchi et al. 2006), while the other species included in subgenus Isocladus were present in other clades (as far as they were included in any analysis) and classified in other subgenera/sections. Subsequently, subgenus Isocladus was described as monotypic (Ralimanana \& Hoffmann 2011), but the P. maderaspatensis clade was found to also include the American species P. polygonoides (Bouman et al. 2021; supplementary fig. 1) and African P. mendoncae Jean F.Brunel. This shows that Phyllanthus
subgenus Isocladus was not monotypic, but was merely the result of incomplete taxon sampling by Kathriarachchi et al. (2006). The species placed by Brunel (1987) and Webster (2001b) in the same section as P. maderaspatensis should be retained as one group, which is here split from Phyllanthus as the separate genus Nellica. Unfortunately, the Mexican species of section Paraphyllanthus (sensu Webster 2001b) was not included in any phylogenetic study and should be further investigated. Two species by Radcliffe-Smith (1996b) are also included on account of their general resemblance to Nel. maderaspatensis (pistillate disc consisting of free glands in the drawing, and spirally arranged leaves), but they need to be further evaluated.
2. The most important characters here are the spirally arranged leaves, nonphyllanthoid branching, the connate stamens with free connectives and a segmented pistillate disc. No further subgeneric groups are currently defined for this genus, but there may be differences between the neotropical and palaeotropical species.

Included species and taxonomic changes (20 spp.):
Nellica barbarae (Johnston 1986: 35) R.W.Bouman, comb. nov. Basionym: Phyllanthus barbarae M.C.Johnst.
Nellica caraculiensis (Brunel 1987: 320) R.W.Bouman, comb. nov. Basionym: Phyllanthus caraculiensis Jean F.Brunel.
Nellica cunenensis (Brunel 1987: 320) R.W.Bouman, comb. nov. Basionym: Phyllanthus cunenensis Jean F.Brunel.
Nellica ericoides (Torrey 1859: 193) R.W.Bouman, comb. nov. Basionym: Phyllanthus ericoides Torr.
Nellica fraguensis (Johnston 1985: 300) R.W.Bouman, comb. nov. Basionym: Phyllanthus fraguensis M.C.Johnst.
Nellica galeottiana (Baillon 1860: 32) R.W.Bouman, comb. nov. Basionym: Phyllanthus galeottianus Baill.
Nellica gypsicola (McVaugh 1961: 194) R.W.Bouman, comb. nov. Basionym: Phyllanthus gypsicola McVaugh.
Nellica incurva (Thunberg 1794:) R.W.Bouman, comb. nov. Basionym: Phyllanthus incurvus Thunb.
Nellica karibibensis (Brunel 1987: 323) R.W.Bouman, comb. nov. Basionym: Phyllanthus karibibensis Jean F.Brunel.
Nellica liebmanniana (Müller1866: 366) R.W.Bouman, comb. nov. Basionym: Phyllanthus liebmannianus Müll.Arg.
Nellica maderaspatensis (Linnaeus 1753: 982) Raf. (1838: 92, as 'maderaspatana'). Basionym: Phyllanthus maderaspatensis L.
Nellica mendoncae (Brunel 1987: 324) R.W.Bouman, comb. nov. Basionym: Phyllanthus mendoncae Jean F.Brunel.
Nellica neoleonensis (Croizat 1943b: 14) R.W.Bouman, comb. nov. Basionym:

Chapter 8

Phyllanthus neoleonensis Croizat.
Nellica paxianus (Dinter 1926: 379) R.W.Bouman, comb. nov. Basionym:
Phyllanthus paxianus Dinter.
Nellica peninsularis (Brandegee 1899: 8) R.W.Bouman, comb. nov. Basionym: Phyllanthus peninsularis Brandegee.
Nellica polygonoides (Nutt. ex Sprengel 1826: 23) R.W.Bouman, comb. nov. Basionym: Phyllanthus polygonoides Nutt. ex Spreng.
Nellica revaughanii (Coode 1978: 120) R.W.Bouman, comb. nov. Basionym:
Phyllanthus revaughanii Coode. -Phyllanthus longifolius Lam. ex Poir. in de Lamarck (1804:303), nom. illeg., non Phyllanthus longifolius Jacquin (1797: 36).

Nellica serpentinicola (Radcliffe-Smith 1996b: 320) R.W.Bouman, comb. nov. Basionym: Phyllanthus serpentinicola Radcl.-Sm.
Nellica spinosa (Chiovendi 1929: 305) R.W.Bouman, comb. nov. Basionym: Phyllanthus spinosus Chiov.
Nellica tener (Radcliffe-Smith 1996b: 323) R.W.Bouman, comb. nov. Basionym: Phyllanthus tener Radcl.-Sm.

Clade B - Figs. 1, 2B \& C (supplementary fig. 1)
Cathetus Lour.
Cathetus de Loureiro (1790: 608). - Phyllanthus L. section Cluytiopsis Müller (1863: 3).- Phyllanthus section Cathetus (Lour.) Müller (1866: 350), nom. superfl.; Pax (1890: 20); Pax \& Hoffman (1931: 64). -Type: Cathetus fasciculata Lour. (= formerly Phyllanthus cochinchinensis Spreng.).

Diagnostic features: Herbs, subshrubs to trees, monoecious or dioecious; branching non-phyllanthoid. Leaves distichous or in small whorls. Inflorescences axillary, unisexual or bisexual fascicles. Staminate flowers: sepals 6 (except 5 in C. aoraiensis and usually 4 in C. petraeus and C. ussuriensis); disc glands free (urceolate in C. gracilis), same number as and alternating with sepals; stamens 3 (2 in C. petraeus and sometimes C. ussuriensis), filaments free or connate (connectives also fused in subgenus Cathetus), anthers globular or elongate, non-apiculate, dehiscing horizontally to vertically; pollen spheroidal to ellipsoidal, clypeate with colpi anastomosing around exine shields or pantoporate or peribrevicolporate without distinct colpi, exine (macro)reticulate; pistillode absent. Pistillate flowers: sepals 6; disc entire or consisting of free glands alternating with sepals; ovary 3-(rarely 4-) locular; styles present or absent; stigmas 3, with bifid tips. Fruits capsules. Seeds trigonous, smooth or verrucate with verrucae either random or in longitudinal lines.
Distribution: Africa, mainland Asia, Malesia, Australia and Pacific.

Note - As defined here, the reinstated genus Cathetus includes two subgenera that correspond to Phyllanthus subgenus Macraea (Wight) Jean F.Brunel and Phyllanthus subgenus Ceramanthus (Hassk.) Jean F.Brunel. Though previously only a section within Phyllanthus, Cathetus is the oldest name at generic level and therefore has priority over the other two names, Macraea and Ceramanthus. Subgenus Ceramanthus is synonymized with subgenus Cathetus and all its sections are here subsumed except for section Ebolowani, which is placed in the genus Cicca (discussed below). Both subgenera are characterized by non-phyllanthoid branching with usually distichous leaves in higher nodes and six sepals in the flowers with three stamens in the staminate flower. Distinctions are discussed below.

Cathetus Lour. subgenus Cathetus

Cathetus Lour. subgenus Cathetus: Literature and type as under the genus. Ceramanthus Hasskarl (1844: 240), non Aploca section Ceramanthus Hooker ex Post \& Kuntze (1903: 39), nor Ceramanthus (Kuntze) Malme (1905: 2). Phyllanthus L. section Ceramanthus (Hassk.) Baillon (1858: 629); Müller (1866: 350); Pax (1890: 20); Brunel (1987: 408). — Phyllanthus L. subgenus Ceramanthus (Hassk.) Brunel (1987: 407). - Type: Ceramanthus gracilis Hassk. (= formerly Phyllanthus albidiscus (Ridl.) Airy Shaw) $=$ Cathetus gracilis (Hassk.) R.W.Bouman.
Phyllanthus L. section Anisolobium Müller (1864:330); Pax (1890: 20); Pax \& Hoffmann (1921: 27); (1931: 63); Webster (1997: 217). - Phyllanthus L. subgenus Ceramanthus (Hassk.) Jean F.Brunel section Anisolobium (Müll. Arg.) Brunel (1987:412). - Type: Phyllanthus welwitschianus Müll.Arg. = Cathetus welwitschianus (Müll.Arg.) R.W.Bouman.
Phyllanthus L. section Bivia Brunel \& Roux (1985: 241). - Phyllanthus L. subgenus Ceramanthus (Hassk.) Jean F.Brunel section Bivia (Jean F.Brunel \& Jacq. Roux) Brunel (1987: 414). - Type: Phyllanthus petraeus A.Chev. \& Beille ex Beille $=$ Cathetus petraeus (A.Chev. \& Beille ex Beille) R.W.Bouman.

Diagnostic features: Shrubs, monoecious or dioecious. Leaves distichous or in small whorls. Inflorescences axillary, unisexual or (rarely) bisexual fascicles. Staminate flowers: sepals 6 (4 in C. petraeus); disc glands free (urceolate in C. gracilis), same number as and alternating with sepals; stamens 3 (2 in C. petraeus), filaments and connectives fused into an androphore; anthers elongate; pollen pantoporate or peribrevicolporate, colpi indistinct, exine macroreticulate. Pistillate flowers: sepals 6; disc entire; styles present; stigmas 3 with bifid tips. Fruits capsules. Seeds trigonous, verrucate with verrucae either random or in longitudinal lines.
Distribution: Africa and mainland Asia, Malesia (Java).
Notes -1 . The main difference between subgenus Cathetus (formerly Phyllanthus subgenus Ceramanthus) and subgenus Macraea is found in the fusion of the

Chapter 8

filaments and connectives. Usually the flowers are larger and have two clear dimorphic sepal whorls in Cathetus subgenus Cathetus.
2. Three sections were recognized in Phyllanthus subgenus Ceramanthus with little taxonomic value and they are here all subsumed into subgenus Cathetus.
3. Pantoporate pollen also occurs in Nymphanthus, but they differ in the shape of the apertures (elliptic in Cathetus, circular in Nymphanthus; Wu et al. 2016).

Included species and taxonomic changes (6 spp .):
Cathetus binhii (Thin 1995: 48) R.W.Bouman, comb. nov. Basionym: Phyllanthus binhii Thin.
Cathetus fasciculata de Loureiro (1790: 608), homotypic synonym: Phyllanthus cochinchinensis Spreng. (1826: 21).
Cathetus gracilis (Hasskarl 1844: 240) R.W.Bouman, comb. nov. Basionym: Ceramanthus gracilis Hassk., non Phyllanthus gracilis Roxburgh (1832: 654), heterotypic synonym: Phyllanthus albidiscus (Ridl.) Airy Shaw (1969: 26).
Cathetus kerstingii (Brunel 1985: 251) R.W.Bouman, comb. nov. Basionym: Phyllanthus kerstingii Jean F.Brunel.
Cathetus petraeus (Chevalier \& Beille ex Beille 1908: 58) R.W.Bouman, comb. nov. Basionym: Phyllanthus petraeus A.Chev. \& Beille ex Beille.
Cathetus welwitschianus (Müller 1864: 330) R.W.Bouman, comb. nov. Basionym: Phyllanthus welwitschianus Müll.Arg.

Cathetus Lour. subgenus Macraea (Wight) R.W.Bouman, comb. nov.

Macraea Wight (1852: 27), nom. illeg., non Macraea Lindley (1828:104), nec Hooker (1846: 209). - Phyllanthus L. section Macraea (Wight) Baillon (1858: 628); Müller (1866: 384); Webster (1986: 93); (1997: 211). — Phyllanthus L. subgenus Macraea (Wight) Brunel (1987: 293). - Lectotype (designated by Webster 1986): Macraea oblongifolia Wright (= formerly Phyllanthus virgatus G.Forst.) = Cathetus simplex (Retz.) R.W.Bouman.

Diagnostic features: Herbs, subshrubs to trees, monoecious or dioecious; branching non-phyllanthoid. Leaves distichous. Inflorescences axillary, unisexual or (rarely) bisexual fascicles. Staminate flowers: sepals 6 (except 5 in C. aoraiensis and usually 4 in C. ussuriensis); disc glands free, same number as and alternating with sepals; stamens 3 (sometimes 2 in C. ussuriensis), filaments free, sometimes connate, anthers globular; pollen clypeate, colpi anastomosing around exine shield, exine reticulate. Pistillate flowers: sepals 6; disc entire or consisting of free glands alternating with sepals; styles mostly absent (present in C. ridsdalei and C. tenuipes); stigmas 3 with bifid tips. Fruits capsular. Seeds trigonous, smooth or verrucate with verrucae either random or in longitudinal lines.
Distribution: Africa, mainland Asia, Malesia, Australia and Pacific.

Note - The staminate flowers of subgenus Macraea can be quite similar to the genus Lysiandra (F.Muell.) R.W.Bouman, I.Telford \& J.J.Bruhl or Phyllanthus section Loxopodium, but subgenus Macraea differs significantly in its pollen. Species of subgenus Macraea can also be distinguished from Lysiandra by their (usually) bicolored auriculate stipules. This group has recently been revised while still in the genus Phyllanthus (Verwijs et al., 2019), but some species are reinstated and transferred here (e.g., C. beckleri (Müll.Arg.) I.Telford \& J.J.Bruhl, C. filicaulis (Benth.) I.Telford \& J.J.Bruhl and C. simplex (Retz.) R.W.Bouman).

Included species and taxonomic changes (34 spp.):
Cathetus aoraiensis (Nadeaud 1873: 73) R.W.Bouman, comb. nov. Basionym: Phyllanthus aoraiensis Nadeaud.
Cathetus beckleri (Müller 1865b: 74) I.Telford \& J.J.Bruhl, comb. nov. Basionym: Phyllanthus beckleri Müll.Arg.
Cathetus brevipes (Hooker 1887: 297) R.W.Bouman, comb. nov. Basionym: Phyllanthus brevipes Hook.f.
Cathetus chrysanthus (Baillon 1862b: 238) R.W.Bouman, comb. nov. Basionym: Phyllanthus chrysanthus Baill.
Cathetus clarkei (Hooker 1887: 297) R.W.Bouman, comb. nov. Basionym: Phyllanthus clarkei Hook.f.
Cathetus distichus (Hooker \& Arnott 1832: 95) R.W.Bouman, comb. nov. Basionym: Phyllanthus distichus Hook. \& Arn.
Cathetus dumosus (Robinson 1909: 79) R.W.Bouman, comb. nov. Basionym: Phyllanthus dumosus C.B.Rob.
Cathetus everettii (Robinson 1909: 80) R.W.Bouman, comb. nov. Basionym: Phyllanthus everettii C.B.Rob.
Cathetus exilis (Moore 1926: 97) R.W.Bouman, comb. nov. Basionym: Phyllanthus exilis S.Moore.
Cathetus filicaulis (Bentham 1873: 111) I.Telford \& J.J.Bruhl, comb. nov. Basionym: Phyllanthus filicaulis Benth.
Cathetus gardnerianus (Wight 1852: 27) R.W.Bouman, comb. nov. Basionym: Macraea gardneriana Wight, synonym: Phyllanthus gardnerianus (Wight) Baill. (1858: 628).
Cathetus glaucophyllus (Sonder 1850: 133) R.W.Bouman, comb. nov. Basionym: Phyllanthus glaucophyllus Sond.
Cathetus stylosus (Griffith 1848: 33) R.W.Bouman, comb. nov. Basionym: Phyllanthus stylosus Griffith, synonym Phyllanthus griffithii Müller 1863: 27.
Cathetus hakgalensis (Thwaites ex Trimen 1885: 242) R.W.Bouman, comb. nov. Basionym: Phyllanthus hakgalensis Thwaites ex Trimen.
Cathetus lanceifolius (Merrill 1914: 489) R.W.Bouman, comb. nov. Basionym: Phyllanthus lanceifolius Merr.
Cathetus minutiflorus (Mueller ex Müller 1865b: 75) R.W.Bouman, comb. nov.

Chapter 8

Basionym: Phyllanthus minutiflorus F.Muell. ex Müll.Arg.
Cathetus myrtifolius (Wight 1852: 27) R.W.Bouman, comb. nov. Basionym:
Macraea myrtifolia Wight., homotypic synonym: Phyllanthus myrtifolius (Wight) Müller (1866: 396).
Cathetus narayansamii (Gamble 1925: 329) R.W.Bouman, comb. nov. Basionym: Phyllanthus narayansamii Gamble.
Cathetus pacificus (Müller 1863: 31) R.W.Bouman, comb. nov. Basionym: Phyllanthus pacificus Müll.Arg.
Cathetus parvifolius (Buchanan-Hamilton ex Don 1825: 63) R.W.Bouman, comb. nov. Basionym: Phyllanthus parvifolius Buch.-Ham. ex D.Don.
Cathetus praetervisus (Müller 1865b: 73) R.W.Bouman, comb. nov. Basionym: Phyllanthus praetervisus Müll.Arg.
Cathetus prominulatus (Hunter \& Bruhl 1997b: 153) R.W.Bouman, comb. nov. Basionym: Phyllanthus prominulatus J.T.Hunter \& J.J.Bruhl.
Cathetus pseudoparvifolius (Mitra \& Sanjappa 2003:10) R.W.Bouman, comb. nov. Basionym: Phyllanthus pseudoparvifolius R.L.Mitra \& Sanjappa.
Cathetus rheedei (Wight 1852: 27) R.W.Bouman, comb. nov. Basionym: Macraea rheedei Wight (non Phyllanthus rheedei Wight), homotypic synonym: Phyllanthus macraei Müller (1863: 29).
Cathetus ridsdalei (R.W.Bouman \& Verwijs in Verwijs et al. 2019: 245)
R.W.Bouman, comb. nov. Basionym: Phyllanthus ridsdalei R.W.Bouman \& Verwijs.
Cathetus samarensis (Müller 1865b: 73) R.W.Bouman, comb. nov. Basionym: Phyllanthus samarensis Müll.Arg.
Cathetus sanjappae (Chakrabarty \& Gangopadhyay 1993: 69) R.W.Bouman, comb. nov. Basionym: Phyllanthus sanjappae Chakrab. \& M.Gangop.
Cathetus simplex (Retzius 1789: 29) R.W.Bouman, comb. nov. Basionym: Phyllanthus simplex Retz.
Cathetus tenuipes (Robinson 1909: 78) R.W.Bouman, comb. nov. Basionym: Phyllanthus tenuipes C.B.Rob.
Cathetus urceolatus (Baillon 1862b: 239) R.W.Bouman, comb. nov. Basionym: Phyllanthus urceolatus Baill.
Cathetus ussuriensis (Ruprecht \& Maximowicz 1857: 222) R.W.Bouman, comb. nov. Basionym: Phyllanthus ussuriensis Rupr. \& Maxim.
Cathetus virgatus (Forster 1786: 65) R.W.Bouman, comb. nov. Basionym: Phyllanthus virgatus G.Forst.
Cathetus wheeleri (Webster 1995: 266) R.W.Bouman, comb. nov. Basionym: Phyllanthus wheeleri G.L.Webster.
Cathetus womersleyi (Airy Shaw \& Webster in Webster \& Airy Shaw1971: 86)
R.W.Bouman, comb. nov. Basionym: Phyllanthus womersleyi Airy Shaw \& G.L.Webster.

Clade C - Figs. 1, 2D,E \& F (supplementary fig. 1)

Kirganelia A.Juss.

Kirganelia de Jussieu (1789: 387); (1824: 108); Rafinesque (1838: 92); Baillon (1858: 611, 614); (1862b: 231); Das (1940: 158). — Phyllanthus L. subgenus Kirganelia (A.Juss.) Kurz (1873: 238); Webster (1957: 51); (1970: 62); Brunel (1987: 263). - Phyllanthus L. section Kirganelia (A.Juss.) Müller (1863: 2, 11); (1866: 341); Bentham (1873: 94); Boerlaage (1900: 212); Brunel (1987:271). - Phyllanthus L. section Typhophyllanthus Kuntze subsection Kirganelia (A.Juss.) Kuntze in Post \& Kuntze (1904: 434). — Type: Kirganelia phyllanthoides Desf. ex A.Juss. (= formerly part of synonymy of Phyllanthus casticum P.Willemet) = Kirganelia castica (P.Willemet) R.W.Bouman.

Diagnostic features: Shrubs (sometimes scandent) or trees, monoecious or dioecious, branching phyllanthoid (except in section Pseudomenarda), branchlets pinnatiform, often fasciculate on brachyblasts. Brachyblasts present. Cataphyllary stipules triangular, sometimes spinescent, indurate, base not auriculate. Cataphylls triangular, often spinescent, laminate leaves in section Pseudomenarda. Leaves distichous. Inflorescences axillary, unisexual or bisexual fascicles, sometimes on separate leafless branchlets. Staminate flowers: sepals 4 or 5; disc glands 4 or 5, alternating with sepals; stamens 2,5 or 6 , filaments free (in subsumed section Hemicicca (Baill.) Müll.Arg.) or connate, often of unequal length and in 2 distinct sets; anthers ovate to orbicular, non-apiculate, dehiscing vertically to obliquely; pollen (oblate) spheroidal, 3-(4-)(syn)colporate or incomplete synaperturate, colpi mono- or diploporate, exine irregularly (mirco) reticulate to vermiculate or pilate; pistillode absent. Pistillate flowers: sepals 5 or 6; disc entire (segmented in K. purpurea); ovary 3-10-locular; styles absent; stigmas bifid to nearly entire, usually erect, sometimes reduced to small tips. Fruits baccate (capsule in K. purpurea). Seeds trigonous to plano-convex, smooth or variously sculptured. Distribution: Africa, Madagascar, mainland Asia, Malesia and Australia. Notes - 1. As here circumscribed, the reinstated genus Kirganelia only consists of sections Kirganelia (including several former separate sections) and Pseudomenarda Müll.Arg. Previous sections that were included on the base of their five stamens with a different fusion type (Brunel 1987) are transferred here to the genus Cicca, which was shown to be phylogenetically distinct (Kathriarachchi et al. 2006; Bouman et al. 2021).
2. Kirganelia is sister to a clade comprising the genera Lysiandra and Nymphanthus. These three genera show major differences in flower and fruit morphology and are treated at the same rank.

Chapter 8

3. Kirganelia is one of the older names, already established by Jussieu (1789), and it was recognized early because of the aberrent staminal fusion and berries. A similar type of stamen fusion can sometimes be found in Phyllanthus subgenus Xylophylla (L.) Pers. section Orbicularia (Baill.) Griseb., with some outer stamens appearing to be free while the central ones are fused, but here the berries are absent. Many other groups were once placed within Kirganelia, but are phylogenetically distinct (Kathriarachchi et al. 2006; Bouman et al. 2021). Species in the group can sometimes have the inflorescences on separate specialized leafless branchlets, similar to those found in the genus Cicca. Other similarities and differences between Kirganelia and Cicca subgenus Anesonemoides (Jean F.Brunel) R.W.Bouman were discussed in Ralimanana \& Hoffmann (2011, 2014, under Phyllanthus subgenus Kirganelia and subgenus Anesonemoides). These include the presence of brachyblasts, berries and stamens fused in whorls in Kirganelia as opposed to brachyblasts absent and capsules and stamens mostly free in Cicca subgenus Anesonemoides.

Kirganelia A.Juss. section Kirganelia

Kirganelia A.Juss. section Kirganelia: Literature and type as under the genus. Anisonema de Jussieu (1824: 19), nom. rej. non Anisonema Dujardin (1841: 344); Baillon (1858: 613). - Phyllanthus L. subgenus Kirganelia (A.Juss.) Kurz section Anisonema (A.Juss.) Grisebach (1859: 34); Baillon (1858: 613); (1862b: 231); Webster (1957: 56); Schmid (1991: 58). —Type: Anisonema reticulatum (Poir.) Jussieu (1804: 4), nom. rej. (= formerly Phyllanthus reticulatus Poir.) = Kirganelia reticulata (Poir.) Baill.
Kirganelia A.Juss. section Anisonemopsis Baillon (1858: 614). - Type: Kirganelia trilocularis Baillon (1858: 614)). -Phyllanthus decipiens (Baill.) Müll.Arg. f. trilocularis (Baill.) Leandri (= formerly Phyllanthus casticum P.Willemet) = Kirganelia castica (P.Willemet) R.W.Bouman.
Phyllanthus L. section Flueggeopsis Müller (1863: 2, 14); (1866: 348); Hooker (1887: 286); Boerlaage (1900: 212). - Flueggeopsis (Müll.Arg.) Schumann (1905: 289); Das (1940: 158). — Type: Flueggeopsis glauca (Wall. ex Müll.Arg.) Das (1940: 158). - Phyllanthus glaucus Wall. ex Müll.Arg. = Kirganelia glauca (Wall. ex Müll.Arg.) R.W.Bouman.
Hemicicca Baillon (1858: 645). - Phyllanthus L. section Hemicicca (Baill.) Müller (1866: 324). —Phyllanthus L. section Cicca (L.) Müll.Arg. subsection Hemicicca (Baill.) Müller (1863: 52). - Glochidion J.F.Forst. \& G.Forst. section Hemicicca (Baill.) Pax \& Hofmann (1931: 58). — Type: Hemicicca japonica Baill. (= formerly Phyllanthus flexuosus (Siebold \& Zucc.) Müll.Arg.) = Kirganelia flexuosa (Siebold \& Zucc.) R.W.Bouman.
Phyllanthus L. section Floribundi Pax \& Hoffmann (1921: 22); Webster (1957: 51). - Type: Phyllanthus floribundus Müll.Arg., nom. illeg., non Phyllanthus
floribundus Kunth, nor Kirganelia floribunda (Kunth) Spreng. (= formerly Phyllanthus muellerianus (Kuntze) Exell) $=$ Kirganelia muelleriana (Kuntze) R.W.Bouman.

Phyllanthus L. subgenus Conami (Aubl.) G.L.Webster section Brazzeani Brunel \& Roux, (1977: 224 (in subgenus Conami)); Brunel (1987: 292). - Type:
Phyllanthus dinklagei Pax = Kirganelia dinklagei (Pax) R.W.Bouman.
Diagnostic features: Shrubs (sometimes scandent) or trees, monoecious or dioecious, branching phyllanthoid, branchlets pinnatiform, often fasciculate on brachyblasts. Cataphylls present. Leaves distichous. Staminate flowers: sepals 4 or 5 ; disc glands 4 or 5 , alternating with sepals; stamens 5 or 6 , connate, often of unequal length and in 2 distinct sets, anthers muticous, dehiscing longitudinally; pollen (oblate) spheroidal, 3-(syn)colporate or incompletely synaperturate, colpi monoporate, exine irregularly reticulate to vermiculate or pilate. Pistillate flowers: sepals 5 or 6; disc entire; ovary 3-10-locular; stigmas bifid to nearly unlobed. Fruits baccate. Seeds trigonous to plano-convex.
Distribution: Tropical Africa, mainland Asia, Malesia and Australia.
Notes -1 . The name Anisonema was the first to be established on section level (Grisebach 1859), while Kirganelia is the older name on genus and subgeneric level. Past taxonomic treatments have often retained section Anisonema within Phyllanthus subgenus Kirganelia (see Webster 1958; Webster \& Airy Shaw 1971; Kathriarachchi et al. 2006; Bouman et al. 2018b), but sometimes changed this in favor of section Kirganelia (Webster 1960; Airy Shaw 1980a). Here, with the reinstatement of the genus Kirganelia, the autonym rule applies and it becomes section Kirganelia.
2. Four sections are combined to form section Kirganelia. Baillon (1858) created the monotypic section Anisonemopsis, which was synonymized by Müller (1866) within section Kirganelia. Phyllanthus section Floribundi, which was upheld by Webster (1957), was disentangled and split into several sections by Brunel (1987). His classification of Kirganelia was subsequently altered with the results from the phylogenetic studies by Kathriarachchi et al. (2006); changes in Ralimanana \& Hoffmann (2011), Falcón et al. (20202) and Bouman et al. (2021, changes implemented here). According to Webster (2002 manuscript of Phyllanthus subgenus Kirganelia) species of Phyllanthus sections Flueggeopsis and Floribundi have caducous pistillate sepals, but this has not been studied in detail. Two sections, Hemicicca and Flueggeopsis, are also subsumed as they are nested within section Kirganelia.
3. Phyllanthus glaucus Wall. ex Müll.Arg. was synonymized with Flueggea virosa (Roxb. ex Willd.) Royle by Barker \& van Welzen (2010) based on a specimen at Kew (most likely Wallich 7927 (barcode K000246529)); however, Wallich 7927 is a mixed collection of two distinct species, as determined by Chakrabarty \& Balakrishnan (2018). Here the material separated from Flueggea virosa is transferred to Kirganelia

Chapter 8

(as Kirganelia glauca (Wall. ex Müll.Arg.) R.W.Bouman) and is probably closely related to K. flexuosa.
4. Meewis \& Punt (1983) argued that section Brazzeani should probably be placed in subgenus Kirganelia as opposed to Brunel \& Roux (1977), who wanted to place this section in Phyllanthus subgenus Conami. Similarities in pollen morphology, specifically the pilate exine, are probably convergent. Other characters such as the fusion of the androecium and the baccate fruits, are characters typical for Kirganelia. Retaining Brazzeani as a separate section would result in a paraphyletic section Kirganelia, therefore they are combined here.

Included species and taxonomic changes (22 spp.):
Kirganelia angavensis (Leandri 1957: 222) R.W.Bouman, comb. nov. Basionym: Phyllanthus angavensis Leandri.
Kirganelia archboldiana (Airy Shaw \& Webster 1971:88) R.W.Bouman, comb. nov. Basionym: Phyllanthus archboldianus Airy Shaw \& G.L.Webster.
Kirganelia baccata (Mueller ex Bentham 1873: 102) R.W.Bouman, comb. nov. Basionym: Phyllanthus baccatus F.Muell. ex Benth.
Kirganelia castica (Willemet 1796: 55) R.W.Bouman, comb. nov. Basionym: Phyllanthus casticum P.Willemet.
Kirganelia ciccoides (Müller 1863: 13) R.W.Bouman, comb. nov. Basionym: Phyllanthus ciccoides Müll.Arg.
Kirganelia dinklagei (Pax 1894: 77) R.W.Bouman, comb. nov. Basionym: Phyllanthus dinklagei Pax.
Kirganelia flexuosa (Siebold \& Zuccarini 1845: 143) R.W.Bouman, comb. nov. Basionym: Cicca flexuosa Siebold \& Zucc., homotypic synonym: Phyllanthus flexuosus (Siebold \& Zucc.) Müll.Arg. (1866: 324).
Kirganelia fuscolurida (Müller 1866: 346) R.W.Bouman, comb. nov. Basionym: Phyllanthus fuscoluridus Müll.Arg.
Kirganelia glaucina (Miquel 1861: 449) R.W.Bouman, comb. nov. Basionym: Anisonema glaucinum Miq., homotypic synonym: Phyllanthus glaucinus (Miq.) Müll.Arg. (1863: 13).
Kirganelia glauca (Wallich ex Müller 1863: 14) R.W.Bouman, comb. nov. Basionym: Phyllanthus glaucus Wall. ex Müll.Arg.
Kirganelia keyensis (Warburg 1891: 355) R.W.Bouman, comb. nov. Basionym: Phyllanthus keyensis Warb.
Kirganelia matitanensis (Leandri 1938: 196) R.W.Bouman, comb. nov. Basionym: Phyllanthus matitanensis Leandri.
Kirganelia microcarpa (Bentham 1861: 312) Hurusawa \& Tanaka (in Hara 1966: 179). Basionym: Cicca microcarpa Benth., homotypic synonym: Phyllanthus microcarpus (Benth.) Müll.Arg. (1863: 51).
Kirganelia muelleriana (Kuntze 1891: 597) R.W.Bouman, comb. nov. Basionym: Diasperus muellerianus Kuntze, homotypic synonym: Phyllanthus floribundus

Müll.Arg. (1863: 14), nom. illeg., non Phyllanthus floribundus Kunth (1817: 116); nec Kirganelia floribunda (Kunth) Sprengel (1826: 48)), homotypic synonym: Phyllanthus muellerianus (Kuntze) Exell (1944: 290).
Kirganelia novae-hollandiae (Müller 1866:346) R.W.Bouman, comb. nov. Basionym: Phyllanthus novae-hollandiae Müll.Arg.
Kirganelia oligosperma (Hayata 1920: 93) R.W.Bouman, comb. nov. Basionym: Phyllanthus oligospermus Hayata.
Kirganelia ovalifolia (Forsskål 1775: 159) R.W.Bouman, comb. nov. Basionym: Phyllanthus ovalifolius Forssk.
Kirganelia pervilleana Baillon (1861:50). Homotypic synonym: Phyllanthus pervilleanus (Baill.) Müll.Arg. (1863: 13).
Kirganelia polysperma (Schumacher \& Thonning 1827:416) R.W.Bouman, comb. nov. Basionym: Phyllanthus polyspermus Schumach. \& Thonn.
Kirganelia reticulata (Poiret 1804: 298) Baillon (1858: 613). Basionym: Phyllanthus reticulatus Poir.
Kirganelia vieillardii Baillon (1862b: 231) (non Phyllanthus vieillardii Baill. 1862b: 236); homotypic synonym: Phyllanthus deplanchei Müll.Arg. (1863: 13).

Kirganelia zippeliana (Müller 1866: 433) R.W.Bouman, comb. nov. Basionym: Phyllanthus cantoniensis Zippelius ex Spanoghe (1841: 347), nom. illeg., non Phyllanthus cantoniensis Horneman (1807: 29); nec Phyllanthus cantoniensis Schweigger (1812: 54), homotypic synonym: Phyllanthus zippelianus Müll.Arg. (1866: 433).

Kirganelia A.Juss. section Pseudomenarda (Müll.Arg.) R.W.Bouman, comb. nov.
Phyllanthus L. subgenus Kirganelia (A.Juss.) Kurz section Pseudomenarda Müller (1864: 239); (1866: 349); Hoffmann (1931: 62); Brunel (1987: 267). - Type: Phyllanthus purpureus Müll.Arg. = Kirganelia purpurea (Müll.Arg.) R.W.Bouman.

Diagnostic features: Shrubs, monoecious, glabrous, branching non/subphyllanthoid. Brachyblasts absent. Cataphylls absent, leaves subtending branchlets not reduced. Leaves spiral, present on all axes. Staminate flowers: sepals 5; disc glands 5, free, massive, alternating with sepals; stamens 5, filaments free, anthers dehiscing longitudinally, vertically; pollen 3-(4-)colporate, colpi diploporate, sometimes monoporate, exine microreticulate. Pistillate flowers: sepals 5; disc entire in K. somalensis, segmented in K. purpureus; ovary 3-locular; style present; stigma tips bifid and dilated, reflexed. Fruits capsules. Seeds trigonous, smooth.
Distribution: Tropical Africa.
Note - Two species from Africa have leaves that subtend the branches and are present on all axes (Brunel 1987); the species in section Kirganelia have cataphylls subtending the branchlets, though juvenile plants may at first show laminate leaves

Chapter 8

(Bouman, et al. 2021, fig. 1).
Included species and taxonomic changes (2 spp.):
Kirganelia purpurea (Müller 1864: 329) R.W.Bouman, comb. nov. Basionym: Phyllanthus purpureus Müll.Arg.
Kirganelia somalensis (Hutchinson in Brown et al. 1912: 710) R.W.Bouman, comb. nov. Basionym: Phyllanthus somalensis Hutch.

Lysiandra (F.Muell.) R.W.Bouman, I.Telford \& J.J.Bruhl, comb. et stat. nov.

Phyllanthus L. subgenus Lysiandra Mueller (1859: 108). - Phyllanthus L. section Lysiandra (F.Muell.) Webster (1978: 573). - Type: Phyllanthus subcrenulatus F.Muell. = Lysiandra subcrenulata (F.Muell.) R.W.Bouman.

Phyllanthus L. section Antipodanthus auct. non G.L.Webster: Webster (2002b: 290), p.p., only Australian species.

Diagnostic features: Shrubs, monoecious or dioecious, glabrous, branching (sub) phyllanthoid. Brachyblasts absent. Cataphyllary stipules triangular, membranous, base auriculate. Cataphylls if present triangular, leaves on penultimate axes mostly not reduced to scales. Leaves distichous. Inflorescences axillary, unisexual or bisexual fascicles. Staminate flowers: sepals 5 or 6 ; disc glands 5 or 6 , alternating with sepals; stamens 3 , filaments free or nearly so, connective enlarged, anthers discrete, dehiscing horizontally, connectives non-apiculate; pollen subglobose or spheroidal, 3- or 4-colporate, colpi monoporate, exine tectate-reticulate to tectate-perforate; pistillode absent. Pistillate flowers: sepals 5 or 6; disc shallowly cupuliform; ovary 3-locular; style present or absent; stigmas mostly bifid. Fruits capsules, subglobose. Seeds trigonous, scalariform with minute transverse striations or smooth. Distribution: Endemic to Australia.
Notes - 1 . Originally this group was created for some Australian species of Phyllanthus. Lysiandra was confused with Phyllanthus section Antipodanthus G.L.Webster (Webster 1978, 2002b), but the recent phylogeny in Bouman et al. (2021) showed that the two groups fall in different clades. Section Antipodanthus is strictly neotropical and is retained here in the genus Phyllanthus, whilst Lysiandra is Australian. The group is distinct from section Antipodanthus and is placed at the same rank as the genera Kirganelia and Nymphanthus.
2. Lysiandra is difficult to distinguish from Cathetus subgenus Macraea, with which it has an overlapping distribution in Australia. However, species of Lysiandra can be distinguished by stipules with truncate bases and the transverse striations on the seeds (stipule base auriculate and seeds smooth or with longitudinally arranged verrucae in Cathetus subgenus Macraea). Some species also display phyllanthoid branching, which is never found in subgenus Macraea.
3. Webster (1978) placed P. harrimannii G.L.Webster in section Lysiandra (F.Muell.)
G.L.Webster (his circumscription, different from what is presented here). This species is here treated as part of the neotropical Phyllanthus section Antipodanthus, which seems geographically more consistent.
4. Two species, P. occidentalis Hunter \& Bruhl (1997c: 157) and P. striaticaulis Hunter \& Bruhl (1996: 133) are not listed below to prevent unnecessary combinations as they will be synonymized in an upcoming revision of the genus Lysiandra (Telford unpublished manuscript).

Included species and taxonomic changes (25 spp .):
Lysiandra arida (Bentham 1873: 110) R.W.Bouman, comb. nov. Basionym:
Phyllanthus aridus Benth.
Lysiandra australis (Hooker 1847: 284) R.W.Bouman, comb. nov. Basionym:
Phyllanthus australis Hook.f.
Lysiandra baeckeoides (Hunter \& Bruhl 1997b: 149) R.W.Bouman, comb. nov. Basionym: Phyllanthus baeckeoides J.T.Hunter \& J.J.Bruhl.
Lysiandra calycina (Labillardière 1806: 75) R.W.Bouman, comb. nov. Basionym:
Phyllanthus calycinus Labill.
Lysiandra carpentariae (Müller 1865b: 72) R.W.Bouman, comb. nov. Basionym:
Phyllanthus carpentariae Müll.Arg.
Lysiandra cauticola (Hunter \& Bruhl 1997b: 151) R.W.Bouman, comb. nov.
Basionym: Phyllanthus cauticola J.T.Hunter \& J.J.Bruhl.
Lysiandra collina (Domin 1927: 320) R.W.Bouman, comb. nov. Basionym:
Phyllanthus collinus Domin.
Lysiandra dallachyana (Bentham 1873: 104) R.W.Bouman, comb. nov. Basionym: Phyllanthus dallachyanus Benth.
Lysiandra eremica (Barrett \& Telford 2015: 152) R.W.Bouman, comb. nov. Basionym: Phyllanthus eremicus R.L.Barrett \& I.Telford.
Lysiandra eutaxioides (Moore 1920: 216) R.W.Bouman, comb. nov. Basionym: Phyllanthus eutaxioides S.Moore.
Lysiandra flagellaris (Bentham 1873: 106) R.W.Bouman, comb. nov. Basionym: Phyllanthus flagellaris Benth.
Lysiandra fuernrohrii (Mueller 1855: 15) R.W.Bouman, comb. nov. Basionym: Phyllanthus fuernrohrii F.Muell.
Lysiandra gunnii (Hooker 1847: 284) R.W.Bouman, comb. nov. Basionym: Phyllanthus gunnii Hook.f.
Lysiandra hamelinii (Telford \& Barrett 2015: 155) R.W.Bouman, comb. nov.
Basionym: Phyllanthus hamelinii I.Telford \& R.L.Barrett.
Lysiandra hirtella (Mueller ex Müller 1863: 22) R.W.Bouman, comb. nov.
Basionym: Phyllanthus hirtellus F.Muell. ex Müll.Arg.
Lysiandra indigoferoides (Bentham 1873: 110) R.W.Bouman, comb. nov. Basionym: Phyllanthus indigoferoides Benth.
Lysiandra involutus (Hunter \& Bruhl 1997c: 155) R.W.Bouman, comb. nov.

Chapter 8

Basionym: Phyllanthus involutus J.T.Hunter \& J.J.Bruhl.
Lysiandra microclada (Müller 1865b: 71) R.W.Bouman, comb. nov. Basionym:
Phyllanthus microcladus Müll.Arg.
Lysiandra oblanceolata (Hunter \& Bruhl 1996: 128) R.W.Bouman, comb. nov.
Basionym: Phyllanthus oblanceolatus J.T.Hunter \& J.J.Bruhl.
Lysiandra savannicola (Domin 1927: 321) R.W.Bouman, comb. nov. Basionym:
Phyllanthus savannicola Domin.
Lysiandra saxosa (Mueller 1853: 441) R.W.Bouman, comb. nov. Basionym:
Phyllanthus saxosus F.Muell.
Lysiandra scabra (Klotzsch 1845: 179) R.W.Bouman, comb. nov. Basionym:
Phyllanthus scaber Klotzsch.
Lysiandra similis (Müller 1865b: 71) R.W.Bouman, comb. nov. Basionym:
Phyllanthus similis Müll.Arg.
Lysiandra subcrenulata (Mueller 1859: 108) R.W.Bouman, comb. nov. Basionym:
Phyllanthus subcrenulatus F.Muell.
Lysiandra triandra (Hooker in Mitchell 1848: 342) R.W.Bouman, comb. nov.
Basionym: Micrantheum triandrum Hook. (non Phyllanthus triandrus (Blanco)
Müller (1865a: 379), homotypic synonym: Phyllanthus mitchellii Bentham (1873:
103).

Nymphanthus Lour.

Nymphanthus de Loureiro (1790: 543), non Nymphanthus Desvaux (1818) (latter is orthographic variant of Nymphozanthus Richard (1808: 63, 68, 100), nom. rej.)). — Phyllanthus L. section Nymphanthus (Lour.) Müller (1866: 419); Pax \& Hoffmann (1931: 65). -Lectotype (designated by Webster 1994 and confirmed here): Nymphanthus ruber Lour. (as Nymphanthus rubra = formerly Phyllanthus ruber (Lour.) Spreng.).

Diagnostic features: Subshrubs or shrubs, monoecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts present or absent. Cataphyllary stipules triangular, indurate or membranous, base not auriculate. Cataphylls triangular, often slender. Leaves distichous. Inflorescences axillary, unisexual or bisexual fascicles (inflorescences in Nym. nhatrangensis (Beille) R.W.Bouman, only subtended by a scale at proximal and distal part of branchlet with laminate leaves in the middle). Staminate flowers: sepals 4 ; disc 4 free glands, alternating with sepals; stamens 2 or 4, filaments and connectives connate, anthers globular or ovoid, dehiscing horizontally (rarely vertically), connectives non-apiculate; pollen spheroidal to ellipsoidal, pantoporate without distinct colpi, exine reticulate; pistillode absent. Pistillate flowers: sepals 5 or 6 ; disc shallowly cupuliform to urceolate or 5, rarely 6 free glands; ovary 3-8-locular; style present or absent; stigmas bifid or entire. Fruits capsules. Seeds trigonous, smooth or striate.

Distribution: Australia, mainland Asia, Malesia.
Notes -1 . Nymphanthus is the older generic name and therefore takes priority over the names Eriococcus Hassk. and Scepasma Blume (see synonyms under the sections). This genus is split off from Phyllanthus and we retain two sections from the previous classifications (e.g., Müller 1866; Webster 1956). Section Emblicastrum Müll.Arg. is combined with section Scepasma to avoid paraphyly.
2. Nymphanthus was found to be sister to Lysiandra (Fig. 1), but they differ significantly in their flower morphology. Both genera have phyllanthoid branching, but the staminate flowers in Nymphanthus always have four sepals with two stamens. The closest resemblance is found in the neotropical Phyllanthus chryseus R.A.Howard, but that species differs in its entire disc in the staminate flower (Webster 1956, 1958).
3. Some previously unplaced species in Bouman et al. (2018) are here included in Nymphanthus. Several species placed by Thin (2007) in Phyllanthus section Hedycarpidium Müll.Arg. are furthermore transferred to Nymphanthus as this section was originally for species with tetramerous staminate flowers, which is typical for the genus. Other species from Sulawesi and the Philippines are included based on material seen digitally.
4. While Nym. rubra has been listed as the type for the genus Nymphanthus in previous publications (Webster 1994; Radcliffe-Smtih 2001), de Loureiro (1790) includes several species from which an official lectotype should have been designated. We were unable to find any formal lectotypification, so this is validated here.

Nymphanthus Lour. section Nymphanthus

Nymphanthus Lour. section Nymphanthus: Literature and type as under the genus. Eriococcus Hasskarl (1843: 143). - Epistylium Sw. section Eriococcus (Hassk.) Baillon (1858: 648). — Phyllanthus L. section Eriococcus (Hassk.) Müller (1863: 3, 46); (1866: 420); Pax \& Hoffmann (1931: 65); Webster (1997: 229). - Phyllanthus L. subgenus Eriococcus (Hassk.) Croizat \& Metcalf (1942: 32); Webster (1957: 359). - Type: Eriococcus gracilis Hassk. (= formerly Phyllanthus gracilipes Miq.) Müll.Arg.) = Nymphanthus gracilis (Hassk.) R.W.Bouman Reidia Wight (1852: 27, pls. 1903, 1904); Hooker (1887: 286); Boerlage (1900: 213); Gamble (1925) 1291); Das (1940: 155). - Lectotype (designated here, after Webster in his Eriococcus manuscript, 2002): Reidia polyphylla Wight (= formerly Phyllanthus anabaptizatus Müll.Arg., non Phyllanthus polyphyllus Willd.) = Nymphanthus polyphyllus (Wight) R.W.Bouman.
Phyllanthus L. section Eriococcodes Müller (1863: 3, 50); (1866: 419); Boerlage (1900: 213); Pax \& Hoffmann (1931: 65). - Type: Phyllanthus acutissimus Miq. $=$ Nymphanthus longifolius (Hassk.) R.W.Bouman (non Phyllanthus longifolius Jacquin 1797:36).

Chapter 8

Phyllanthus L. subgenus Eriococcus (Hassk.) Croizat \& Metcalf section Eriococcus subsection Spiciferens Brunel (1987: 231. - Type: Phyllanthus nhatrangensis Beille $=$ Nymphanthus nhatrangensis (Beille) R.W.Bouman.
Phyllanthus L. subgenus Cicca (L.) G.L.Webster section Discofractus Thin (1999: 49). - Type: Phyllanthus discofractus Croizat (formerly Phyllanthus gracilipes (Miq.) Müll.Arg.) = Nymphanthus gracilis (Hassk.) R.W.Bouman.
Phyllanthus L. subgenus Eriococcus (Hassk.) Croizat \& Metcalf section Eriococcus subsection Integra Thin (1999: 54). — Type: Phyllanthus rubescens Beille. = Nymphanthus rubescens (Beille) R.W.Bouman.

Diagnostic features: Subshrubs or shrubs, monoecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Leaves distichous. Inflorescences axillary, unisexual (subtended by scales in Nym. nhatrangensis). Staminate flowers: sepals 4 ; disc glands 4 , free; stamens 2 or 4 , filaments connate; anthers dehiscing horizontally (rarely vertically). Pistillate flowers: sepals 5 or 6; disc cupuliform; ovary 3-locular (6-locular in Nym. ruber); style absent; stigmas bifid. Fruits (inflated) capsules. Seeds trigonous, smooth or striate.
Distribution: Mainland Asia, Malesia and Australia.
Notes - 1. Reidia polyphylla Wight is selected as the lectotype for the genus Reidia by Webster in his manuscripts (see Webster 2002 Manuscript synopsis of subgenus Eriococcus; typification effectively published here), because among Wight's species it has the characteristic lacerate sepals. Different type species were listed for Reidia in Pfeizer (1848: Reidia tetrandra (Roxburgh) Narayanswami) and Chakrabarty \& Balakrishnan (2018: Reidia floribunda), which might be considered as inadvertent lectotypifications.
2. A few sections formerly retained in Phyllanthus subgenus Eriococcus are here combined with the former Phyllanthus section Nymphanthus. These are often monotypic groups that are nested within a paraphyletic section Eriococcus. They are combined, but can be resurrected if a full revision of the genus shows the clades to be morphologically distinct. The validity of the formerly established sections was questioned by Webster $(1956,1958)$, who thought that some species might only show unique character changes (autapomorphies). Thin (1999) divided Phyllanthus section Eriococcus into two subsections distinguishable based on the sepal margin (entire in P. subsection Integra Thin and fimbriate in P. subsection Eriococcus).

Included species and taxonomic changes (78 spp.):
Nymphanthus acutus (Wallich ex Müller 1865b: 75) R.W.Bouman, comb. nov.
Basionym: Phyllanthus acutus Wall. ex Müll.Arg.
Nymphanthus armstrongii (Bentham 1873: 112) R.W.Bouman, comb. nov.
Basionym: Phyllanthus armstrongii Benth.
Nymphanthus balakrishnanii (Sunil, Kumar \& Naveen Kum in Sunil et al. 2016:
65) R.W.Bouman, comb. nov. Basionym: Phyllanthus balakrishnanii Sunil,
K.M.P.Kumar \& Naveen Kum.

Nymphanthus balansae (Beille 1927: 602) R.W.Bouman, comb. nov. Basionym: Phyllanthus balansae Beille.
Nymphanthus beddomei (Gamble 1925: 331) R.W.Bouman, comb. nov. Basionym: Reidia beddomei Gamble, homotypic synonym: Phyllanthus beddomei (Gamble) Mohanan (1985: 480).
Nymphanthus birmanicus (Müller 1863: 47) R.W.Bouman, comb. nov. Basionym: Phyllanthus birmanicus Müll.Arg.
Nymphanthus blancoanus (Müller 1863: 49) R.W.Bouman, comb. nov. Basionym: Phyllanthus tetrander Blanco, nom. illeg., non Phyllanthus tetrandrus Roxb. (1832: 674), homotypic synonym: Phyllanthus blancoanus Müll.Arg.
Nymphanthus bodinieri (Léveillé 1915a: 406) R.W.Bouman, comb. nov. Basionym:
Sterculia bodinieri H.Lév., homotypic synonym: Phyllanthus bodinieri (H.Lév.) Rehder (1937: 212).
Nymphanthus celebicus (Koorders 1898: 588, 627) R.W.Bouman, comb. nov. Basionym: Phyllanthus celebicus Koord.
Nymphanthus chantrieri (André 1883: 537) R.W.Bouman, comb. nov. Basionym: Phyllanthus chantrieri André.
Nymphanthus chantaranothaii (Pornpongrungrueng, Parnell \& Hodkinson in Pornpongrungrueng et al. 2019: 39) R.W.Bouman, comb. nov. Basionym: Phyllanthus chantaranothaii Pornp., J.Parn. \& Hodk.
Nymphanthus chekiangensis (Croizat \& Metcalf 1942: 194) R.W.Bouman, comb. nov. Basionym: Phyllanthus chekiangensis Croizat \& Metcalf.
Nymphanthus chinensis de Loureiro (1790: 544), heterotypic synonym: Phyllanthus villosus Poiret (1804: 297) (non Kirganelia villosa Blanco (1837:712) = Breynia villosa (Blanco) Welzen \& Pruesapan in van Welzen et al. 2014a: 93).
Nymphanthus daclacensis (Thin 1992: 23) R.W.Bouman, comb. nov. Basionym: Phyllanthus daclacensis Thin.
Nymphanthus elegans (Wallich ex Müller 1863: 46) R.W.Bouman, comb. nov.
Basionym: Phyllanthus elegans Wall. ex Müll.Arg.
Nymphanthus evrardii (Beille 1927: 599) R.W.Bouman, comb. nov. Basionym: Phyllanthus evrardii Beille.
Nymphanthus fangchengensis (Li 1987a: 377) R.W.Bouman, comb. nov. Basionym: Phyllanthus fangchengensis P.T.Li.
Nymphanthus filicifolius (Gage 1914: 241) R.W.Bouman, comb. nov. Basionym: Phyllanthus filicifolius Gage.
Nymphanthus fimbriatus (Wight 1852: 28, t. 1904 (1)) R.W.Bouman, comb. nov. Basionym: Reidia fimbriata Wight, homotypic synonym: Phyllanthus fimbriatus (Wight) Müller (1863: 47).
Nymphanthus fimbricalyx (Li 1987a: 380) R.W.Bouman, comb. nov. Basionym: Phyllanthus fimbricalyx P.T.Li.
Nymphanthus floribundus (Wight 1852: 25, t. 1903) R.W.Bouman, comb. nov.

Chapter 8

Basionym: Reidia floribunda Wight (non Phyllanthus floribundus Kunth 1817: 116), homotypic synonym: Phyllanthus cinereus Müller (1863: 48).

Nymphanthus forrestii (Smith 1914: 195) R.W.Bouman, comb. nov. Basionym: Phyllanthus forrestii W.W.Sm.
Nymphanthus franchetianus (Léveillé 1915b: 23) R.W.Bouman, comb. nov. Basionym: Phyllanthus franchetianus H.Lév.
Nymphanthus gageanus (Gamble 1925: 331) R.W.Bouman, comb. nov. Basionym: Reidia gageana Gamble.
Nymphanthus glabrescens (Miquel 1859: 374) R.W.Bouman, comb. nov. Basionym:
Reidia glabrescens Miq., homotypic synonym: Phyllanthus glabrescens (Miq.) Müller (1863: 48).
Nymphanthus glaucescens (Baillon ex Miquel 1859: 374) R.W.Bouman, comb. nov. Basionym: Reidia glaucescens Miq. (non Phyllanthus glaucescens Kunth 1817: 115), heterotypic synonym: Phyllanthus pulcher Wall. ex Müll.Arg. (1863) 49.

Nymphanthus gomphocarpus (Hooker 1887: 301) R.W.Bouman, comb. nov. Basionym: Phyllanthus gomphocarpus Hook.f.
Nymphanthus gracilis (Hasskarl 1843: 143) R.W.Bouman, comb. nov. Basionym:
Eriococcus gracilis Hassk. (non Phyllanthus gracilis Roxburgh 1832: 654 nor P. gracilis (Hassk.) Baillon 1858: 630, nom. illeg. = P. albidiscus (Ridley 1923: 360) Airy Shaw (1969: 26)), heterotypic synonym: Phyllanthus gracilipes (Miq.) Müller (1863: 47).
Nymphanthus greenei (Elmer 1910: 929) R.W.Bouman, comb. nov. Basionym: Phyllanthus greenei Elmer.
Nymphanthus guangdongensis (Li 1987a: 376) R.W.Bouman, comb. nov. Basionym: Phyllanthus guangdongensis P.T.Li.
Nymphanthus hainanensis (Merrill 1935: 20) R.W.Bouman, comb. nov. Basionym: Phyllanthus hainanensis Merr.
Nymphanthus huamotensis (Pornpongrungrueng, Chantaranotha \& J.Parnell in Pornpongrungrueng et al. 2019: 36) R.W.Bouman, comb. nov. Basionym: Phyllanthus huamotensis Pornp., Chantar. \& J.Parn.
Nymphanthus insulensis (Beille 1927: 604) R.W.Bouman, comb. nov. Basionym: Phyllanthus insulensis Beille.
Nymphanthus kampotensis (Beille 1927: 606) R.W.Bouman, comb. nov. Basionym: Phyllanthus kampotensis Beille.
Nymphanthus kinabaluicus (Airy Shaw 1974: 294) R.W.Bouman, comb. nov.
Basionym: Phyllanthus kinabaluicus Airy Shaw.
Nymphanthus laciniatus (Robinson 1909: 84) R.W.Bouman, comb. nov. Basionym: Phyllanthus laciniatus C.B.Rob.
Nymphanthus latifolium (Wight 1852: 28, t. 1904(2)) R.W.Bouman, comb. nov.
Basionym: Reidia latifolia Wight (non Phyllanthus latifolius (Linnaeus 1771: 221)
Swartz (1800: 1109)), synonym: Phyllanthus baillonianus Müller (1863: 47).
Nymphanthus leptoclados (Bentham1861: 312) R.W.Bouman, comb. nov.

Basionym: Phyllanthus leptoclados Benth.
Nymphanthus leytensis (Elmer 1908: 307) R.W.Bouman, comb. nov. Basionym: Phyllanthus leytensis Elmer.
Nymphanthus liukiuensis (Matsumura ex Hayata 1904: 11) R.W.Bouman, comb. nov. Basionym: Phyllanthus liukiuensis Matsum. ex Hayata.
Nymphanthus longifolius (Hasskarl 1843: 143) R.W.Bouman, comb. nov. Basionym: Scepasma longifolia Hassk. (as 'longifolium’) (non Phyllanthus longifolius Jacquin 1797: 36), homotypic synonym: Phyllanthus acutissimus Miquel (1859: 369).
Nymphanthus macgregorii (Robinson 1911:334) R.W.Bouman, comb. nov. Basionym: Phyllanthus macgregorii C.B.Rob.
Nymphanthus macrocalyx (Müller 1863: 48) R.W.Bouman, comb. nov. Basionym: Phyllanthus macrocalyx Müll.Arg.
Nymphanthus megacarpus (Gamble 1925: 332) R.W.Bouman, comb. nov. Basionym: Redia megacarpa Gamble, homotypic synonym: Phyllanthus megacarpus (Gamble) Kumari \& Chandrabose in Henry et al. (1987: 238).
Nymphanthus megalanthus (Robinson 1911:334) R.W.Bouman, comb. nov.
Basionym: Phyllanthus megalanthus C.B.Rob.
Nymphanthus minahassae (Koorders 1898: 588, 627) R.W.Bouman, comb. nov.
Basionym: Phyllanthus minahassae Koord.
Nymphanthus mindorensis (Robinson 1909: 82) R.W.Bouman, comb. nov.
Basionym: Phyllanthus mindorensis C.B.Rob.
Nymphanthus muriculatus (Smith 1910: 93) R.W.Bouman, comb. nov. Basionym:
Phyllanthus muriculatus J.J.Sm.
Nymphanthus muscosus (Ridley 1909: 61) R.W.Bouman, comb. nov. Basionym:
Phyllanthus muscosus Ridl.
Nymphanthus nanellus (Li 1987a: 376) R.W.Bouman, comb. nov. Basionym: Phyllanthus nanellus P.T.Li.
Nymphanthus nhatrangensis (Beille 1927: 601) R.W.Bouman, comb. nov. Basionym: Phyllanthus nhatrangensis Beille.
Nymphanthus montanum (Thwaites in Thwaites \& Hooker 1861: 283)
R.W.Bouman, comb. nov. Basionym: Epistylium montanum Thwaites (non Phyllanthus montanus (Sw.) Swartz 1800: 1117), homotypic synonym: Phyllanthus oreophilus Müller (1863: 49).
Nymphanthus ovalifolius (Wight 1852: 28, t. 1904(3)) R.W.Bouman, comb. nov. Basionym: Reidia ovalifolia Wight (non Phyllanthus ovalifolius Forsskål 1776: 159), homotypic synonym: Phyllanthus heyneanus Müller (1863: 49) (non Phyllanthus heyneanus (Wight 1852: pl. 1908) Müller (1865a: 389), nom. illeg. = Glochidion heyneanum Wight).
Nymphanthus pireyi (Beille 1927: 605) R.W.Bouman, comb. nov. Basionym: Phyllanthus pireyi Beille.
Nymphanthus polyphyllus (Wight 1852: 28, t. 1904(4)) R.W.Bouman, comb. nov.
Basionym: Reidia polyphylla Wight (non Phyllanthus polyphyllus Willdenow

Chapter 8

1805: 586), homotypic synonym: Phyllanthus anabaptizatus Müller (1866: 421).
Nymphanthus pulchroides (Beille 1927: 597) R.W.Bouman, comb. nov. Basionym:
Phyllanthus pulchroides Beille.
Nymphanthus rangachariarii (Murugan, Kabeer \& Murthy 2009: 201)
R.W.Bouman, comb. nov. Basionym: Phyllanthus rangachariarii Murugan, Kabeer \& G.V.S.Murthy.
Nymphanthus roxburghii R.W.Bouman nom. nov. (non Agyneia tetrandra Buch.Ham.), homotypic synonym: Phyllanthus tetrandrus Roxburgh (1832: 674).
Nymphanthus ruber de Loureiro (1790: 544), homotypic synonym: Phyllanthus ruber (Lour.) Sprengel (1826: 22 (non Phyllanthus ruber Noronha (1790: 22) nom. nud.).
Nymphanthus rubescens (Beille 1927: 602) R.W.Bouman, comb. nov. Basionym: Phyllanthus rubescens Beille.
Nymphanthus rubristipulus (Govaerts \& Radcliffe-Smith 1996: 117) R.W.Bouman, comb. nov. Basionym: Phyllanthus rubriflorus Beille (1927: 600), nom. illeg., non Phyllanthus rubriflorus Smith (1912: 781), homotypic synonym: Phyllanthus rubristipulus Govaerts \& Radcl.-Sm.
Nymphanthus sanatanadharmae (Mathew \& Yohannana 2021: 290) R.W.Bouman, comb. nov. Basionym: Phyllanthus sanatanadharmae J.Mathew \& Yohannan.
Nymphanthus sibuyanensis (Elmer 1910: 928) R.W.Bouman, comb. nov. Basionym: Phyllanthus sibuyanensis Elmer.
Nymphanthus singalensis (Miquel 1861: 449) R.W.Bouman, comb. nov. Basionym:
Reidia singalensis Miq., homotypic synonym: Phyllanthus singalensis (Miq.) Müller (1863: 48).
Nymphanthus singampattianus (Sebastine \& Henry 1960: 437) R.W.Bouman, comb. nov. Basionym: Reidia singampattiana Sebast. \& A.N.Henry, homotypic synonym: Phyllanthus singampattianus (Sebast. \& A.N.Henry) Kumari \& Chandrabose in Henry et al. (1987: 238).
Nymphanthus songboiensis (Thin 1992: 18) R.W.Bouman, comb. nov. Basionym: Phyllanthus songboiensis Thin.
Nymphanthus sootepensis (Craib 1911: 459) R.W.Bouman, comb. nov. Basionym: Phyllanthus sootepensis Craib.
Nymphanthus spirei (Beille 1927: 606) R.W.Bouman, comb. nov. Basionym: Phyllanthus spirei Beille.
Nymphanthus squamifolius de Loureiro (1790: 544), homotypic synonym:
Phyllanthus squamifolius (Lour.) Stokes (1812: 364).
Nymphanthus stipulaceus (Gamble 1925: 332) R.W.Bouman, comb. nov. Basionym: Reidia stipulacea Gamble (non Phyllanthus stipulaceus Bojer 1837: 280); homotypic synonym: Phyllanthus chandrabosei Govaerts \& Radcliffe-Smith (1996: 176).
Nymphanthus stipularis (Merrill 1906: 75) R.W.Bouman, comb. nov. Basionym: Phyllanthus stipularis Merr.

Nymphanthus talbotii (Sedgwick 1921: 124) R.W.Bouman, comb. nov. Basionym: Phyllanthus talbotii Sedgw.
Nymphanthus taxodiifolius (Beille 1927: 605) R.W.Bouman, comb. nov. Basionym: Phyllanthus taxodifolius Beille.
Nymphanthus tetrandrus (Buchanan-Hamilton 1827: 125) R.W.Bouman, comb. nov. Basionym: Agyneia tetrandra Buch.-Ham. (non Phyllanthus tetrandrus Roxb. 1832: 674), homotypic synonym: Phyllanthus sikkimensis Müll.Arg. (1863: 48).

Nymphanthus touranensis (Beille 1927: 608) R.W.Bouman, comb. nov. Basionym: Phyllanthus touranensis Beille.
Nymphanthus trichosporus (Adelbert in Adelbert \& Meeuse 1945: 507) R.W.Bouman, comb. nov. Basionym: Phyllanthus trichosporus Adelb.

Nymphanthus triphlebius (Robinson 1909: 82) R.W.Bouman, comb. nov. Basionym: Phyllanthus triphlebius C.B.Rob.
Nymphanthus tui (Thin 1996: 48) R.W.Bouman, comb. nov. Basionym: Phyllanthus tui Thin.

Nymphanthus Lour. section Scepasma (Blume) R.W.Bouman, comb. nov.
Scepasma Blume (1826: 582); Baillon (1858: 648); Miquel (1859: 378). Phyllanthus L. section Scepasma (Blume) Müller (1863: 3, 50); (1866: 426); Boerlage (1900: 213); Pax \& Hoffmann (1931: 65). —Type: Scepasma buxifolia Blume (= formerly Phyllanthus buxifolius (Blume) Müll.Arg.) = Nymphanthus buxifolius (Blume) R.W.Bouman.
Phyllanthus L. section Emblicastrum Müller (1866: 324). — Glochidion J.R.Forst. \& G.Forst. section Emblicastrum (Müll.Arg.) Pax \& Hoffmann (1931: 58). — Type: Phyllanthus lamprophyllus Müll.Arg. = Nymphanthus lamprophyllus (Müll.Arg.) R.W.Bouman.

Diagnostic features: Shrubs, monoecious, glabrous, branching phyllanthoid, branchlets pinnatiform. Brachyblasts present or absent. Leaves distichous. Inflorescences axillary, unisexual, flowers solitary, sessile or subsessile. Staminate flowers: sepals 4; disc glands 4; stamens 2, filaments connate, anthers dehiscing horizontally. Pistillate flowers: sepals 5, rarely 6; disc entire or 5, rarely 6 free glands; ovary (4- or) 5-8-locular; styles present or absent; stigmas usually entire (bifid in Nym. watsonii (Airy Shaw) R.W.Bouman). Fruits capsules. Seeds trigonous, smooth to transversely striate with small hairs.
Distribution: Malesia (Peninsular Malaysia, Java, Borneo, Philippines, Papua New Guinea) to Australia.
Note - A relatively small section accommodating a few glabrous species from Southeast Asia, mainly recognized by their staminate flowers that appear closed with erect sepals (as opposed to spreading at maturity in the rest of the genus) and

Chapter 8

usually entire stigmas. Airy Shaw (1976) discussed at length the mistake by Müller (1866) and Warburg (1894) in interpreting the stamen fusion and anther dehiscence of this section and suggested also that some of the Philippine species might be combined with Nym. lamprophyllus (Bouman et al. in prep.).

Included species and taxonomic changes (8 spp.):
Nymphanthus anisophyllaeoides (Merrill 1925: 465) R.W.Bouman, comb. nov. Basionym: Phyllanthus anisophyllaeoides Merr.
Nymphanthus balgooyi (Hoffmann \& Baker in Hoffmann et al. 2003: 195)
R.W.Bouman, comb. nov. Basionym: Phyllanthus balgooyi Petra Hoffm. \& A.J.M.Baker.

Nymphanthus buxifolius (Blume 1826: 583) R.W.Bouman, comb. nov. Basionym: Scepasma buxifolia Blume, homotypic synonym: Phyllanthus buxifolius (Blume) Müller (1863: 50).
Nymphanthus curranii (Robinson 1909: 77) R.W.Bouman, comb. nov. Basionym: Phyllanthus curranii C.B.Rob.
Nymphanthus lamprophyllus (Müller 1866: 324) R.W.Bouman, comb. nov. Basionym: Phyllanthus lamprophyllus Müll.Arg.
Nymphanthus palauensis (Hosokawa 1935: 19) R.W.Bouman, comb. nov. Basionym: Phyllanthus palausensis Hosok.
Nymphanthus robinsonii (Merrill 1912: 405) R.W.Bouman, comb. nov. Basionym: Phyllanthus robinsonii Merr.
Nymphanthus watsonii (Airy Shaw 1971: 493) R.W.Bouman, comb. nov. Basionym: Phyllanthus watsonii Airy Shaw.

Clade D - Figs. 1, 2 I (supplementary fig. 1)

Moeroris Raf.
Moeroris Rafinesque (1838: 91). - Type: Moeroris stipulata Raf. (= formerly Phyllanthus stipulatus (Raf.) G.L.Webster).

Diagnostic features: Herbs, (sub)shrubs or small trees, monoecious or dioecious, branching (sub-)phyllanthoid (non-phyllanthoid in M. arenaria (A.Gray) R.W.Bouman), branchlets pinnatiform (rarely bi-pinnatiform in subgenus Tenellanthus (Jean F.Brunel) R.W.Bouman). Brachyblasts absent. Cataphyllary stipules triangular, usually membranous, subcoriaceous to coriaceous (just as the cataphylls), base unilaterally auriculate. Cataphylls triangular, rarely absent and leaves on orthotropic branches not reduced. Leaves distichous (or spiral). Inflorescences axillary, unisexual or bisexual fascicles. Staminate flowers: sepals 5 or 6 (4 in M. arenaria); disc glands 5 or 6 , free, alternating with sepals (H-shaped in M. arenaria); stamens (2)3 or 5(-7 in M. nummulariifolius (Müll.Arg.) R.W.Bouman),
filaments free or (partially) connate; anthers globular to elongate, dehiscing obliquely, vertically or horizontally, connectives non-apiculate; pollen usually 3- (or 4-)colporate, colpi monoporate, exine macro- or bireticulate, homobrochate, tectate or microperforate; pistillode absent. Pistillate flowers: sepals 5 or 6; disc entire or shallowly cupuliform, sometimes fringed, lobed or divided; ovary 3-locular; style absent or short; stigma tips bifid. Fruits capsules. Seeds trigonous, smooth, papillose, verrucose or longitudinally striate or banded and transversely striate or barred. Distribution: Americas, Tropical Africa, Madagascar, few in Asia (few widely invasive species).
Note - Moeroris is the oldest generic name available for this clade, which consists of three main subgenera, Moeroris (formerly Phyllanthus subgenus Afroswartziani), Swartziani (G.L.Webster) R.W.Bouman and Tenellanthus (Jean F.Brunel) R.W.Bouman. These were originally placed respectively in subgenus Phyllanthus (being low subshrubs to herbs) and Kirganelia (based on the presence of five stamens). Their pollen was distinct and later it was shown that these groups were phylogenetically distinct and each was raised to subgeneric level (see Ralimanana \& Hoffmann 2011, 2014). These subgenera are mainly distinguished by the either unisexual (subgenus Moeroris and Tenellanthus) or bisexual (subgenus Swartziani) inflorescences. The various herbs and subshrubs in this genus have often been treated with other herbaceous species in subgenus Phyllanthus from which they are distinguished by the staminate flower and cataphyllary stipules. Herbaceous species of the genus Emblica (e.g., E. urinaria (L.) R.W.Bouman) can be distinguished by the same characters, but also by the organization of staminate and pistillate flowers along a branchlet.

Moeroris Raf. subgenus Moeroris

Moeroris Raf. subgenus Moeroris: Literature and type as under the genus.
Phyllanthus L. subgenus Phyllanthus section Phyllanthus subsection Pentaphylli Webster (1955: 54); (1957: 324); (1970: 72).— Type: Phyllanthus pentaphylla C.Wright ex Griseb. = Moeroris pentaphylla (C.Wright ex Griseb.) Falcón \& R.W.Bouman.

Phyllanthus L. subgenus Phyllanthus section Phyllanthus subsection Odontadenii Brunel \& Roux (1981: 70); Brunel (1987: 339). - Phyllanthus L. subgenus Afroswartziani Ralim. \& Petra Hoffm. section Odontadenii (Jean F.Brunel \& Jacq. Roux) Bouman in Bouman et al. (2018: 170). -Type: Phyllanthus odontadenius Müll.Arg. = Moeroris odontadenia (Müll.Arg.) R.W.Bouman.
Phyllanthus L. subgenus Tenellanthus Jean F.Brunel section Tangani Brunel (1987: 307). - Type: Phyllanthus kaessneri Hutch. = Moeroris kaessneri (Hutch.) R.W.Bouman.

Phyllanthus L. subgenus Phyllanthus section Anthophyllus Jean F.Brunel subsection Callidisci Brunel (1987: 334). - Phyllanthus L. subgenus Afroswartziani Ralim.

Chapter 8

\& Petra Hoffm. section Callidisci (Jean F.Brunel) Bouman in Bouman et al. (2018) 169. -Type: Phyllanthus callidiscus Jean F.Brunel (= formerly Phyllanthus fischeri Pax) = Moeroris fischeri (Pax) R.W.Bouman.
Phyllanthus L. subgenus Phyllanthus section Fluitantoides Brunel (1987: 387).
— Type: Phyllanthus felicis Jean F.Brunel = Moeroris felicis (Jean F.Brunel)
R.W.Bouman.

Phyllanthus L. subgenus Phyllanthus section Praephyllanthus Brunel (1987: 389). - Type: Phyllanthus arvensis Müll.Arg. = Moeroris arvensis (Müll.Arg.) R.W.Bouman.

Phyllanthus L. subgenus Phyllanthus section Microdendron Brunel (1987: 401). Type: Phyllanthus microdendron Welw. ex Müll.Arg. $=$ Moeroris microdendron (Welw. ex Müll.Arg.) R.W.Bouman.
Phyllanthus L. subgenus Afroswartziani Ralimanana \& Hoffmann in Ralimanana et al. (2013: 538). - Type: Phyllanthus lokohensis Leandri = Moeroris lokohensis (Leandri) R.W.Bouman.

Diagnostic features: Herbs, shrubs or small trees, almost always woody at the base, monoecious or dioecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Inflorescences axillary, unisexual fascicles. Staminate flowers: sepals 5 or 6 ; disc glands 5 or 6 , free; stamens (2 or) 3 (variable in M. kaessneri), filaments partially or entirely connate, anthers dehiscing obliquely or horizontally (vertically in M. maestrensis); pollen (sub)prolate, 3- or 4-colporate, colpi monoporate, perihexabrevisulcate or sulcate macro- or bireticulate, tectate or microperforate. Pistillate flowers: sepals 5 or 6; disc entire or shallowly cupuliform, sometimes fringed, lobed or divided; ovary 3-locular; style absent; stigmas bifid, sometimes capitate. Fruits capsules. Seeds trigonous, smooth or longitudinally striate or banded and transversely striate or barred.
Distribution: Mainly tropical Africa, some species in mainland Asia and in the West Indies.
Notes - 1. Phyllanthus subgenus Afroswartziani is here subsumed within the genus Moeroris. Subgenus Moeroris is differentiated from Moeroris subgenus Swartziani by its unisexual inflorescences. Both subgenera differ from Moeroris subgenus Tenellanthus in their staminate flowers, which usually have 5 or 6 sepals with 3 connate stamens (5 sepals and 5 free stamens in subgenus Tenellanthus). 2. Webster's unpublished manuscript (Webster 2002 synopsis of Phyllanthus subgenus Phyllanthus) describes several series for Phyllanthus subsection Swartziani, which were never formally published. Species that were included in his Neotropical Phyllanthus subsection Swartziani series Stipulati were placed in subgenus Swartziani by Bouman et al. (2018). However, it was shown that these species are related to other African species and are transferred here to this subgenus. The unisexual inflorescences of these species also confirms placement in subgenus Moeroris.
3. Phyllanthus sections Callidisci (Jean F.Brunel) R.W.Bouman, Fluitantoides Jean F.Brunel, Microdendron Jean F.Brunel, Odontadenii (Jean F.Brunel \& Jacq.Roux) R.W.Bouman and Praephyllanthus Jean F.Brunel are here not retained as separate sections, otherwise this would render section Moeroris polyphyletic. Subgenus Moeroris comprises two clades (see Bouman et al. 2021; Supplementary fig. 1), that are both mixed with at least one of the other sections. To prevent polyphyly and because of the lack of morphological distinctness (mainly pollen characters) they are here subsumed. It is possible that some sections might be reinstated after a closer study of the two major clades in subgenus Moeroris.
4. Only two species of Phyllanthus subsection Pentaphylli of Webster $(1956,1958)$ have been included in a phylogenetic study (Falcón et. al. 2020), but as they show a general similarity with the species of genus Moeroris, they might prove to be nested within that genus. Further research is needed to test whether the other endemics in Hispaniola and Cuba to conform one or more groups with synapomorphies to define a natural infraclasification inside this subgenus.

Included species and taxonomic changes (179 spp.):
Moeroris airy-shawii (Brunel \& Roux 1984: 470) R.W.Bouman, comb. nov.
Basionym: Phyllanthus airy-shawii Jean F.Brunel \& J.P.Roux.
Moeroris amnicola (Webster 1955: 54) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus amnicola G.L.Webster.
Moeroris ampandrandavae (Leandri 1957: 224) R.W.Bouman, comb. nov. Basionym: Phyllanthus ampandrandavae Leandri.
Moeroris andranovatensis (Brunel \& Roux 1981: 400) R.W.Bouman, comb. nov. Basionym: Phyllanthus andranovatensis Jean F.Brunel \& J.P.Roux.
Moeroris angustata (Hutchinson in Fries 1914: 121) R.W.Bouman, comb. nov. Basionym: Phyllanthus angustatus Hutch.
Moeroris ankazobensis (Ralimanana \& Hoffmann in Ralimanana et al. 2013: 542) R.W.Bouman, comb. nov. Basionym: Phyllanthus ankazobensis Ralim. \& Petra Hoffm.
Moeroris arvensis (Müller 1864:332) R.W.Bouman, comb. nov. Basionym: Phyllanthus arvensis Müll.Arg.
Moeroris aspersa (Brunel \& Roux 1985: 386) R.W.Bouman, comb. nov. Basionym: Phyllanthus aspersus Jean F.Brunel \& J.P.Roux.
Moeroris asperulata (Hutchinson 1920: 27) R.W.Bouman, comb. nov. Basionym: Phyllanthus asperulatus Hutch.
Moeroris austroparensis (Radcliffe-Smith 1992: 679) R.W.Bouman, comb. nov. Basionym: Phyllanthus austroparensis Radcl.-Sm.
Moeroris bancilhonae (Brunel \& Roux 1980: 175) R.W.Bouman, comb. nov. Basionym: Phyllanthus bancilhonae Jean F.Brunel \& J.P.Roux.
Moeroris benguelensis (Müller 1864:331) R.W.Bouman, comb. nov. Basionym: Phyllanthus benguelensis Müll.Arg.

Chapter 8

Moeroris bequaertii (Robyns \& Lawalrée 1947: 265) R.W.Bouman, comb. nov. Basionym: Phyllanthus bequaertii Robyns \& Lawalrée.
Moeroris boehmii (Pax 1893: 525) R.W.Bouman, comb. nov. Basionym: Phyllanthus boehmii Pax.
Moeroris bonnardii (Brunel 1987: 349) R.W.Bouman, comb. nov. Basionym: Phyllanthus bonnardii Jean F.Brunel.
Moeroris borenensis (Gilbert 1987: 354) R.W.Bouman, comb. nov. Basionym: Phyllanthus borenensis M.G.Gilbert.
Moeroris brachyphylla (Urban 1914: 452) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus brachyphyllus Urb.
Moeroris brynaertii (Brunel 1987: 351) R.W.Bouman, comb. nov. Basionym: Phyllanthus brynaertii Jean F.Brunel.
Moeroris buchii (Urban 1902: 288) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus buchii Urb.
Moeroris burundiensis (Brunel 1987: 340) R.W.Bouman, comb. nov. Basionym: Phyllanthus burundiensis Jean F.Brunel.
Moeroris caesiifolia (Hoffmann \& Cheek 2003: 439) R.W.Bouman, comb. nov. Basionym: Phyllanthus caesiifolius Petra Hoffm. \& Cheek.
Moeroris caespitosus (Brenan 1967: 258) R.W.Bouman, comb. nov. Basionym: Phyllanthus caespitosus Brenan.
Moeroris caligata (Brunel \& Roux 1985: 384) R.W.Bouman, comb. nov. Basionym: Phyllanthus caligatus Jean F.Brunel \& J.P.Roux.
Moeroris camerunensis (Brunel 1987: 353) R.W.Bouman, comb. nov. Basionym: Phyllanthus camerunensis Jean F.Brunel.
Moeroris caribaea (Urban 1908: 382) R.W.Bouman, comb. nov. Basionym: Phyllanthus caribaeus Urb.
Moeroris carunculata (Brunel 1987: 380) R.W.Bouman, comb. nov. Basionym: Phyllanthus carunculatus Jean F.Brunel, homotypic synonym: Phyllanthus pseudocarunculatus Radcliffe-Smith (1996b: 318), nom. illeg. superfl.
Moeroris ceratostemon (Brenan 1967: 259) R.W.Bouman, comb. nov. Basionym: Phyllanthus ceratostemon Brenan.
Moeroris chevalieri (Beille 1908: 57) R.W.Bouman, comb. nov. Basionym: Phyllanthus chevalieri Beille
Moeroris confusa (Brenan 1954: 68) R.W.Bouman, comb. nov. Basionym: Phyllanthus confusus Brenan.
Moeroris consanguinea (Müller 1866: 378) R.W.Bouman, comb. nov. Basionym: Phyllanthus consanguineus Müll.Arg.
Moeroris coursii (Leandri 1957: 226) R.W.Bouman, comb. nov. Basionym: Phyllanthus coursii Leandri.
Moeroris crassinervia (Radcliffe-Smith 1981: 766) R.W.Bouman, comb. nov. Basionym: Phyllanthus crassinervius Radcl.-Sm.
Moeroris debilis (Klein ex Willdenow 1805: 582) R.W.Bouman, comb. nov.

Basionym: Phyllanthus debilis J.G.Klein ex Willd.
Moeroris dekindtiana (Brunel 1987: 352) R.W.Bouman, comb. nov. Basionym: Phyllanthus dekindtianus Jean F.Brunel.
Moeroris delagoensis (Hutchinson 1920: 28) R.W.Bouman, comb. nov. Basionym: Phyllanthus delagoensis Hutch.
Moeroris denticulata (Brunel 1987: 365) R.W.Bouman, comb. nov. Basionym: Phyllanthus denticulatus Jean F.Brunel.
Moeroris dewildeorum (Gilbert 1987: 356) R.W.Bouman, comb. nov. Basionym: Phyllanthus dewildeorum M.G.Gilbert.
Moeroris dictyophlebsis (Radcliffe-Smith 1992: 680) R.W.Bouman, comb. nov. Basionym: Phyllanthus dictyophlebsis Radcl.-Sm.
Moeroris dimorpha (Britton \& Wilson in Britton 1920: 75) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus dimorphus Britton \& P.Wilson.
Moeroris dinteri (Pax 1909a: 75) R.W.Bouman, comb. nov. Basionym: Phyllanthus dinteri Pax.
Moeroris discolaciniata (Brunel 1987: 349) R.W.Bouman, comb. nov. Basionym: Phyllanthus discolaciniatus Jean F.Brunel.
Moeroris dumetosa (Poiret 1804: 303) R.W.Bouman, comb. nov. Basionym: Phyllanthus dumetosus Poir.
Moeroris dusenii (Hutchinson 1911: 314) R.W.Bouman, comb. nov. Basionym: Phyllanthus dusenii Hutch.
Moeroris echinosperma (Wright 1870: 108) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus echinospermus C.Wright.
Moeroris eliae (Brunel \& Roux 1976: 375) R.W.Bouman, comb. nov. Basionym: Phyllanthus sublanatus Schumach. \& Thonn. subsp. eliae Jean F.Brunel \& J.P.Roux, homotypic synonym: Phyllanthus eliae (Jean F.Brunel \& J.P.Roux) Brunel (1987: 377).
Moeroris epiphylliferens (Brunel 1987: 347) R.W.Bouman, comb. nov. Basionym: Phyllanthus epiphylliferens Jean F.Brunel.
Moeroris fadyenii (Urban 1909: 13) R.W.Bouman, comb. nov. Basionym: Phyllanthus fadyenii Urb.
Moeroris felicis (Brunel 1987: 385) R.W.Bouman, comb. nov. Basionym: Phyllanthus felicis Jean F.Brunel.
Moeroris fischeri (Pax 1894: 77) R.W.Bouman, comb. nov. Basionym: Phyllanthus fischeri Pax.
Moeroris fluminis-athi (Radcliffe-Smith 1974: 439) R.W.Bouman, comb. nov. Basionym: Phyllanthus fluminis-athi Radcl.-Sm.
Moeroris fotii (Brunel 1987: 364) R.W.Bouman, comb. nov. Basionym: Phyllanthus fotii Jean F.Brunel.
Moeroris friesii (Hutchinson 1914: 121) R.W.Bouman, comb. nov. Basionym: Phyllanthus friesii Hutch.
Moeroris fuertesii (Urban 1914: 451) Falcón \& R.W.Bouman, comb. nov. Basionym:

Chapter 8

Phyllanthus fuertesii Urb.
Moeroris gabonensis (Brunel 1987: 350) R.W.Bouman, comb. nov. Basionym: Phyllanthus gabonensis Jean F.Brunel.
Moeroris gagnioevae (Brunel \& Roux 1980: 175) R.W.Bouman, comb. nov. Basionym: Phyllanthus gagnioevae Jean F.Brunel \& J.P.Roux.
Moeroris geniculatostemon (Brunel 1987: 364) R.W.Bouman, comb. nov. Basionym: Phyllanthus geniculatostemon Jean F.Brunel.
Moeroris gillettiana (Brunel 1987: 365) R.W.Bouman, comb. nov. Basionym: Phyllanthus gillettianus Jean F.Brunel.
Moeroris gossweileri (Hutchinson 1911: 315) R.W.Bouman, comb. nov. Basionym: Phyllanthus gossweileri Hutch.
Moeroris harrisii (Radcliffe-Smith 1981: 768) R.W.Bouman, comb. nov. Basionym: Phyllanthus harrisii Radcl.-Sm.
Moeroris heterophylla (Meyer ex Müller 1863: 43) R.W.Bouman, comb. nov. Based on: Phyllanthus incurvus Sonder (1850: 135), nom. illeg., non Phyllanthus incurvus Thunberg (1794: 24), heterotypic synonym: Phyllanthus heterophyllus E.Mey. ex Müll.Arg.

Moeroris hexadactyla (McVaugh 1961: 195) R.W.Bouman, comb. nov. Basionym: Phyllanthus hexadactylus McVaugh.
Moeroris hildebrandtii (Pax 1893: 526) R.W.Bouman, comb. nov. Basionym: Phyllanthus hildebrandtii Pax.
Moeroris holostylus (Milne-Redhead 1937: 414) R.W.Bouman, comb. nov. Basionym: Phyllanthus holostylus Milne-Redh.
Moeroris humpatana (Brunel 1987: 352) R.W.Bouman, comb. nov. Basionym: Phyllanthus humpatanus Jean F.Brunel.
Moeroris hutchinsoniana (Moore 1911: 192) R.W.Bouman, comb. nov. Basionym: Phyllanthus hutchinsonianus S.Moore
Moeroris imbricata (Webster 1955: 56) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus imbricatus G.L.Webster.
Moeroris irrigua (Radcliffe-Smith 1974: 440) R.W.Bouman, comb. nov. Basionym: Phyllanthus irriguus Radcl.-Sm.
Moeroris ivohibea (Leandri 1938: 197) R.W.Bouman, comb. nov. Basionym: Phyllanthus ivohibeus Leandri.
Moeroris jaegeri (Brunel \& Roux 1980: 176) R.W.Bouman, comb. nov. Basionym: Phyllanthus jaegeri Jean F.Brunel \& J.P.Roux.
Moeroris juncea (Müller 1866: 411) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus junceus Müll.Arg.
Moeroris kaessneri (Hutchinson 1911: 315) R.W.Bouman, comb. nov. Basionym: Phyllanthus kaessneri Hutch.
Moeroris kelleana (Brunel 1987: 374) R.W.Bouman, comb. nov. Basionym: Phyllanthus kelleanus Jean F.Brunel.
Moeroris kivuensis (Brunel 1987: 341) R.W.Bouman, comb. nov. Basionym:

Phyllanthus kivuensis Jean F.Brunel.
Moeroris lanceolata (Poiret 1804: 299) R.W.Bouman, comb. nov. Basionym: Phyllanthus lanceolatus Poir.
Moeroris lebrunii (Robyns \& Lawalrée 1947: 264) R.W.Bouman, comb. nov. Basionym: Phyllanthus lebrunii Robyns \& Lawalrée.
Moeroris leonardiana (Lisowski, Malaisse \& Symoens 1974: 200) R.W.Bouman, comb. nov. Basionym: Phyllanthus leonardianus Lisowski, Malaisse \& Symoens.
Moeroris leptoneura (Urban 1912: 246) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus leptoneurus Urb.
Moeroris leptophylla (Müller 1866: 411) R.W.Bouman, comb. nov. Basionym: Phyllanthus leptophyllus Müll.Arg.
Moeroris leschenaultii (Müller 1863: 37) R.W.Bouman, comb. nov. Basionym: Phyllanthus leschenaultii Müll.Arg.
Moeroris letestui (Brunel 1987: 361) R.W.Bouman, comb. nov. Basionym: Phyllanthus letestui Jean F.Brunel.
Moeroris leucantha (Pax 1893: 524) R.W.Bouman, comb. nov. Basionym: Phyllanthus leucanthus Pax.
Moeroris leucocalyx (Hutchinson 1911:316) R.W.Bouman, comb. nov. Basionym: Phyllanthus leucocalyx Hutch.
Moeroris leucochlamys (Radcliffe-Smith in Radcliffe-Smith \& Hoffmann (2006: 610) R.W.Bouman, comb. nov. Basionym: Phyllanthus leucochlamys Radcl.-Sm.

Moeroris leucosepala (Brunel 1987: 363) R.W.Bouman, comb. nov. Basionym: Phyllanthus leucosepalus Jean F.Brunel.
Moeroris limmuensis (Cufodontis 1947: 484) R.W.Bouman, comb. nov. Basionym: Phyllanthus limmuensis Cufod.
Moeroris lindbergii (Müller 1873: 35) R.W.Bouman, comb. nov. Basionym: Phyllanthus lindbergii Müll.Arg.
Moeroris lokohensis (Leandri 1957: 229) R.W.Bouman, comb. nov. Basionym: Phyllanthus lokohensis Leandri.
Moeroris lunifolia (Gilbert \& Thulin 1993: 171) R.W.Bouman, comb. nov. Basionym: Phyllanthus lunifolius Gilbert \& Thulin.
Moeroris macrantha (Pax 1894: 77) R.W.Bouman, comb. nov. Basionym: Phyllanthus macranthus Pax.
Moeroris madagascariensis (Müller 1863: 35) R.W.Bouman, comb. nov. Basionym: Phyllanthus madagascariensis Müll.Arg.
Moeroris maestrensis (Urban 1924: 193) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus maestrensis Urb.
Moeroris mafingensis (Radcliffe-Smith 1996b: 308) R.W.Bouman, comb. nov. Basionym: Phyllanthus mafingensis Radcl.-Sm.
Moeroris magdemeana (Brunel 1987: 362) R.W.Bouman, comb. nov. Basionym: Phyllanthus magdemeanus Jean F.Brunel.
Moeroris magnificens (Brunel \& Roux 1981: 82) R.W.Bouman, comb. nov.

Chapter 8

Basionym: Phyllanthus magnificens Jean F.Brunel \& J.P.Roux.
Moeroris mahengeaensis (Brunel 1987: 356) R.W.Bouman, comb. nov. Basionym: Phyllanthus mahengeaensis Jean F.Brunel.
Moeroris makitae (Brunel 1987: 354) R.W.Bouman, comb. nov. Basionym: Phyllanthus makitae Jean F.Brunel.
Moeroris manniana (Müller 1864: 514) R.W.Bouman, comb. nov. Basionym: Phyllanthus mannianus Müll.Arg.
Moeroris mckenziei (Fosberg 1978: 189) R.W.Bouman, comb. nov. Basionym: Phyllanthus mckenziei Fosberg.
Moeroris melleri (Müller 1864: 514) R.W.Bouman, comb. nov. Basionym: Phyllanthus melleri Müll.Arg.
Moeroris meyeriana (Müller 1863: 42) R.W.Bouman, comb. nov. Basionym: Phyllanthus meyerianus Müll.Arg.
Moeroris micrantha (Richard 1850: 216) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus micranthus A.Rich.
Moeroris microdendron (Welwitsch ex Müller 1864: 330) R.W.Bouman, comb. nov. Basionym: Phyllanthus microdendron Welw. ex Müll.Arg.
Moeroris micromeris (Radcliffe-Smith 1981: 769) R.W.Bouman, comb. nov. Basionym: Phyllanthus micromeris Radcl.-Sm.
Moeroris microphyllina (Müller 1864: 332) R.W.Bouman, comb. nov. Basionym: Phyllanthus microphyllinus Müll.Arg.
Moeroris microphylla (Kunth 1817: 87) R.W.Bouman, comb. nov. Basionym: Phyllanthus microphyllus Kunth.
Moeroris mieschii (Brunel \& Roux 1981: 87) R.W.Bouman, comb. nov. Basionym: Phyllanthus mieschii Jean F.Brunel \& J.P.Roux.
Moeroris mindouliensis (Brunel 1987: 377) R.W.Bouman, comb. nov. Basionym: Phyllanthus mindouliensis Jean F.Brunel.
Moeroris mitteniana (Hutchinson in Brown et al. 1912: 725) R.W.Bouman, comb. nov. Basionym: Phyllanthus mittenianus Hutch.
Moeroris minutula (Müller 1873: 54) R.W.Bouman, comb. nov. Basionym: Phyllanthus minutulus Müll.Arg.
Moeroris mkurirae (Brunel 1987: 364) R.W.Bouman, comb. nov. Basionym: Phyllanthus mkurirae Jean F.Brunel.
Moeroris moeroensis (De Wildeman 1906: 273) R.W.Bouman, comb. nov. Basionym: Phyllanthus moeroensis De Wild.
Moeroris monroviae (Brunel 1987: 346) R.W.Bouman, comb. nov. Basionym: Phyllanthus monroviae Jean F.Brunel.
Moeroris mooneyi (Gilbert 1987: 357) R.W.Bouman, comb. nov. Basionym: Phyllanthus mooneyi M.G.Gilbert.
Moeroris moramangica (Leandri 1938: 197) R.W.Bouman, comb. nov. Basionym: Phyllanthus melleri Müll.Arg. subsp. moramangicus Leandri, homotypic synonym: Phyllanthus moramangicus (Leandri) Leandri (1958: 84).

Moeroris myrtacea (Sonder 1850: 134) R.W.Bouman, comb. nov. Basionym: Phyllanthus myrtaceus Sond.
Moeroris ndikinimekiana (Brunel 1987: 352) R.W.Bouman, comb. nov. Basionym: Phyllanthus ndikinimekianus Jean F.Brunel.
Moeroris nigericus (Brenan 1950: 215) R.W.Bouman, comb. nov. Basionym: Phyllanthus nigericus Brenan.
Moeroris niruroides (Müller 1864: 331) R.W.Bouman, comb. nov. Basionym: Phyllanthus niruroides Müll.Arg.
Moeroris nozeraniana (Brunel \& Roux 1985: 382) R.W.Bouman, comb. nov. Basionym: Phyllanthus nozeranianus Jean F.Brunel \& J.P.Roux.
Moeroris nyale (Hoffmann \& Cheek 2003: 442) R.W.Bouman, comb. nov. Basionym: Phyllanthus nyale Petra Hoffm. \& Cheek.
Moeroris nyikae (Radcliffe-Smith 1996b: 317) R.W.Bouman, comb. nov. Basionym: Phyllanthus nyikae Radcl.-Sm.
Moeroris oblongiglans (Gilbert 1987: 359) R.W.Bouman, comb. nov. Basionym: Phyllanthus oblongiglans M.G.Gilbert.
Moeroris odontadenioides (Brunel 1987: 342) R.W.Bouman, comb. nov. Basionym: Phyllanthus odontadenioides Jean F.Brunel.
Moeroris odontadenia (Müller 1864: 331) R.W.Bouman, comb. nov. Basionym: Phyllanthus odontadenius Müll.Arg.
Moeroris omahakensis (Dinter \& Pax in Pax 1910: 234) R.W.Bouman, comb. nov. Basionym: Phyllanthus omahakensis Dinter \& Pax.
Moeroris oppositifolia (Baillon ex Müller 1863: 24) R.W.Bouman, comb. nov. Basionym: Phyllanthus oppositifolius Baill. ex Müll.Arg.
Moeroris oxycoccifolia (Hutchinson 1912: 735) R.W.Bouman, comb. nov. Basionym: Phyllanthus oxycoccifolius Hutch.
Moeroris palakondensis (Raja Kullayiswamy \& Sarojini in Raja Kullayiswamy et al. 2021: 2) R.W.Bouman, comb. nov. Basionym: Phyllanthus palakondensis Raja Kullayisw. \& Sarojin.
Moeroris parva (Hutchinson 1911: 316) R.W.Bouman, comb. nov. Basionym: Phyllanthus parvus Hutch.
Moeroris paxii (Hutchinson 1911: 316) R.W.Bouman, comb. nov. Basionym: Phyllanthus paxii Hutch.
Moeroris pendula (Roxburgh 1832: 662) R.W.Bouman, comb. nov. Basionym: Phyllanthus pendulus Roxb.
Moeroris pentaphylla (Wright ex Grisebach 1865: 167) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus pentaphyllus C.Wright ex Griseb.
Moeroris phillyreifolia (Poiret 1804: 299) R.W.Bouman, comb. nov. Basionym: Phyllanthus phillyreifolius Poir.
Moeroris pierlotii (Brunel 1987: 354) R.W.Bouman, comb. nov. Basionym: Phyllanthus pierlotii Jean F.Brunel.
Moeroris pileostigma (Coode 1978: 119) R.W.Bouman, comb. nov. Basionym:

Chapter 8

Phyllanthus pileostigma Coode.
Moeroris procera (Wright 1870: 149) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus procerus C.Wright.
Moeroris prostrata (Müller 1864: 330) R.W.Bouman, comb. nov. Basionym: Phyllanthus prostratus Müll.Arg.
Moeroris pseudoniruri (Müller 1864: 539) R.W.Bouman, comb. nov. Basionym: Phyllanthus pseudoniruri Müll.Arg.
Moeroris pulverulenta (Urban 1924: 192) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus pulverulentus Urb.
Moeroris pusilla (Brunel 1987: 400) R.W.Bouman, comb. nov. Basionym: Phyllanthus pusillus Jean F.Brunel, heterotypic synonym: Phyllanthus udoricola Radcliffe-Smith (1996b: 326).
Moeroris rangoloakensis (Leandri 1938: 198) R.W.Bouman, comb. nov. Basionym: Phyllanthus rangoloakensis Leandri.
Moeroris raynalii (Brunel \& Roux 1985: 387) R.W.Bouman, comb. nov. Basionym: Phyllanthus raynalii Jean F.Brunel \& J.P.Roux.
Moeroris retinervis (Hutchinson in Brown et al. 1912: 735) R.W.Bouman, comb. nov. Basionym: Phyllanthus retinervis Hutch.
Moeroris rheedei (Wight 1852: t. 1895) R.W.Bouman, comb. nov. Basionym: Phyllanthus rheedei Wight.
Moeroris rhizomatosa (Radcliffe-Smith 1982: 427) R.W.Bouman, comb. nov. Basionym: Phyllanthus rhizomatosus Radcl.-Sm.
Moeroris rotundifolia (Klein ex Willdenow 1805: 584) R.W.Bouman, comb. nov. Basionym: Phyllanthus rotundifolius J.G.Klein ex Willd.
Moeroris rouxii (Brunel 1980: 489) R.W.Bouman, comb. nov. Basionym: Phyllanthus rouxii Jean F.Brunel.
Moeroris schaulsii (Brunel 1987: 399) R.W.Bouman, comb. nov. Basionym: Phyllanthus schaulsii Jean F.Brunel.
Moeroris selbyi (Britton \& Wilson in Britton 1920: 74) Falcón \& R.W.Bouman, comb. nov. Basionym: Phyllanthus selbyi Britton \& P.Wilson.
Moeroris sepialis (Müller 1880: 25) R.W.Bouman, comb. nov. Basionym: Phyllanthus sepialis Müll.Arg.
Moeroris serandii (Brunel 1987: 353) R.W.Bouman, comb. nov. Basionym: Phyllanthus serandii Jean F.Brunel.
Moeroris shabaensis (Brunel 1987: 364) R.W.Bouman, comb. nov. Basionym: Phyllanthus shabaensis Jean F.Brunel.
Moeroris standleyi (McVaugh 1961: 199) R.W.Bouman, comb. nov. Basionym: Phyllanthus standleyi McVaugh, homotypic synonym: Phyllanthus perpusillus Standley (1948: 178), nom. superfl., non Phyllanthus perpusillus Baillon (1865: 358).

Moeroris stipulata Rafinesque (1838: 91), homotypic synonym: Phyllanthus stipulatus (Raf.) G.L.Webster (1955: 53).

Moeroris sublanata (Schumacher \& Thonning 1827: 420) R.W.Bouman, comb. nov. Basionym: Phyllanthus sublanatus Schumach. \& Thonn.
Moeroris suffrutescens (Pax 1893: 523) R.W.Bouman, comb. nov. Basionym: Phyllanthus suffrutescens Pax.
Moeroris tanaensis (Brunel 1987: 361) R.W.Bouman, comb. nov. Basionym: Phyllanthus tanaensis Jean F.Brunel.
Moeroris tanzaniana (Brunel 1987: 399) R.W.Bouman, comb. nov. Basionym: Phyllanthus tanzanianus Jean F.Brunel.
Moeroris tayloriana (Brunel 1987: 355) R.W.Bouman, comb. nov. Basionym: Phyllanthus taylorianus Jean F.Brunel.
Moeroris tenuis (Radcliffe-Smith 1996b: 323) R.W.Bouman, comb. nov. Basionym: Phyllanthus tenuis Radcl.-Sm.
Moeroris thulinii (Radcliffe-Smith 1981: 774) R.W.Bouman, comb. nov. Basionym: Phyllanthus thulinii Radcl.-Sm.
Moeroris trichotepala (Brenan 1953: 91) R.W.Bouman, comb. nov. Basionym: Phyllanthus trichotepalus Brenan.
Moeroris tukuyuana (Brunel 1987: 356) R.W.Bouman, comb. nov. Basionym: Phyllanthus tukuyuanus Jean F.Brunel.
Moeroris ukagurensis (Radcliffe-Smith 1981: 774) R.W.Bouman, comb. nov. Basionym: Phyllanthus ukagurensis Radcl.-Sm.
Moeroris upembaensis (Brunel 1987: 367) R.W.Bouman, comb. nov. Basionym: Phyllanthus upembaensis Jean F.Brunel.
Moeroris vanderystii (Hutchinson \& De Wildeman 1932: 470) R.W.Bouman, comb. nov. Basionym: Phyllanthus vanderystii Hutch. \& De Wild.
Moeroris vatovaviensis (Leandri ex Ralimanana \& Hoffmann in Ralimanana et al. 2013: 551) R.W.Bouman, comb. nov. Basionym: Phyllanthus vatovaviensis Leandri ex Ralim. \& Petra Hoffm.
Moeroris venustula (Leandri 1938: 198) R.W.Bouman, comb. nov. Basionym: Phyllanthus venustulus Leandri.
Moeroris vichadensis (Croizat 1945: 181) R.W.Bouman, comb. nov. Basionym: Phyllanthus vichadensis Croizat.
Moeroris virgulata (Müller 1864: 330) R.W.Bouman, comb. nov. Basionym: Phyllanthus virgulatus Müll.Arg.
Moeroris volkensii (Engler 1895: 236) R.W.Bouman, comb. nov. Basionym: Phyllanthus volkensii Engl.
Moeroris wingfieldii (Radcliffe-Smith 1981: 776) R.W.Bouman, comb. nov. Basionym: Phyllanthus wingfieldii Radcl.-Sm.
Moeroris wittei (Robyns \& Lawalrée 1947: 266) R.W.Bouman, comb. nov. Basionym: Phyllanthus wittei Robyns \& Lawalrée.
Moeroris xiphophora (Brunel 1987: 344) R.W.Bouman, comb. nov. Basionym: Phyllanthus xiphophorus Jean F.Brunel.
Moeroris xylorrhiza (Thulin 2005: 385) R.W.Bouman, comb. nov. Basionym:

Chapter 8

Phyllanthus xylorrhizus Thulin.
Moeroris yangambiensis (Brunel 1987: 336) R.W.Bouman, comb. nov. Basionym: Phyllanthus yangambiensis Jean F.Brunel.
Moeroris youngii (Brunel 1987: 335) R.W.Bouman, comb. nov. Basionym: Phyllanthus youngii Jean F.Brunel.
Moeroris zambica (Radcliffe-Smith 1996b: 328) R.W.Bouman, comb. nov. Basionym: Phyllanthus zambicus Radcl.-Sm.
Moeroris zornioides (Radcliffe-Smith 1996b: 328) R.W.Bouman, comb. nov. Basionym: Phyllanthus zornioides Radcl.-Sm.

Moeroris Raf. subgenus Swartziani (G.L.Webster) R.W.Bouman, comb. nov.
Phyllanthus L. subgenus Swartziani (G.L.Webster) Ralimanana \& Hoffmann in Ralimanana et al. (2013: 536). - Phyllanthus subgenus Phyllanthus section Phyllanthus subsection Swartziani Webster (1955: 53); (1957: 306); (1970: 68); (2002a: 6); Brunel (1987: 345). — Phyllanthus L. section Anthophyllus Jean F.Brunel subsection Swartziani (G.L.Webster) Brunel (1987: 333). — Type: Phyllanthus amarus Schumach. \& Thonn. = Moeroris amara (Schumach. \& Thonn.) R.W.Bouman.
Reverchonia Gray (1880: 107); Pax \& Hoffmann (1931: 66); Webster \& Miller (1963: 200); Webster (1994: 45). — Phyllanthus L. section Reverchonia (A.Gray) Webster (2007: 235). —Type: Reverchonia arenaria A.Gray (= formerly Phyllanthus warnockii G.L.Webster) = Moeroris arenaria (A.Gray) R.W.Bouman.

Diagnostic features: Herbs, monoecious, branching phyllanthoid with pinnatiform branchlets or non-phyllanthoid branching (spiral phyllotaxy). Brachyblasts absent. Leaves distichous or spiral. Inflorescences axillary, bisexual fascicles. Staminate flowers: sepals (4)5 or 6; disc glands 5 or 6 , free or entire and around base of stamens (H-shaped) in M. arenaria; stamens (2 or) 3, filaments entirely or partially connate; anthers dehiscing obliquely or horizontally (vertically in M. arenaria); pollen 3-colporate, exine reticulate. Pistillate flowers: sepals 6; disc entire; ovary 3-locular, smooth or slightly rugose; style absent; stigmas bifid. Fruits capsules. Seeds trigonous, smooth or finely striated longitudinally.
Distribution: Africa and North America with some common invasive species. Note -This group contains an enigmatic species (M. arenaria) originially placed in the separate genus Reverchonia A.Gray. This species differs in most major characters (staminate flower and branching type) from all others in the subgenus, but retaining it in a separate section, would result in a paraphyletic group.

Included species and taxonomic changes (4 spp.):
Moeroris abnormis (Baillon 1860: 42) R.W.Bouman, comb. nov. Basionym:
Phyllanthus abnormis Baill.

Moeroris amara (Schumacher \& Thonning 1827: 421) R.W.Bouman, comb. nov. Basionym: Phyllanthus amarus Schumach. \& Thonn.
Moeroris arenaria (Gray 1880: 107) R.W.Bouman, comb. nov. Basionym: Reverchonia arenaria A.Gray (non Phyllanthus arenarius Beille 1927: 587), homotypic synonym: Phyllanthus warnockii Webster (2007: 235).
Moeroris fraterna (Webster 1955: 53) R.W.Bouman, comb. nov. Basionym: Phyllanthus fraternus G.L.Webster.

Moeroris Raf. subgenus Tenellanthus (Jean F.Brunel) R.W.Bouman, comb. nov.

Phyllanthus L. subgenus Tenellanthus Brunel (1987: 301); Ralimanana \& Hoffmann (2011:358). - Type: Phyllanthus tenellus Roxb. = Moeroris tenella (Roxb.) R.W.Bouman.

Phyllanthus L. subgenus Kirganelia (A.Juss.) Kurz section Pentandra Webster (1967b: 333); (1970: 63); (1997: 218); (2001b: 385). - Phyllanthus L. subgenus Tenellanthus Jean F.Brunel section Pentandra (G.L.Webster) Brunel (1987: 313); Schmid (1991: 63). - Type: Phyllanthus pentandrus Schumach. \& Thonn. = Moeroris pentandra (Schumach. \& Thonn.) R.W.Bouman.
Phyllanthus L. subgenus Tenellanthus Jean F.Brunel section Loandani Brunel (1987: 309). - Type: Phyllanthus loandensis Welw. = Moeroris loandensis (Welw.) R.W.Bouman.

Diagnostic features: Herbs or (sub)shrubs, monoecious, branching (sub) phyllanthoid, branchlets (bi)pinnatiform. Brachyblasts absent. Leaves distichous. Inflorescences axillary, unisexual or bisexual fascicles. Staminate flowers: sepals 5; disc glands 5; stamens (3 in M. cocumbiensis (Jean F.Brunel) R.W.Bouman) 5(-7 in M. nummulariifolius (Müll.Arg.) R.W.Bouman), filaments free, anthers basifixed, dehiscing longitudinally; pollen subglobose, 3- or 4-colporate, exine reticulate. Pistillate flowers: sepals 5, obovate or orbicular; disc entire, shallowly cupuliform; ovary 3-locular, smooth or slightly rugose; style absent or short; stigmas bifid. Fruits capsules, style persistent or caducous. Seeds trigonous, papillose or verrucose. Distribution: Mainly Africa with one common invasive (M. tenellus (Roxb.) R.W.Bouman).

Notes - 1. Previously placed in subgenus Kirganelia on the basis of the 5-merous staminate flowers (Webster 1967b), but later separated by Brunel (1987), a conclusion upheld by Ralimanana \& Hoffmann (2011). Most of the species in this group are small herbs or subshrubs with M. tenellus being invasive in all tropics and parts of some temperate regions.
2. The three sections recognized by Brunel (1987) are mainly based on differences in pollen morphology and are morphologically difficult to identify, which is why they are synonymized here under subgenus Tenellanthus.

Chapter 8

Included species and taxonomic changes (16 spp.):
Moeroris ajmeriana (Chaudhary \& Rao 2002: 147) R.W.Bouman, comb. nov. Basionym: Phyllanthus ajmerianus L.B.Chaudhary \& R.R.Rao.
Moeroris angolensis (Müller 1864: 329) R.W.Bouman, comb. nov. Basionym: Phyllanthus angolensis Müll.Arg.
Moeroris cocumbiensis (Brunel 1987: 315) R.W.Bouman, comb. nov. Basionym: Phyllanthus cocumbiensis Jean F.Brunel.
Moeroris comorensis (Leandri 1938: 194) R.W.Bouman, comb. nov. Basionym: Phyllanthus comorensis Leandri.
Moeroris frazieri (Radcliffe-Smith 1982: 425) R.W.Bouman, comb. nov. Basionym: Phyllanthus frazieri Radcl.-Sm.
Moeroris graminicola (Hutchinson 1911: 191) R.W.Bouman, comb. nov. Basionym: Phyllanthus graminicola Hutch.
Moeroris hodjelensis (Schweinfurth 1899: 304) R.W.Bouman, comb. nov. Basionym: Phyllanthus hodjelensis Schweinf.
Moeroris loandensis (Welwitsch ex Müller 1864: 329) R.W.Bouman, comb. nov. Basionym: Phyllanthus loandensis Welw. ex Müll.Arg.
Moeroris manicaensis (Brunel ex Radcliffe-Smith 1996b: 309) R.W.Bouman, comb. nov. Basionym: Phyllanthus manicaensis Jean F.Brunel ex Radcl.-Sm.
Moeroris martinii (Radcliffe-Smith 1996b: 311) R.W.Bouman, comb. nov. Basionym: Phyllanthus martinii Radcl.-Sm.
Moeroris mendesii (Brunel 1987: 314) R.W.Bouman, comb. nov. Basionym: Phyllanthus mendesii Jean F.Brunel.
Moeroris nummulariifolia (Poiret 1804: 302) R.W.Bouman, comb. nov. Basionym: Phyllanthus nummulariifolius Poir.
Moeroris parvula (Sonder 1850: 132) R.W.Bouman, comb. nov. Basionym: Phyllanthus parvulus Sond.
Moeroris pentandra (Schumacher \& Thonning 1827: 419) R.W.Bouman, comb. nov. Basionym: Phyllanthus pentandrus Schumach. \& Thonn.
Moeroris tenella (Roxburgh 1832: 668) R.W.Bouman, comb. nov. Basionym: Phyllanthus tenellus Roxb.
Moeroris tsetserrae (Brunel 1987: 310) R.W.Bouman, comb. nov. Basionym: Phyllanthus tsetserrae Jean F. Brunel.

Clade E - Figs. 1, 2G \& H (supplementary fig. 1)

Phyllanthus L.

Phyllanthus Linnaeus (1753: 981); de Jussieu (1824: 21); Gaertner (1790: 125); Baillon (1858: 621); Müller (1866: 274); Hooker (1887: 285); Webster (1994: 44); (1997: 206); Radcliffe-Smith (2001: 38); Webster (2014: 78); Chakrabarty
\& Balakrishnan (2018: 258). — Phyllanthus L. section Euphyllanthus Grisebach (1859: 33), nom. inval.; Baillon (1860: 24); (1862b: 237); (1865: 351); Müller (1863: 3); (1866: 374). - Lectotype (designated by Small 1913): Phyllanthus niruri L .

Diagnostic features: Herbs, shrubs to trees, monoecious or dioecious, branching (non-)phyllanthoid, rarely rooting at nodes with main stem transformed to rootstock (Phyllanthus section Callitrichoides), branchlets (bi)pinnatiform, sometimes transformed into phylloclades, stems rarely ornamented with small platelets. Brachyblasts absent (or present in section Omphacodes). Cataphyllary stipules triangular to elongate to squamiform to linear-elliptic to slightly spinescent, indurate or membranous, sometimes fused with cataphylls, base (bilaterally) auriculate or not. Cataphylls triangular or oblong-elliptic to linear, indurate or membranous, usually darker colored (laminate in P. formosus Urb.), sometimes only on orthotropic branches, then branchlets sometimes subtended by slightly smaller leaves instead of cataphylls. Leaves usually distichous and alternate (opposed in Phyllanthus section Williamia (Baill.) Müll.Arg. subsection Mirifici G.L.Webster) to spiral, or reduced to scales similar to cataphylls. Inflorescences axillary (to ramiand cauliflorous), unisexual or bisexual fascicles, sometimes paniculate (spiciform thyrses or racemes in P. almadensis Müll.Arg.). Staminate flowers: sepals 4-8; disc entire, 3-6 free to slightly united glands or 3 duplex glands; stamens 2-7(-15 in Phyllanthus section Williamia), filaments free to (basally) connate, or arranged in whorls with varied degree of fusion, anthers usually ovoid, dehiscing horizontally to vertically, connectives (non-)apiculate, sometimes all parts completely connate into a synandrium; pollen (sub)prolate to spheroidal, 3- or 4(-11)-colporate, clypeate, (diplo)porate without distinct ectocolpi, pantoporate with elongated colpi or colpi anastomosing around exine shields, colpi monoporate when present, exine semitectate-reticulate, vermiculate or pilate; pistillode absent. Pistillate flowers: sepals 4-10; disc entire, sometimes cupuliform or consisting of free glands; ovary 3 - or 4(-6)-locular; style present or absent; stigmas free or connate, with bifid to multifid or entire tips, sometimes lacerate, reduced to petaloid structures or fused into a calyptra on top of the ovary. Fruits capsules (sometimes massive) or baccate. Seeds trigonous or globose, with or without sarcotesta, smooth, obscurely striate, puncticulate, rugulose, finely reticulate, ribbed or verrucate. Distribution: Mainly Americas and West Indies, some invasive species. Notes - 1. The genus Phyllanthus is here drastically reduced in size: it now comprises fewer than 200 species and it is mainly distributed in the Americas. Morphological variation within the genus remains extensive, with some overlap with other genera. This is a direct consequence of widespread morphological convergence in the tribe Phyllantheae and is the main cause of many of the taxonomic problems that have plagued this group. There is not a set of characters unique to Phyllanthus as there are always some exceptions. Geographically, species

Chapter 8

in the genus Phyllanthus are restricted mostly to the Americas, aside from some invasive species like P. niruri. Genera previously classified in a broader treatment of Phyllanthus that are also found in South America are Moeroris and a few species of Cicca. Phyllanthus in its current circumscription can be distinguished from other genera in tribe Phyllantheae mainly by comparing specifically similar sections or subgenera. For example, Phyllanthus section Loxopodium is very similar to Cathetus subgenus Macraea and these groups are mainly distinguished by their pollen and some vegetative characters, but they are geographically separated. Nymphanthus is easily distinguished from Phyllanthus on the basis of its tetramerous flowers; these also occur in Phyllanthus section Glyptothamnus G.L.Webster, but the staminate flowers in the latter have an entire disc (versus free glands in Nymphanthus). Some species of Phyllanthus subgenus Conami (Aubl.) G.L.Webster or Microglochidion Müll.Arg. can resemble those in Cicca subgenus Gomphidium, differing mainly in their pollen, staminate flowers (filaments fused or not) or pistillate flowers (shape of the styles and stigmas).
2. For some species listed below we could not determine their subgeneric alignment due to the unavailability of specimens, unresolved phylogenetic relationships or incomplete descriptions. Webster in one of his unpublished manuscripts (2002 outline of the Neotropical Phyllanthus), discussed the affinity of P. orinocensis Steyerm. (Steyermark et al. 1952: 321) and P. bolivarensis Steyerm. (Steyermark et al. 1952:317) and considered them to be better placed in the genus Sebastiania Spreng. (Euphorbiaceae), but this has not yet been confirmed.
3. Section Ciccopsis is retained in Phyllanthus, but placement in any specifc subgenus awaits further phylogenetic studies to resolve its full affinities. Falcón et al. (2020) recovered P. pseudocicca Grisebach (1865: 166) in a large Neotropical clade with weak support as close to subgenus Conami.

Included, but further unplaced species (9 spp.): P. bolivarensis Steyerm., P. harrimanii Webster (1978: 570), P. hortensis Govaerts \& Radcliffe-Smith (1996: 177), P. lasiogynus Müller (1866: 357), P. orinocensis Steyerm., P. petaloideus Wilson (1962: t. 3589), P. pseudoguyanensis Herter \& Mansfeld (1936 publ. 1937: 33), P. pulcherrimus Herter ex Arechavaleta (1925: 72), P. sellowianus (Klotzsch 1841: 200) Müller (1863: 37).

Phyllanthus L. (subgenus incertae sedis) section Ciccopsis G.L.Webster
Phyllanthus L. subgenus Kirganelia (A.Juss.) Kurz section Ciccopsis Webster (1955:
57); (1957: 61). - Type: Phyllanthus pseudocicca Griseb.

Diagnostic features: Shrubs or trees, monoecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts present. Leaves distichous. Inflorescences axillary, unisexual or bisexual fascicles, on separate branchlets; either only proximal
staminate inflorescences subtended by cataphylls and distal bisexual inflorescences associated with normally developing leaves. Staminate flowers: sepals 6, reflexed; disc glands 6; stamens 3, filaments free, sometimes fused at base, anthers ovoid, dehiscing horizontally; pollen grains 3-colporate, aperture angular, exine reticulate. Pistillate flowers: sepals 6; disc entire, 3-angled; ovary 3-locular; styles absent; stigmas bifid. Fruits capsules with fleshy exocarp. Seeds trigonous, minutely verrucate along longitudinal lines.
Distribution: West Indies (Cuba).
Note - Webster (1957) did not include a description of the fruits and seeds of this monotypic section and its affinities remain unclear, but recent collections indicate that the fruits are capsular with 6 similar trigonous verrucate seeds (Falcón \& Leyva 2020). Webster (1957) discussed the affinities of this species with section Cicca, but also with his Phyllanthus subgenus Kirganelia and possibly Phyllanthus subgenus Xylophylla section Omphacodes. Falcón et al. (2020) found it related to other Neotropical species of Phyllanthus, but its exact relation to extant subgenera is not resolved (supplementary fig. 1).

Included species (1 sp.): Phyllanthus pseudocicca Grisebach (1865: 166).
Phyllanthus L. (subgenus incertae sedis) section Omphacodes G.L.Webster
Phyllanthus L. subgenus Xylophylla (L.) Pers. section Omphacodes Webster (1955:
59); (1958: 142). - Type: Phyllanthus subcarnosus C.Wright ex Griseb.

Diagnostic features: Trees, monoecious, glabrous, branching phyllanthoid, branchlets pinnatiform. Brachyblasts present. Leaves distichous. Inflorescences axillary, bisexual fascicles. Staminate flowers: sepals 5; disc glands 5, free or slightly united; stamens 3 (or 4), filaments connate, anthers muticous, dehiscing obliquely; pollen clypeate, exine shields polybrochate, reticulate. Pistillate flowers: sepals 5; disc shallowly cupuliform, tenuous (thin), margin undulate (wavy), not pitted; ovary 3-locular; style absent; stigmas bifid, branches rather thick. Fruits massive, indehiscent capsules, outer layer somewhat fleshy. Seeds trigonous, pairs often unequal, obscurely striate.
Distribution: West Indies.
Note -Falcón et al. (2020) found that P. subcarnosus was not a part of Phyllanthus subgenus Xylophylla, which is also confirmed here (supplementary fig. 1). More information is necessary to resolve its relationship within Phyllanthus.

Included species (1 sp.): P. subcarnosus Wright ex Grisebach (1865: 168).
Phyllanthus L. subgenus Ciccastrum (Müll.Arg.) R.W.Bouman, stat. nov.

Chapter 8

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Ciccastrum Müller (1873: 26). -Glochidion J.R.Forst. \& G. Forst. section Ciccastrum (Müll.Arg.) Pax \& Hoffmann (1931: 58). - Type: Phyllanthus riedelianus Müll.Arg.

Diagnostic features: Shrubs, monoecious, glabrous, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Leaves distichous. Inflorescences unisexual or bisexual fascicles, forming a cauliflorous panicle in P. riedelianus. Staminate flowers: sepals 6, (highly unequal) biseriate; disc glands 6; stamens 3, filaments connate; anthers apiculate, dehiscing vertically; pollen spheroidal, clypeate, exine reticulate. Pistillate flowers: sepals 6; disc shallowly cupuliform; ovary 3-locular; style absent; stigmas entire, bifid or apically emarginate. Fruits capsules. Seeds rugulose, no further details known. Distribution: Tropical South and Central America.

Included species (2 spp.): P. purpusii Brandegee (1914: 55), P. riedelianus Müller (1863: 16).

Phyllanthus L. subgenus Conami (Aubl.) G.L.Webster
Phyllanthus L. subgenus Conami (Aubl.) Webster (1956: 345); (1957: 363). — Conami Aublet (1775: 926, t. 354). — Type: Conami brasiliensis Aubl. (= Phyllanthus brasiliensis (Aubl.) Poir.)

Diagnostic features: Herbs, shrubs or trees, monoecious or dioecious, branching phyllanthoid, branchlets (bi)pinnatiform (sometimes single or paired). Brachyblasts absent. Cataphyllary stipules triangular to elongate, indurate or membranous, base (not) auriculate. Cataphylls triangular or oblong-elliptic (only on orthotropic branches), but branchlets sometimes subtended by slightly smaller leaves instead of cataphylls. Leaves distichous. Inflorescences axillary, usually bisexual fascicles. Staminate flowers: sepals 6, in two (sometimes distinct) whorls, margins entire; disc entire or 3 duplex or 6 glands; stamens 3, filaments free or connate, anthers dehiscing \pm horizontally, connectives non-apiculate; pollen spheroidal, 3-colporate with colpi diploporate or porate, exine vermiculate to pilate. Pistillate flowers: sepals 6, in two (sometimes distinct) whorls; disc cupular (segmented in Phyllanthus subgenus Conami section Apolepsis); ovary 3-6-locular, smooth; style absent; stigmas bifid. Fruits capsular. Seeds smooth or verrucate.
Distribution: Tropical South America.

Phyllanthus L. subgenus Conami (Aubl.) G.L.Webster section Apolepis G.L.Webster

Phyllanthus L. subgenus Conami (Aubl.) G.L.Webster section Apolepis Webster
(1957: 371). — Type: Phyllanthus orbiculatus Rich.
Diagnostic features: Herbs, monoecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Cataphylls oblong-ellipic, membranous. Leaves distichous. Inflorescences axillary, bisexual fascicles. Staminate flowers: sepals 6, whorls indistinct; disc glands 6; stamens 3, filaments free; anthers emarginate, dehiscing horizontally; pollen grains spheroidal, pantoporate, exine pilate. Pistillate flowers: sepals 6, one type; disc 6 segments; ovary 3-locular; style short; stigmas appressed to the ovary, bifid to halfway, tips incurved. Fruits capsules, veins indistict. Seeds trigonous, verrucate.
Distribution: Tropical South America.
Note - A monotypic section that differs significantly in habit and staminate floral morphology from Phyllanthus subgenus Conami section Conami. Webster (1957) placed this species in Phyllanthus subgenus Conami on the basis of the pilate exine, but this character was shown to have evolved several times (Meewis \& Punt 1983; Bouman et al. 2021).

Included species (1 sp.): Phyllanthus orbiculatus Richard (1792: 113).
Phyllanthus subgenus Conami section Calodictyon (G.L.Webster) R.W.Bouman
Phyllanthus subgenus Gomphidium section Calodictyon Webster (1967a: 194). Type: Phyllanthus tuerckheimii G.L.Webster.

Diagnostic features: Shrubs, monoecious, glabrous, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Cataphylls probably present, but not seen or described. Leaves distichous. Inflorescences axillary, bisexual fascicles. Staminate flowers: sepals 5, whorls indistinct; disc 3 duplex glands; stamens 3, filaments free; anthers muticous, anther slits longitudinal, dehiscing vertically; pollen 3-colporate or syncolporate, exine coarsely reticulate. Pistillate flowers: sepals 5; disc 5-angled, entire; ovary 3-locular; style present; stigma tips bifid. Fruits and seeds unknown.
Distribution: Central America: Guatemala and Mexico (Chiapas).
Note - Webster (1967a) described this species and placed it in a new section within Phyllanthus subgenus Gomphidium (Baill.) G.L.Webster. However, it is sister to subgenus Conami section Conami (supplementary fig. 1) and is here transferred. Free stamens occur in all subgenera of Phyllanthus and could perhaps be plesiomorphic.

Included species (1 sp.): Phyllanthus tuerckheimii Webster (1967a: 195).
Phyllanthus L. subgenus Conami (Aubl.) G.L.Webster section Conami

Chapter 8

Phyllanthus L. subgenus Conami (Aubl.) G.L.Webster section Conami: Literature and type as under the subgenus.
Phyllanthus L. subgenus Conami (Aubl.) G.L.Webster section Nothoclema Webster (1955: 56); (1957: 363); (2003: 21). — Type: Phyllanthus acuminatus Vahl.

Diagnostic features: Shrubs or trees, monoecious or dioecious, branching phyllanthoid, branchlets bipinnatiform. Brachyblasts absent. Cataphylls triangular, indurate. Leaves distichous, laminate leaves present on ultimate and penultimate axes. Inflorescences axillary, bisexual fascicles, usually on lateral (ultimate branches), sometimes on main axes. Staminate flowers: sepals 6, in two whorls; disc entire to dissected, usually 3 duplex glands; stamens 3, filaments connate, anthers dehiscing horizontally, connective sometimes elongated; pollen 3-colporate, colpi diploporate, or pantoporate with elongated colpi, exine varying from reticulate to vermiculate and pilate. Pistillate flowers: sepals 6, in two whorls; disc usually cupular; ovary 3-locular; style absent or short; stigmas erect or spreading, slender or dilated, bifid to lacerate. Fruits capsules, conspicuously veined. Seeds trigonous, sometimes asymmetric, smooth or puncticulate.
Distribution: Tropical South America and West Indies.
Note - The same nomenclatural issue as in Kirganelia is raised here as Webster (1955) created section Nothoclema as the type section for subgenus Conami. He later rectified this (Webster 1960), but did not follow it accordingly in subsequent papers (e.g., Webster 2003). The autonym name for this section, Conami, is applied here.

Included species (10 spp.): P. acuminatus Vahl (1791: 95), P. anisolobus Müller (1866: 382), P. brasiliensis (Aublet 1775: 926) Poiret (1804: 296), P. caymanensis Webster \& Proctor (1984: 121), P. graveolens Kunth (1817: 112), P. liesneri Webster (2003: 26), P. mcvaughii Webster (1966: 339), P. meridensis Webster (2003: 27), P. mocinoanus Baillon (1860: 35), P. pavonianus Baillon (1860: 30).

Phyllanthus L. subgenus Microglochidion (Müll.Arg.) Jean F.Brunel

Phyllanthus L. subgenus Microglochidion (Müll.Arg.) Brunel (1987: 237). Glochidion J.R.Forst. \& G.Forst. section Microglochidion Müller (1863: 58, 69); Pax \& Hoffmann (1931: 58). - Phyllanthus L. subgenus Emblica (Gaertn.) Kurz section Microglochidion (Müll.Arg.) Müller (1865a: 370); (1866: 322); Jablonski (1967: 89). - Lectotype (designated by Jablonski 1967): Glochidion vacciniifolium Müll.Arg. (= Phyllanthus vacciniifolius (Müll.Arg.) Müll.Arg.) Phyllanthus L. subgenus Xylophylla (L.) Pers. section Francavillani Brunel (1987: 236). -Type: Phyllanthus francavillanus Beille (= Phyllanthus myrsinites Kunth subsp. francavillanus (Mül.Arg.) G.L.Webster)

Diagnostic features: Shrubs, monoecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Cataphyllary stipules triangular, indurate, base not auriculate. Cataphylls triangular. Leaves distichous, often with laminal glands. Inflorescences axillary, unisexual fascicles (or flowers (sub) solitary). Staminate flowers: sepals 6; disc glands 3 (then opposite to stamens) or 6; stamens 3, filaments completely free or basally connate, anthers elongate, dehiscing extrorse, vertical, connectives apiculate; pollen (sub)prolate to subspheroidal, 4-11-colporate, colpi mono- or triporate, exine semitectate-reticulate. Pistillate flowers: sepals 6; disc entire; ovary 3-locular; styles present; stigmas entire or bifid. Fruits capsules. Seeds trigonous, unknown.
Distribution: Tropical South America.
Notes — 1. We agree with Brunel's (1987) decision to raise this group to subgeneric level since it is distinct from other subgenera within Phyllanthus. This seems to be the best solution for the otherwise polyphyletic genus Emblica. The relation with subgenus Xylophylla has been discussed in Bouman et al. (2021), and merits further study, particularly the relation between colporate and clypeate pollen.
2. Part of Phyllanthus subgenus Microglochidion has been treated by Brunel (1987) as the Adianthoides group and Francavillanus group (following Jablonski 1967) within Phyllanthus subgenus Xylophylla. However, some of these species were subsequently treated by Webster (1999) as synonyms of P. myrsinites Kunth. (e.g., P. adenophyllus Müll.Arg., P. dinizii Huber, P. francavillanus Müll.Arg., P. gallinetae Jabl. and P. pimichinianus Jabl.) and the Adianthoides group as envisioned by Jablonski (1967) has been divided, whereby many species were transferred to other sections (see Phyllanthus subgenus Xylophylla section Adianthoides Jabl. ex Jean F.Brunel).
3. A full review of this group has not been undertaken since Müller (1866). Jablonski (1967) attempted this in a work on the Phyllanthus species from the Guayana Highlands, but did not provide a synopsis of this section. He mentioned that for many species the material was incomplete and required additional collections. Several species currently included in this section have no gland in the leaf lamina and the variation in stamens and styles is quite apparent. More collections and a denser phylogenetic sampling may show that some of the species are part of other sections in Phyllanthus subgenus Xylophylla. The inclusion here of section Francavillani might have to be reversed in the future. Both groups agree in general floral morphology, although Brunel (1987) did describe the pollen of section Francavillani Jabl. ex Jean F.Brunel as clypeate, which is more typical for Phyllanthus subgenus Xylophylla.

Included species (23 spp.): P. aracaensis Webster ex Secco \& de Rosário (2015: 209), P. carrenoi Steyermark in Steyermark \& Brewer-Carias (1976:343), P. chimantae Jablonski (1967: 100), P. duidae Gleason (1931: 382), P. huberi Riina \& Berry in

Chapter 8

Grande et al. (2012: 10), P. jablonskianus Steyermark \& Luteyn (1984: 317), P. jauaensis Jablonski (1972: 865), P. lediformis Jablonski (1967: 103), P. longistylus Jablonski (1967: 100), P. maguirei Jablonski (1967: 105), P. majus Steyermark in Steyermark et al. (1952: 318), P. minutifolius Jablonski (1967: 115), P. myrsinites Kunth (1817: 111), P. neblinae Jablonski (1967: 107), P. obfalcatus Lasser \& Maguire (1950: 79), P. paraqueensis Jablonski (1967: 104), P. pycnophyllus Müller (1866:322), P. strobilaceus Jablonski (1967: 96), P. subapicalis Jablonski (1967: 101), P. tepuicola Steyermark (1975 publ. 1976: 236), P. vaccinifolius (Müller 1863: 69) Müller (1866: 322), P. ventuarii Jablonski (1967: 104), P. websterianus Steyermark (1958: 17).

Phyllanthus L. subgenus Phyllanthus

Phyllanthus L. subgenus Phyllanthus: Webster (1957: 170); (1970: 64); Brunel (1987: 329). - Type: Phyllanthus niruri L.

Niruri Adanson (1763:356). - Lectotype (selected by Webster 1994): Phyllanthus niruri L .

Diagnostic features: Herbs or small shrubs, rarely aquatic, monoecious or dioecious, branching (sub-)phyllanthoid or non-phyllanthoid, branchlets pinnatiform or transformed to phylloclades. Brachyblasts absent. Cataphyllary stipules linearelliptic, usually membranous, base (not) auriculate. Cataphylls when present, triangular to elliptic or ovate, sometimes leaves on main axes not reduced to cataphylls. Leaves when present alternate or subopposite, distichous, sometimes fleshy. Inflorescences axillary, unisexual or bisexual fascicles (spiciform thyrses or racemes at end of branchlets in P. almadensis). Staminate flowers: sepals 4-6; disc glands 4-6; stamens 2 or 3, filaments connate or free, anthers globular to elongate, sometimes stipitate, dehiscing vertically to horizontally, connectives non-apiculate; pollen 3- or 4-colporate, colpi monoporate, exine semitectate-reticulate. Pistillate flowers: sepals 5 or 6 ; disc usually entire, lobed or appearing as free glands; ovary 3-locular; style absent or short; stigmas bifid, sometimes capitate. Fruits capsules. Seeds trigonous, striate, ribbed or verrucate.
Distribution: Tropical South and Central America, with a pantropical invasive (P. niruri).
Note -Subgenus Phyllanthus as here circumscribed is Neotropical and includes several sections that exhibit a wide range of morphological characters. Other herbaceous species with phyllanthoid branching formerly placed in the genus Phyllanthus are now in the genera Moeroris (formerly Phyllanthus subgenus Afroswartziani, from Africa), Emblica (E. urinaria complex from Asia) or Lysiandra (from Australia). Some herbaceous sections with non-phyllanthoid branching are included (e.g., section Loxopodium G.L.Webster (including Salviniopsis Jean F.Brunel), and Antipodanthus G.L.Webster).

Included species (section incertae sedis, 8 spp.): P. bicolor de Visiani (1858: 139), P. cassioides Rusby (1912: 100), P. compressus Kunth (1817: 109), P. leptocaulos Müller. (1873: 47), P. paraguayensis Parodi (1881: 50), P. pohlianus Müller (1873: 49), P. simplicicaulis Müller (1863: 38), P. subcuneatus Greenman (1898: 478).

Phyllanthus L. subgenus Phyllanthus section Antipodanthus (G.L.Webster) R.W.Bouman

Phyllanthus L. subgenus Isocladus section Antipodanthus Webster (2002b: 290). Type: Phyllanthus dictyospermus Müll.Arg.

Diagnostic features: Subshrubs or shrubs, mostly dioecious (except P. dawsonii Steyerm.), branching non-phyllanthoid. Brachyblasts absent. Leaves spiral, petiolate. Inflorescences axillary, unisexual fascicles. Staminate flowers: sepals 5 or 6; disc glands 5 or 6; stamens 3, filaments connate (or free in P. rosmarinifolius); anthers orbicular, dehiscing vertically to horizontally; pollen 3- or 4-colporate, colpi monoporate, exine coarsely reticulate. Pistillate flowers: sepals 6 ; disc shallowly cupuliform; ovary 3-locular; style absent; stigmas bifid. Fruits capsules. Seeds trigonous, smooth or verrucate.
Distribution: Tropical South America.
Note -Originally placed within Phyllanthus subgenus Isocladus by Webster (2002b), but the group was shown to be nested within Phyllanthus subgenus Phyllanthus (Bouman et al. 2021) and is accordingly transferred. Webster (1966, 2002b) confused some species of Phyllanthus subgenus Lysiandra with Phyllanthus subgenus Antipodanthus, leading to some confusion in the study by Kathriarachchi et al. (2006), who included only one species of Lysiandra (then Australian Phyllanthus section Antipodanthus).

Included species (6 spp.): P. dawsonii Steyermark (1958: 13), P. dictyospermus Müller (1866: 394), P. pinifolius Baillon (1865: 353), P. ramillosus Müller (1863: 36), P. rosmarinifolius Müller (1873: 60), P. salesiae Silva (2009: 231).

Phyllanthus L. subgenus Phyllanthus section Choretropsis Müll.Arg.
Phyllanthus L. subgenus Phyllanthus section Choretropsis Müller. (1863: 4, 52); Müller (1866: 427); Baillon (1865: 359); Pax \& Hoffmann (1931:65); Santiago et al. (2006: 138). - Type: Phyllanthus choretroides Müll.Arg.
Phyllanthus section Xylophylla auct. non (L.) Baill.: Baillon (1858: 623), pro parte, without type.

Diagnostic features: Erect (sub)shrubs, monoecious, branching phyllanthoid or less frequently not distinguishable when all axes terete; main axes terete, subterete,

Chapter 8

succompressed or flattened, smooth or striate, glabrous; branched from the base, rarely branches restricted to the upper part of the plant; plagiotropic branchlets often terete or transformed to phylloclades, phylloclades cylindrical or flattened. Brachyblasts absent. Cataphyllary stipules triangular, base indurate, auriculate. Cataphylls squamiform. Leaves reduced to scales on plagiotropic branchlets, similar to the cataphylls. Inflorescences axillary, unisexual or bisexual fascicles. Staminate flowers: sepals 5 or 6 ; disc glands 5 or 6 ; stamens 2 or 3 , rarely 4 , filaments free or connate, anthers, dehiscing longitudinally, horizontally or rarely obliquely; pollen 3-5-colporate, exine reticulate. Pistillate flowers: sepals 5 or 6; disc shallowly cupuliform; ovary 3-locular, depressed-globose; style present or absent; stigmas bifid to multifid. Fruits capsules. Seeds trigonous, verrucose or finely reticulate. Distribution: Tropical South America.
Note -This South American section was often treated together with the West Indian Phyllanthus section Xylophylla (see Baillon 1865) on account of the reduced leaves and the presence of phylloclades in both sections. However, on closer examination of the flowers, architecture and pollen of the South American species, they were found to differ considerably and Webster (1957) already recommended to separate the South American species to Phyllanthus section Choretropsis Müll.Arg., which was later formally done by Santiago (1988). For a more extensive study of the whole section and its subsections, see Santiago et al. (2006).

Phyllanthus L. subgenus Phyllanthus section Choretropsis Müll.Arg. subsection Applanata L.J.M.Santiago

Phyllanthus L. subgenus Phyllanthus section Choretropsis Müll.Arg. subsection Applanata Santiago (1988: 45). - Type: Phyllanthus klotzschianus Müll.Arg.

Diagnostic features: Subshrubs or shrubs, monoecious, branching phyllanthoid; main axes terete; primary branchlets pinnatiform and modified into flattened phylloclades, sometimes bipinnatiform. Brachyblasts absent. Cataphyllary stipules triangular. Cataphylls ovate or elliptic, apex acute. Leaves reduced or not. Inflorescences axillary, usually bisexual, sometimes unisexual fascicles. Staminate flowers: sepals 5 or 6 ; disc glands 5 or 6 ; stamens 3 , rarely 4 , filaments free or connate, anthers globose, dehiscing longitudinally, horizontally or rarely obliquely. Pistillate flowers: sepals 5 or 6; disc entire; ovary 3-locular; stigmas thick, thin or filiform, rarely flattened, bifid or multifid. Fruits capsules, depressed globose or trigonous. Seeds trigonous, verrucose or finely reticulate.
Distribution: Tropical South America.
Note -One new name is proposed here for P. scoparius Müller (1873:74), because the epithet is illegitimate due to the synonimized name P. scoparius Welwitsch (1859:591). We propose the name P. saxatilis Strijk \& R.W.Bouman due to the plant occurring mostly on rocky soils (Santiago et al. 2006).

Included species (8 spp.): P. angustissimus Müller (1863: 55), P. dracaenoides Orlandini \& Cordeiro (in Orlandini et al. 2021: 1011), P. edmundoi Santiago (1988: 46), P. flagelliformis Müller (1863: 54), P. gladiatus Müller (1863: 52), P. klotzschianus Müller (1863: 53), P. pedicellatus Orlandini, Cordeiro \& Souza (2020: 168).
Phyllanthus saxatilis Strijk \& R.W.Bouman nom. nov., homotypic synonym:
Phyllanthus scoparius Müller (1873: 74), nom. illeg., non P. scoparius Welwitsch (1859: 591).

Phyllanthus subgenus Phyllanthus section Choretropsis Müll.Arg. subsection Choretropsis

Phyllanthus subgenus Phyllanthus section Choretropsis Müll.Arg. subsection Choretroides Santiago (2006: 139), nom. inval. - Type: Phyllanthus choretroides Müll.Arg.

Diagnostic features: Subshrubs or shrubs, monoecious, branching phyllanthoid; main axis terete or subterete; plagiotropic branchlets terete, cylindrical, clustered at the upper part of the stem or appearing like a much branched shrub with branchlets originated from the base. Brachyblasts absent. Cataphyllary stipules straight and broadly triangular, entire, apex acuminate or attenuate. Cataphylls narrowly triangular, apex acute or acuminate. Leaves alternate. Inflorescences axillary, unisexual fascicles. Staminate flowers: sepals 5 or 6; disc glands 5 or 6; stamens 2 or 3, filaments connate; anthers dehiscing longitudinally (vertically), rarely horizontally. Pistillate flowers: sepals 5; disc entire; ovary 3-locular; styles terete, filiform, erect or horizontal, bifid at the upper part. Fruits capsules, depressed globose. Seeds trigonous, verrucate or finely reticulate.
Distribution: Tropical South America.
Note - Santiago et al. (2006) proposed as name of the subsection Choretroides, but according to article 22.1 of the ICN (Turland et al. 2018), names of subgeneric groups with the type species included are named as autonym without an author cited.

Included species (5 spp.): P. chapadensis Orlandini \& Silva (in Orlandini et al. 2022: 170), P. choretroides Müller (1863: 52), P. goianensis Santiago (1988: 45), P. sarothamnoides Govaerts \& Radcliffe-Smith (1996: 177), P. spartioides Pax \& Hoffmann (in Pax 1923: 174).

Phyllanthus L. subgenus Phyllanthus section Loxopodium G.L.Webster

Phyllanthus L. subgenus Phyllanthus section Loxopodium Webster (1955: 46); (1956: 346); (1970: 59); (2001b: 380). — Type: Phyllanthus caroliniensis Walter.

Chapter 8

Synexemia Rafinesque (1825: 2); (1838: 92). - Lectotype (designated here): Phyllanthus caroliniensis Walter (formerly Synexemia caroliniana Raf.) Geminaria Rafinesque (1821: 42); (1824: 14). - Type: Geminaria obovata Raf. (= PhylIanthus caroliniensis Walter).
Phyllanthus L. subgenus Phyllanthus section Salviniopsis Holm-Nielsen (1979: 279, nom. nud.) ex Brunel (1987: 385). - Type: Phyllanthus fluitans Benth. ex Müll. Arg.

Diagnostic features: Annual or perennial herbs or aquatic and Salvinia-like, monoecious or dioecious, branching non-phyllanthoid. Brachyblasts absent. Leaves distichous (blades inflated in P. fluitans). Inflorescences axillary, unisexual or bisexual fascicles. Staminate flowers: sepals 5 or 6 ; disc glands 5 or 6 ; stamens 3, filaments free, rarely connate at base; anthers subglobose or flattened, dehiscing horizontally; pollen prolate, 3 - or 4-colporate, exine with obscure reticulation. Pistillate flowers: sepals 5 or 6; disc cupuliform, lobed or appearing as segments from central ring (P. hyssopifolioides); ovary 3-locular; style absent or short; stigmas bifid. Fruits capsules. Seeds trigonous, smooth or verrucate.
Distribution: Americas.

Included species (8 spp.): P. avicularis Müller (1863: 32), P. brandegeei Millspaugh (1889: 218, as P. brandegei), P. caroliniensis Walter (1788: 228), P. evanescens Brandegee (1905: 207), P. fallax Müller (1865a: 377), P. fluitans Bentham ex Müller (1863: 36), P. heliotropus Wright ex Grisebach (1865: 167), P. hyssopifolioides Kunth (1817: 108).

Phyllanthus L. subgenus Phyllanthus section Phyllanthus

Phyllanthus L. subgenus Phyllanthus section Phyllanthus: Webster (1955: 51); (1957: 295); (1997: 223); (2001b: 386). - Phyllanthus section Euphyllanthus Baillon (1858: 624), nom. inval.; Müller (1863: 3, 22); (1866: 374). - Type: Phyllanthus niruri L .

Diagnostic features: Herbs or shrubs, monoecious, branching (sub-)phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Cataphyllary stipules triangular to elongate, usually membranous, sometimes indurate and blackened, base auriculate. Cataphylls linear, sometimes leaves not reduced to cataphylls in some species (subsection Clausseniani). Leaves distichous or subopposite. Inflorescences axillary, often unisexual fascicles (spiciform thyrses or racemes at end of branchlets in P. almadensis). Staminate flowers: sepals (4 or) 5 or 6; disc glandular; stamens (2 or) 3 (or 4), filaments free to completely connate, anther thecae usually not completely separate, sometimes deeply emarginate (appearing stipitate), dehiscing vertically to horizontally; pollen mostly subprolate to prolate, 3- or 4-colporate, exine variously
reticulate or tectate-punctate (rarely coarsely reticulate). Pistillate flowers: sepals 5 or 6; disc entire or lobed, shallowly cupuliform; ovary 3-locular, glabrous or pubescent; style usuallly absent; stigmas bifid (sometimes only apically emarginate). Fruits capsules. Seeds trigonous, striate, finely ribbed or verrucate (subsection Phyllanthus).
Distribution: Tropical South and Central America, with a pantropical invasive (P. niruri).
Note - Herbaceous and small shrubby species of Phyllanthus section Phyllanthus might prove difficult to distinguish from species of the genus Moeroris as they have many similarities in vegetative and floral characters. The subsections of Phyllanthus subgenus Phyllanthus should be closely compared to species of the genus Moeroris to find more distinguishable characters, especially with species such as M. stipulatus Raf.

Included species (subsection incertae sedis 3 spp.): P. carmenluciae Ribeiro \& Loiola (2017: 36), P. eremitus Funez \& Hassemer (2017: 150), P. timboensis Funez, Ferreira \& Hassemer (2018: 64).

Phyllanthus L. subgenus Phyllanthus section Phyllanthus subsection Almadenses G.L.Webster

Phyllanthus L. subgenus Phyllanthus section Phyllanthus subsection Almadenses Webster (2002a: 5). - Type: Phyllanthus almadensis Müll.Arg.

Diagnostic features: Herbs, monoecious, glabrous, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Cataphyllary stipules triangular, membranous, base not auriculate. Cataphylls elongate. Leaves subopposite, a single pair per branchlet. Inflorescences slender, spiciform thyrses or racemes at end of each branchlet, proximal fascicles staminate, distal ones pistillate. Staminate flowers: sepals 5 ; disc glands 5 ; stamens 3 , filaments free, anthers with enlarged, flattened connective, dehiscing horizontally; pollen prolate, 3-colporate, exine tectateperforate. Pistillate flowers: sepals 5; disc cupular; ovary 3-locular; style absent; stigmas bifid. Fruits and seeds unknown.
Distribution: Tropical South America.
Included species (1 spp.): P. almadensis Müller (1873:38).

Phyllanthus L. subgenus Phyllanthus section Phyllanthus subsection Clausseniani G.L.Webster

Phyllanthus L. subgenus Phyllanthus section Phyllanthus subsection Clausseniani Webster (2002a) 12. - Type: Phyllanthus claussenii Müll.Arg.

Chapter 8

Diagnostic features: Subshrubs or shrubs, monoecious or dioecious, branching (often sub-) phyllanthoid, pinnatiform (sometimes bipinnatiform in P. subemarginatus). Brachyblasts absent. Cataphyllary stipules triangular, indurate or membranous, base not auriculate. Cataphylls when present, triangular or linear. Leaves distichous. Inflorescences axillary, unisexual fascicles. Staminate flowers: sepals 6; disc glands 6; stamens 3 (2 in P. allemii), filaments free (connate in P. allemii \& P. fastigiatus), anthers deeply emarginate with the two thecae often appearing stipitate, dehiscing horizontally; pollen subspheroidal, 4-colporate, exine reticulate (rarely tectate-perforate). Pistillate flowers: sepals 6; disc shallowly cupuliform; ovary 3-locular; style absent; stigmas bifid, not capitate. Fruits capsules. Seeds trigonous, striate or if verrucate/puncticulate then the verruceae in lines. Distribution: Tropical South America.

Included species (21 spp.): P. acutifolius Poiret ex Sprengel (1826: 21), P. allemii Webster (2002a: 24), P. arenicola Casaretto (1845: 88), P. atalaiensis Webster (2002a: 22), P. blanchetianus Müller (1863:38), P. caparaoensis Webster (2002a: 19), P. carvalhoi Webster (2002a: 15), P. claussenii Müller (1863: 40), P. dardanoi Mendes \& Silva (in Mendes et al. 2021: 97), P. fastigiatus Martius ex Müller (1863: 45), P. glaziovii Wallich ex Müller (1873: 41), P. gongyloides Cordeiro \& Carneiro-Torres (2004: 247), P. heteradenius Müller (1873: 63), P. hypoleucus Müller (1863: 40), P. itatiaiensis Brade (1957: 9), P. mocotensis Webster (2002a: 14), P. piranii Webster (2002a: 19), P. retroflexus Brade (1957: 8), P. sincorensis Webster (2002a: 15), P. subemarginatus Müller (1863: 39), P. tuberculatus Marques-Torres \& Silva (2020: 176).

Phyllanthus L. subgenus Phyllanthus section Phyllanthus subsection Phyllanthus

Phyllanthus L. subgenus Phyllanthus section Phyllanthus subsection Phyllanthus: Literature and type as under the genus.
Phyllanthus subgenus Phyllanthus section Phyllanthus subsection Niruri Webster (1955: 52); (1957: 299); (1970: 66); (2002a: 2), nom. inval. - Type: Phyllanthus niruri L .

Diagnostic features: Herbs or undershrubs, monoecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Cataphyllary stipules linear-elliptic, thin and membranous, not auriculate at base. Cataphylls linear. Leaves distichous. Inflorescences axillary, unisexual fascicles. Staminate flowers: sepals 5 (rarely 6); disc glands 5 or 6 ; stamens 3 , filaments free or connate for $2 / 3$ rd, anthers dehiscing obliquely or horizontally; pollen prolate, 4 -colporate, exine heteroreticulate. Pistillate flowers: sepals 5; disc (shallowly) cupuliform; ovary 3-locular; style absent; stigmas bifid, branch tips subcapitate. Fruits capsules. Seeds trigonous, verrucate.

Distribution: Tropical South America, West Indies, with one common invasive (P. niruri).
Note -Subsection Niruri contains the type species of Phyllanthus, P. niruri, therefore the name should follow the rules for autonyms and become subsection Phyllanthus.

Included species (7 spp.): P. augustinii Baillon (1865: 354), P. bolivianus Pax \& Hoffmann (1921:18), P. itamarajuensis Marques-Torres \& Silva (2020: 174), P. longipedicellatus Silva (2009: 229), P. mimicus Webster (1955: 52), P. niruri Linnaeus (1753: 981), P. perpusillus Baillon (1865: 358).

Phyllanthus L. subgenus Phyllanthus section Pityrocladus (G.L.Webster) R.W.Bouman, comb. nov.

Phyllanthus L. subgenus Emblica (Gaertn.) Kurz section Pityrocladus Webster (2002: 291). -Type: Phyllanthus symphoricarpoides Kunth

Diagnostic features: (Scandent) shrubs, monoecious (rarely dioecious), branchlets rough (scabridulous) to hirtellous, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Cataphyllary stipules triangular, indurate, base not auriculate. Cataphylls elongate. Leaves distichous. Inflorescences axillary, pedicellate, unisexual or bisexual fascicles. Staminate flowers: sepals 5 (rarely 6); disc glands 5 (rarely 6); stamens $2-5(-7)$, filaments connate (rarely free), anthers ovoid, dehiscing horizontally or obliquely, connectives non-apiculate; pollen subprolate, 3- or 5-colporate, colpi monoporate, exine reticulate. Pistillate flowers: sepals 5; disc cupular or dissected; ovary 3-locular; style absent; stigmas spreading, bifid to entire. Fruits capsules (indehiscent in P. symphoricarpoides). Seeds trigonous, smooth (puncticulate in longitudinal rows in P. valerii Standl.).
Distribution: Tropical South and Central America.
Note - Phyllanthus section Pityrocladus was originally placed in subgenus Emblica based on pollen morphology as both groups have species with usually 4- or 5-colporate pollen. However, section Pityrocladus is sister to other species of subgenus Phyllanthus and is therefore transferred here. Both sections share some palynological characters, but differ slightly in flower morphology (mostly connate versus free stamens).

Included species (6 spp.): P. cuatrecasanus Webster (2002b: 292), P. popayanensis Pax (1899: 503), P. ruscifolius Müller (1866: 358), P. sponiifolius Müller (1863: 25), P. symphoricarpoides Kunth (1817: 114), P. valerii Standley (1937: 619).

Phyllanthus L. subgenus Xylophylla (L.) Pers.

Chapter 8

Phyllanthus L. subgenus Xylophylla (L.) Persoon (1807: 591); Webster (1958: 66). — Xylophylla Linnaeus (1771: 147, 221); Swartz (1791: 114, t. 10); de Jussieu (1789: 387); (1824: 23); Gaertner (1790: 123); Rafinesque (1838: 92). - Phyllanthus L. section Xylophylla (L.) Baillon (1858: 623); Müller (1863: 4, 52); Baillon (1865: 360); Müller (1866: 427); Pax \& Hoffmann (1931: 64); Webster (1958: 179). — Lectotype (designated by Webster 1958): Xylophylla latifolia L. (= Phyllanthus epiphyllanthus L.).
Phyllanthus L. subgenus Botryanthus Webster (1956: 345); (1958: 49). -Type: Phyllanthus grandifolius L.
Phyllanthus L. section Typhophyllanthus Kuntze in Post \& Kuntze (1904: 434). — Lectotype (designated here): Phyllanthus juglandifolius Willd.

Diagnostic features: Shrubs to trees, monoecious or dioecious, branching phyllanthoid (except in section Eluanthos), branchlets (bi)pinnatiform, sometimes transformed into phylloclades, stems rarely ornamented with small platelets. Brachyblasts absent. Cataphyllary stipules triangular to elongate, indurate, sometimes fusing with cataphylls, base not auriculate. Cataphylls triangular to slightly spinescent. Leaves usually distichous (except in section Williamia subsection Mirifici). Inflorescences axillary, unisexual or bisexual fascicles, sometimes paniculate. Staminate flowers: sepals 4-8; disc entire or 4-6 free glands; stamens 2-7 (up to 15 in section Williamia), filaments connate, free or arranged in whorls with varied degree of fusion; anthers usually ovoid, sometimes apiculate, dehiscing horizontally to vertically; pollen spheroidal, clypeate or porate without distinct ectocolpi or colpi anastomosing around exine shields, exine semitectatereticulate or pilate. Pistillate flowers: sepals 4-10; disc entire, sometimes cupuliform, rarely consisting of free glands; ovary 3- or 4(-6)-locular; style present or absent; stigmas free or connate, with bifid to multifid or entire tips, sometimes lacerate, reduced to petaloid structures or fused into a calyptra on top of ovary. Fruits capsules or baccate. Seeds trigonous or rounded, with or without sarcotesta, smooth or verrucate.
Distribution: Tropical South and Central America, West Indies.
Notes - 1 . Subgenus Xylophylla is one of the more diverse subgenera with a wide variation in both vegetative and floral characters, which makes the group hard to define as a whole.
2. Phyllanthus section Typhophyllanthus Kuntze was described by Kuntze (1904) as a group that covered five subsections (which are now spread over 4 genera), with very brief morphological descriptions and no types designated. Section Typhophyllanthus is placed here into the synonymy of subgenus Xylophylla because the characters Kuntze (1904) mentioned only agree with this group. The stamens vary from 5 to 15 in subgenus Xylophylla and the genus Dendrophyllanthus, but not in the other two genera involved, Emblica and Kirganelia.

Included species (section incertae sedis 4 spp.): P. bahiensis Müller (1863: 20), P. eurisladro Martius ex Colla (1836: 106), P. minarum Standley \& Steyermark (1944: 125), P. petenensis Lundell (1985: 367).

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Adianthoides Jabl. ex Jean F.Brunel

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Adianthoides Jablonski ex Brunel (1987: 236). —Type: Phyllanthus adianthoides Klotzsch.
Phyllanthus L. subgenus Xylophylla (L.) Pers. section Brachycladus Webster (2001b: 384). -Type: Phyllanthus rupestris Kunth.

Diagnostic features: Shrubs, monoecious, branching phyllanthoid, branchlets pinnatiform, short and fasciculate, with only 5-10 leaves per branchlet. Brachyblasts absent, but scale-like remnants of previous branchlets present. Leaves distichous. Inflorescences axillary, unisexual fascicles, staminate flowers grouped, pistillate flowers solitary. Staminate flowers: sepals 6; disc entire; stamens 3, filaments free or connate, anthers muticous, dehiscence not described; pollen clypeate, pantoporate, exine shields polybrochate. Pistillate flowers: sepals 6; disc entire, shallowly cupuliform; ovary 3-locular; style absent; stigmas bifid. Fruits capsules. Seeds trigonous, smooth.
Distribution: Tropical South and Central America.
Notes - 1. A group with a complicated taxonomy. Brunel (1987) validated two sections within subgenus Xylophylla following recommendations by Jablonski (1967). Jablonski (1967) treated several species together in his "Adianthoides group", characterized by their free stamens, large leaves, short globular anthers and bifid styles, and proposed P. francavillanus Müller (1863: 20) and P. adianthoides Klotzsch as possible types. Jablonksi numbered the species in his treatment and wished to include numbers 20-33, thereby strangely excluding P. adianthoides (number 38). Phyllanthus adianthoides does not match with its connate stamens (as opposed to free in the others). Even though Brunel (1987) published Jablonski's Adianthoides group as two separate sections, the group was found to be heterogenous in other treatments (Webster 1999, 2001b, 2004). Phyllanthus francavillanus was reduced to a subspecies of P. myrsinites Kunth (Webster 1999) and its section is considered a heterotypic synonym of Phyllanthus subgenus Microglochidion. Section Adianthoides, as circumscribed here, was included by Webster's (2001b) section Brachycladus G.L.Webster. The descriptions of both sections overlap greatly (mainly in the entire staminate disc and areolate pollen), but differ in the staminal fusion (strictly free (Brunel 1987) versus free or connate (Webster 2001b)). These two sections should logically be combined as Webster (2001b) already treated all the included species together, but perhaps thought that the group was not officially published yet. Since section Adianthoides is the older name, section Brachycladus is

Chapter 8

placed in its synonymy.
2. While branchlets are fascicled, they can appear as bipinnatiform branchlets (see P. spruceanus Müll.Arg.), which occurs in more sections of subgenus Xylophylla.

Included species (7 spp.): P. adianthoides Klotzsch (1843: 51), P. atabapoensis Jablonski (1967: 110), P. borjaensis Jablonski (1967: 108), P. mickelii McVaugh (1961: 196), P. paezensis Jablonski (1967: 113), P. rupestris Kunth (1817: 110), P. spruceanus Müller (1863: 40).

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Asterandra (Klotzsch) Müll. Arg.

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Asterandra (Klotzsch) Müller (1863: 2, 5); Baillon (1865: 360); Müller (1866: 329); Webster (1958: 146). - Asterandra Klotzsch (1841: 200); Baillon. (1858: 610). - Phyllanthus L. section Typhophyllanthus Kuntze subsection Asterandra (Klotzsch) Kuntze in Post \& Kuntze (1904: 434). — Type: Asterandra cornifolia (Kunth) Klotzsch (= Phyllanthus juglandifolius Willd.)

Diagnostic features: Shrubs or trees, monocaulous, monoecious, branching phyllanthoid, branchlets pinnatiform, clustered at apex. Brachyblasts absent. Leaves distichous. Inflorescences axillary, mostly bisexual fascicles, usually more pistillate flowers at proximal nodes and distally more staminate flowers. Staminate flowers: sepals 5; disc entire, 5-angled, segments coalescent into a massive ring, pentagonal, indented at anthers; stamens 3-7, filaments and connectives connate, anthers ovoid, flattened, dehiscing horizontally or slightly reflexed; pollen clypeate, exine reticulate. Pistillate flowers: sepals 5 (or 6); disc entire, massive, 5-angled; ovary 3-locular, carinate; style present; stigma tips bifid or emarginate, triangular, petaloid. Fruits capsules. Seeds globose, woody, smooth, with a mottled pattern. Distribution: Tropical South America and West Indies.

Included species (2 spp.): P. gentryi Webster in Webster \& Huft (1988: 1096), P. juglandifolius Willdenow (1814: 64).

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Callitrichoides (G.L.Webster) Jean F.Brunel

Phyllanthus L. subgenus Microglochidion (Müll.Arg.) Jean F.Brunel section Callitrichoides (Webster 1955: 47) Brunel (1987: 237). -Phyllanthus L. subgenus Phyllanthus section Callitrichoides Webster (1957: 171). - Phyllanthus subgenus Cyclanthera G.L.Webster section Callitrichoides (G.L.Webster) Webster (2002b: 295). - Type: Phyllanthus carnosulus Müll.Arg.

Diagnostic features: Perennial diminutive herbs, monoecious, branching phyllanthoid, main axes from a small rootstock, branchlets pinnatiform and clustered at apex, sometimes rooting at the nodes. Brachyblasts absent. Leaves distichous, slightly succulent. Inflorescences axillary, unisexual fascicles (or flowers solitary). Staminate flowers: sepals 5; disc glands 5, purplish; stamens 2, filaments connate; anthers globular, dehiscing horizontally, extrorse, connectives not apiculate; pollen spheroidal, exine with band-shaped shields. Pistillate flowers: sepals 6; disc glands 6, free, purplish; ovary 3-locular; style absent; stigma tips bifid or emarginate. Fruits capsules, surface rough. Seeds trigonous, verrucate. Distribution: West Indies (Cuba).
Note - Though P. carnosulus Müll.Arg. is yet to be included in any phylogenetic study, a species resembling section Callitrichoides was found to be nested within subgenus Xylophylla (Falcón et al. 2020). Webster's (2002) suggestion that the pollen of Phyllanthus section Callitrichoides can be inferred as stephanocolporate is in line with Brunel's (1987) decision to place this section in subgenus Microglochidion. Webster (1957) originally interpreted the pollen as having elongated exine shields, which might prove to be an intermediate between the stephanocolporate pollen of subgenus Microglochidion and the clypeate pollen of subgenus Xylophylla.

Included species (1 sp.): P. carnosulus Müller (1863:30).

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Cyclanthera (G.L.Webster) Jean F.Brunel

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Cyclanthera (G.L.Webster) Brunel (1987: 234). - Phyllanthus L. subgenus Phyllanthus section Cyclanthera Webster (1955: 47). — Phyllanthus L. subgenus Cyclanthera (G.L.Webster) Webster (1957: 177); (2002b: 295). — Type: Phyllanthus lindenianus Baill.

Diagnostic features: Annual or perennial herbs or subshrubs, monoecious, branching phyllanthoid, branchlets pinnatiform (sometimes bipinnatiform). Brachyblasts absent. Cataphyllary stipules triangular-ovate, membranous, base not auriculate. Cataphylls elliptic. Leaves distichous. Inflorescences axillary, unisexual fascicles (or flowers solitary). Staminate flowers: sepals 5 or 6 ; disc glands 5 or 6 , free; stamens 2 or 3 , filaments connate, anthers completely connate into a disciform circumsessile synandrium, connectives fused and not apiculate; pollen spheroidal, pantoporate, exine honey-comb like clypeate, shields roundish with a single central pilum. Pistillate flowers: sepals 6; disc glands 6, free, often purplish; ovary 3-locular; style present or absent; stigmas bifid. Fruits capsules. Seeds trigonous verrucate. Distribution: West Indies (Cuba, Dominican Republic, Haiti).
Notes -1. Phyllanthus subgenus Cyclanthera was found to be nested within

Chapter 8

Phyllanthus subgenus Xylophylla (Falcón et al. 2020; Bouman et al. 2020). This group of species was originally treated as a section within subgenus Phyllanthus and later transferred to Phyllanthus subgenus Xylophylla (Brunel 1987), before gaining its own subgeneric status (Webster 2002b). The easiest solution seems to be to revert back to Brunel's (1987) decision to retain section Cyclanthera within Phyllanthus subgenus Xylophylla.
2. Webster \& Carpenter (2002) provided several theories to explain the origin of the unique pollen morphology of P. lindenianus Baill. Affinities to Phyllanthus subgenus Conami and Xylophylla were discussed and section Cyclanthera was shown to be nested within the latter group. A close relationship between Phyllanthus subgenus Conami section Apolepsis was also discussed, but this species has yet to be included in a phylogenetic study. However, the absence of muri in the pollen of section Apolepsis (Webster \& Carpenter 2002) argues against a close relationship, since this would indicate an even more drastic reduction of the clypeate pollen in Phyllanthus subgenus Xylophylla.

Included species (4 spp.): P. abditus Webster (1955: 50), P. berteroanus Müller (1863: 44), P. lindenianus Baillon (1861: 13), P. tenuicaulis Müller (1863: 44).

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Diplocicca Müll.Arg.
Phyllanthus L. subgenus Xylophylla (L.) Pers. section Diplocicca Müller (1873: 30);
Pax \& Hoffmann (1931: 62). - Type: Phyllanthus octomerus Müll.Arg.
Diagnostic features: Shrubs, monoecious, glabrous, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Leaves distichous. Inflorescences axillary, unisexual fascicles, staminate flowers in fascicles on proximal part of branchlets, pistillate flowers more distal and solitary. Staminate flowers: sepals 6-8; disc entire; stamens 3 or 4, filaments free, anthers dehiscing vertically, connectives non-apiculate; pollen spheroidal, clypeate, exine shields oligobrochate, reticulate. Pistillate flowers: sepals 8-10; disc shallowly cupuliform; ovary 4-locular; style absent; stigmas bifid. Fruits and seeds not known.
Distribution: Tropical South America.

Included species (1 sp.): P. octomerus Müller (1873: 30).

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Elutanthos Croizat

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Elutanthos Croizat (1943b: 12); Brunel (1987: 234). — Phyllanthus L. subgenus Botryanthus G.L.Webster section Elutanthos (Croizat) Webster (1956: 345); (1958: 50). — Type: Phyllanthus glaucescens Kunth (= P. grandifolius L.)
[Phyllanthus L. section Glochidionanthus Baillon (1865: 359, nom. nud.]
Diagnostic features: Shrubs or trees, monoecious, branching non-phyllanthoid. Brachyblasts absent. Leaves distichous. Inflorescences axillary, unisexual or bisexual fascicles or thyrses (sometimes racemose and seemingly at end of branches). Staminate flowers: sepals 6; disc glands 6, often massive; stamens (2 or) 3, filaments connate; anthers deflexed, dehiscing more or less horizontally, connectives non-apiculate (except in P. urbanianus Mansf.); pollen globose, clypeate, exine semitectate-reticulate. Pistillate flowers: sepals 6 ; disc shallowly cupuliform, usually foveolate or crenulate; ovary 3 -locular; style present; stigmas erect, entire to bifid. Fruits capsules, obscurely rugulose. Seeds trigonous, smooth.
Distribution: Tropical South America and West Indies.
Included species (24 spp.): P. adenodiscus Müller (1863: 23), P. anderssonii Müller (1866: 395), P. biantherifer Croizat (1944: 7), P. botryanthus Müller (1866:323), P. chiapensis Sprague (1909: 264), P. cladotrichus Müller (1863: 25), P. coalcomanensis Croizat (1943b: 13), P. gradyi Silva \& de Sales (2006: 421), P. grandifolius Linnaeus (1753: 981), P. huallagensis Standley ex Croizat (1943b: 13), P. laxiflorus Bentham (1842: 90), P. mutisianus Webster (2001a: 65), P. nutans Swartz (1788: 27), P. oaxacanus Brandegee (1915: 185), P. pachystylus Urban (1902: 286), P. poeppigianus (Müller 1863:71) Müller (1866:323), P. racemiger Müller (1863:23), P. ramosus Vellozo (1831: pl. 17), P. tequilensis Robinson \& Greenman (1894: 392), P. umbratus Müller (1866: 356), P. urbanianus Mansfeld (1933: 86), P. ventricosus Webster (1967a: 198), P. vincentae Macbride (1951: 47), P. zanthoxyloides Steyermark in Steyermark et al. (1952: 321).

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Epistylium (Sw.) Griseb.
Phyllanthus L. subgenus Xylophylla (L.) Pers. section Epistylium (Sw.) Grisebach (1859: 33); Müller (1863: 3, 46); (1866: 412); Pax \& Hoffmann (1931: 65); Webster (1958: 153). - Epistylium Swartz (1800: 1099); de Jussieu (1824: 17); Baillon (1858: 645). — Lectotype (designated by Webster 1958): Epistylium axillare (Sw.) Sw. (= Phyllanthus axillaris (Sw.) Müll.Arg.).
Phyllanthus L. section Catastylium Grisebach (1859: 33); Müller (1866: 413); Pax \& Hoffmann (1931: 64). -Lectotype (designated here): Phyllanthus cauliflorus (Sw.) Griseb.

Diagnostic features: Shrubs or (monocaulus) trees, monoecious, glabrous, branching phyllanthoid, branchlets pinnatiform, clustered at the apex of the more or less unbranched stem. Brachyblasts absent. Leaves distichous. Inflorescences axillary or cauliflorous thyrses, bisexual fascicles. Staminate flowers: sepals 4 or 5; disc glands 4 or 5 ; stamens 2 or 3 , filaments connate; anthers deflexed, dehiscing longitudinally

Chapter 8

and obliquely (downward) to horizontally; pollen spheroidal, clypeate, exine reticulate. Pistillate flowers: receptacle and calyx massive, sepals 5 , erect; disc indistinct, lobed or consisting of 5 glands; ovary subglobose to beaked; style absent; stigmas petaloid, massive, often reflexed at top of ovary or at end of elongated ovarial beak (P. cauliflorus). Fruits capsules, angled. Seeds 1 (by abortion) or 2 per locule, smooth.
Distribution: West Indies.
Included species (3 spp.): P. axillaris (Swartz 1788: 95) Müller (1866: 412), P. cauliflorus (Swartz 1788: 95) Grisebach (1859: 33), P. cladanthus Müller (1863: 46).

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Glyptothamnus G.L.Webster

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Glyptothamnus Webster (1958: 68, 160). - Type: Phyllanthus chryseus R.A.Howard.

Diagnostic features: Treelet-like shrubs, monoecious, glabrous, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Leaves distichous, margins distinctly revolute and thickened. Inflorescences axillary, mostly unisexual fascicles, but staminate and pistillate flowers \pm interspersed. Staminate flowers: sepals 4 ; disc entire, massive; stamens 2 , filaments and connectives connate, anthers dehiscing horizontally; pollen clypeate, exine reticulate. Pistillate flowers: sepals 5; disc entire, massive; ovary 3-locular; style absent; stigmas spreading, dilated, lacerate. Fruits capsules, globose, not sulcate (grooved). Seeds trigonous, dark, fissured.
Distribution: West Indies (Cuba).
Included species (1 sp.): P. chryseus Howard (1947: 121).
Phyllanthus L. subgenus Xylophylla (L.) Pers. section Hylaeanthus (G.L.Webster) R.W.Bouman, comb. nov.

Phyllanthus L. subgenus Conami (Aubl.) G.L.Webster section Hylaeanthus Webster (2002b: 293); (2004: 12). - Type: Phyllanthus attenuatus Miq.
Meborea Aublet (1775: 825, t 323); Baillon (1858: 656). — Type: Meborea guianensis Aubl. (= Phyllanthus attenuatus Miq.).

Diagnostic features: Mostly trees, sometimes shrubs, monoecious or dioecious, branching phyllanthoid, branchlets pinnatiform (sometimes fascicled on slender permanent stalk), usually subtended by reduced leaves (but generally not reduced to cataphylls), sometimes lenticellate. Brachyblasts absent. Leaves distichous. Inflorescences axillary, unisexual (rarely bisexual) fascicles, sometimes supra-
axillary. Staminate flowers: sepals 6 (rarely 5), in two whorls; disc entire and 6-lobed or less often divided into glands; stamens 3, filaments connate (free in P. skutchii Standl.); anthers muticous, dehiscing horizontally or obliquely; pollen globose (spheroidal), porate, lacking distinct ectocolpi, exine pilate, heterogenous. Pistillate flowers: sepals 6; disc shallowly cupuliform to cupular; ovary 3-6-locular; style present or absent; stigmas bifid to entire. Fruits baccate, with fleshy exocarp. Seeds smooth, with sarcotesta.
Distribution: Tropical South America.
Note -The apparent relationship between sections Hylaeanthus and Adianthoides indicated a separate loss of clypeate pollen (discussed in Bouman et al. 2021). The difference in pollen morphology is quite surprising as section Adianthoides has clypeate pollen with reticulate exine (as is standard for subgenus Xylophylla) while pollen of species in section Hylaeanthus is simply porate with no colpi and pilate exine (more common in subgenus Conami). The differences in pollen morphology are striking and possibly reflect independent origins of the pilate exine within Phyllanthus. These groups do show agreement in vegetative characters (see Webster 2002b) and in the morphology of the staminate flower. Both groups have species with usually three stamens and an entire disc.

Included species (8 spp.): P. attenuatus Miquel (1848: 479), P. awaensis Webster (2004: 24), P. bernardii Jablonski (1967: 112), P. callejasii Webster (2002b: 295), P. madeirensis Croizat (1944: 7), P. puntii Webster (2004: 21), P. skutchii Standley (1940: 346), P. valleanus Croizat (1946: 354).

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Orbicularia (Baill.) Griseb.

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Orbicularia (Baillon 1858: 616) Grisebach (1859: 34); Müller (1863: 2, 5); (1866: 331); Pax \& Hoffmann (1931: 62); Webster (1958: 111). - Orbicularia Baillon (1858: 616). - Type: Orbicularia phyllanthoides Baill., nom. illeg. (= Phyllanthus orbicularis Kunth).
Williamia Baillon (1858: 559). - Phyllanthus L. subgenus Xylophylla (L.) Pers. section Williamia (Baill.) Müller (1863: 2, 4); (1866: 328); Pax \& Hoffmann (1931: 61); Webster (1958: 69). -Type: Williamia pruinosa Baill. (= Phyllanthus discolor Poepp. ex Spreng.).
Dimorphocladium Britton (1920: 74). — Type: Dimorphocladium formosum (Urb.) Britton (= Phyllanthus formosus Urb.).
Roigia Britton (1920: 73). - Phyllanthus L. section Dimorphocladium (Britton) Pax \& Hoffmann (1931: 63). — Type: Roigia comosa (Urb.) Britton (= Phyllanthus comosus Urb.).
Phyllanthus L. subgenus Xylophylla (L.) Pers. section Williamia (Baill.) Müll.Arg. subsection Discolores Webster (1958: 71). — Type: Phyllanthus discolor Poepp.

Chapter 8

Diagnostic features: Shrubs or small trees, monoecious, branching phyllanthoid (sub-phyllanthoid in P. formosus), branchlets pinnatiform. Brachyblasts absent. Inflorescences axillary, bisexual or unisexual fascicles or with solitary flowers. Staminate flowers: sepals 5 or 6; disc glands 5 or 6 , free or coalescent; stamens 3-7(-15 in P. discolor and P. microdictyus Urb.), in two whorls, filaments completely or partially connate, can be massive and then whorled on central pillar, anthers dehiscing horizontally or obliquely (sometimes a part of the stamens dehiscing vertically), connectives sometimes apiculate; pollen spheroidal, clypeate, exine shields oligobrochate, reticulate. Pistillate flowers: sepals 5 or 6 (or rarely 7 in P. microdictyus); disc tenuous to rather massive, sometimes 5 -angled (fused with gynophore in P. microdictyus); ovary 3-locular, sessile or definitely stipitate (gynophore); style present or absent; stigma tips bifid, often revolute, moderately dilated distally, tips variable from crescent-shaped to lacerate and 4-tipped. Fruits oblate capsules, veins conspicuous or obscure. Seeds trigonous, verrucate (with longitudinal lines or dark reddish brown dots in P. discolor, puncticulate in P. cristalensis Urb.).
Distribution: West Indies.
Note -Webster (1958) described three subsections for section Williamia (Discolores, Incrustati and Mirifici), that were differentiated based on stem ornamentation and phyllotaxy. Phyllanthus subsection Discolores contains the type species of section Williamia and it is found here to be paraphyletic with species of Phyllanthus section Orbicularia (Supplementary Fig. 1). Subsection Discolores is merged here with section Orbicularia. The two other subsections previously placed in Webster's (1958) definition of section Williamia, form a monophyletic group (Supplementary Fig. 1) and these are treated here as the reinstated section Williamiandra (see below).

Included species (13 spp.): P. chamaecristoides Urban (1924: 185), P. comosus Urban (1914: 451), P. cristalensis Urban (1930: 212), P. cuneifolius Britton (1920: 72) Croizat (1943b: 12), P. discolor Poeppig ex Sprengel (1826: 21), P. formosus Urban (1914: 450), P. microdictyus Urban (1924: 18), P. myrtilloides Grisebach (1860: 158), P. nummularioides Müller (1863: 5), P. orbicularis Kunth (1817: 111), P. phialanthoides Falcón \& J.L.Gómez in Falcón et al. (2017: 2), P. phlebocarpus Urban (1924: 189), P. scopulorum (Britton 1920: 72) Urban (1924: 187).

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Oxalistylis Baill.

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Oxalistylis Baillon (1858: 628); Müller (1863: 2, 5); Baillon (1865: 359); Müller (1866: 330); Pax \& Hoffmann (1931: 62). - Type: Phyllanthus salviifolius Kunth.

Diagnostic features: Shrubs, sometimes arborescent, monoecious, branching
phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Cataphyllary stipules and cataphylls not seen. Leaves distichous. Inflorescences axillary, mostly unisexual fascicles. Staminate flowers: sepals 5; disc glands 5; stamens 3-7, filaments connate, anthers dehiscing \pm horizontally; pollen clypeate, exine reticulate. Pistillate flowers: sepals 6; disc entire; ovary 3-locular; style present; stigmas elongated and exserted from calyx, tips dilated, bifid to multifid. Fruits capsules. Seeds trigonous, smooth. Distribution: Tropical South America.

Included species (1 sp.): P. salviifolius Kunth (1817: 116).
Phyllanthus L. subgenus Xylophylla (L.) Pers. section Thamnocharis G.L.Webster
Phyllanthus L. subgenus Xylophylla (L.) Pers. section Thamnocharis Webster (1955: 59); (1958: 91). - Type: Phyllanthus cinctus Urb.

Diagnostic features: Shrubs, monoecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Leaves distichous. Inflorescences axillary, bisexual fascicles, flowers appearing with the expanding leaves. Staminate flowers: sepals 4 (6 , rarely 5 in P. comptus G.L.Webster); disc glands 4 (6 , rarely 5 in P. comptus); stamens 2 ($4-8$ in P. comptus), filaments connate (but free in P. comptus), anthers dehiscing vertically; pollen spheroidal, clypeate, exine reticulate. Pistillate flowers: sepals 4 (6, rarely 5 in P. comptus); disc entire, angled; ovary 3-locular; style absent or present (and elongated); stigmas bifid, tips narrowed to acute. Fruits capsules, subglobose. Seeds trigonous, smooth or rugulose.
Distribution: West Indies (Cuba).
Note -Differences and similarities with Nymphanthus acutissimus were discussed at length by Webster (1955). Vegetatively, these groups can be distinguished by the smaller persistent stipules and thinner leaves in Nym. acutissimus. In contrast with section Thamnocaris, the inflorescences in Nym. acutissimus are unisexual, the pistillate flowers usually have six sepals and the ovary is verrucate.

Included species (3 spp.): P. cinctus Urban (1924: 191), P. comptus Webster (1955: 61), P. ekmanii Webster (1955: 60).

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Williamiandra (Griseb.) R.W.Bouman, stat. nov.

Phyllanthus L. section Williamiandra Grisebach (1865: 169). — Phyllanthus L. subgenus Xylophylla (L.) Pers. section Williamia (Baill.) Müll.Arg. subsection Incrustati Webster (1958: 82). —Type: Phyllanthus williamioides Griseb.

Diagnostic features: Shrubs, monoecious, branching phyllanthoid, branchlets

Chapter 8

pinnatiform, stems sometimes ornamented with small platelets or smooth and lenticellate. Brachyblasts absent. Leaves alternate or opposite, distichous. Inflorescences axillary, bisexual fascicles. Staminate flowers: sepals 5; disc glands 5 ; stamens (2 or) 3 or 5, filaments connate, anthers inserted at the top or in two close whorls (see Webster 1958), anthers vertically to horizontally dehiscing, connectives sometimes apiculate; pollen clypeate, exine reticulate. Pistillate flowers: sepals 5-7; disc entire, angular, often massive; ovary 3-locular, sessile or definitely stipitate (gynophore); style present or absent; stigmas with tips dilated and lacerate or dentate. Fruits capsules, oblate, dry, not veiny. Seeds trigonous, colliculose or verrucate, verrucae $<3 \mathrm{~mm}$ high.
Distribution: West Indies.

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Williamiandra Griseb. subsection Mirifici (G.L.Webster) R.W.Bouman, comb. nov.

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Williamia (Baill.) Müll. Arg. subsection Mirifici Webster (1958: 89). - Type: Phyllanthus mirificus G.L.Webster

Diagnostic features: Shrubs, monoecious, branching phyllanthoid, branchlets pinnatiform, axes smooth but prominently lenticellate. Brachyblasts absent. Leaves opposite. Inflorescences axillary, bisexual fascicles. Staminate flowers: sepals 5; disc glands 5; stamens 5, filaments connate, 2 anthers inserted lower than the other 3, dehiscing more or less vertically. Pistillate flowers: sepals 6; disc entire, massive, bluntly angled; ovary 3-locular; style present or absent; stigmas with lower margins reflexed, dilated and covering the ovary, forming a close fitting cap. Fruits and seeds unknown.
Distribution: West Indies.

Included species (1 sp.): P. mirificus Webster (1955: 58).

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Williamiandra Griseb. subsection Williamiandra

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Williamiandra: Literature and type as under the section.
Ramsdenia Britton (1920: 72). - Type: Ramsdenia incrustata (Urb.) Britton (= Phyllanthus incrustatus Urb.).

Diagnostic features: Shrubs, monoecious, branching phyllanthoid, branchlets pinnatiform, all axes incrustate with dark platelets of bark, dark or reddish brown to black. Brachyblasts absent. Leaves distichous. Inflorescences axillary,
bisexual fascicles. Staminate flowers: sepals 5; disc glands 5; stamens (2 or) 3-6, filaments connate in a column, anthers sometimes in 2 whorls (2 sets on top of column), dehiscing longitudinally, vertically and horizontally often in same flower, connectives sometimes apiculate. Pistillate flowers: sepals 5-7, unequal; disc entire, massive, sometimes 5-angled; ovary 3-locular; style present or absent; stigmas with conspicuously lacerate endings of 3-6 tips. Fruits capsules. Seeds trigonous, smooth or with carinate back.
Distribution: West Indies (Cuba).
Included species (3 spp.): P. excisus Urban (1914: 449), P. incrustatus Urban (1914: 449), P. williamioides Grisebach (1865: 169).

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Xylophylla

Phyllanthus L. subgenus Xylophylla (L.) Pers. section Xylophylla: Literature and type as under the subgenus.
Genesiphylla L'Héritier de Brutelle (1778: 29); Rafinesque (1838: 92. —Phyllanthus L. section Typhophyllanthus Kuntze subsection Genesiphylla (L'Hér.) Kuntze in Post \& Kuntze (1904: 434). — Type: Genesiphylla asplenifolia L’Hér., nom. illeg. ($=$ Xylophylla latifolia L. = Phyllanthus epiphyllanthus L.).
Hexadena Rafinesque (1838: 92). - Type: Hexadena angustifolia (Sw.) Raf. (= Phyllanthus angustifolius (Sw.) Sw.).
Glochidion J.R.Forst. \& G.Forst. section Hemiphyllanthus Müller (1863: 59, 71); Pax \& Hoffmann (1931:58). - Phyllanthus L. section Hemiphyllanthus (Müll. Arg.) Müller (1865a: 370); (1866: 323). — Phyllanthus L. subgenus Xylophylla (L.) Pers. section Hemiphyllanthus (Müll.Arg.) Webster (1955: 62); (1958: 163). Lectotype (designated by Webster 1955): Phyllanthus ovatus Poir.

Diagnostic features: Shrubs or small trees, monoecious, branching phyllanthoid, branchlets (bi)pinnatiform with ultimate axes transformed into broad or thin phylloclades. Brachyblasts absent. Leaves either reduced to scales or well-developed. Inflorescences axillary, unisexual or bisexual fascicles at nodes of phylloclades. Staminate flowers: sepals 5 or 6; disc glands 5 or 6; stamens 2-6, filaments united at least at the base, anthers dehiscing more or less horizontally; pollen globose, clypeate, exine shields oligobrochate, reticulate. Pistillate flowers: sepals 5 or 6; disc segmented to urceolate; ovary 3-locular; style present or absent; stigmas often lobed or bifid, sometimes reduced to short projections from ovary (P. megapodus Webster 1955: 62). Fruits capsules, oblate, smooth to tuberculate. Seeds trigonous or sometimes (when 1 locule developed) ovate and flattened, verrucate (or smooth in P. maleolens Urb. \& Ekman).

Distribution: West Indies.
Notes -1. The genus Lomanthes Raf. was listed as a synonym of section Xylophylla

Chapter 8

in Webster (1958), but with no re-identification of the type. The type species is listed on The Plant List (2013) as P. hirtellus (here Lysiandra hirtellus), an Australian endemic, which seems strange considering Lomanthes was described from North America. On Index Nominum Genericorum (Farr \& Zijlstra 1996), Lomanthes latifolia is listed as a synonym of P. epiphyllanthus. We have not seen the type material and cannot correctly conclude where this name should be placed. 2. Webster (1956, 1958: 180) selected Xylophylla latifolia as the type species for section Xylophylla and selected a lectotype for the species. A later typification for section Xylophylla with as type Xylophylla longifolia (Jarvis et al. 1993) as listed in the Index Nominum Genericorum (Farr \& Zijlstra 1996) is superfluous.
3. Phyllanthus section Hemiphyllanthus was found to be nested within a paraphyletic section Xylophylla (Bouman et al. 2021). Section Hemiphyllanthus is very similar to section Xylophylla as the branchlets appear like thin phylloclades that still produce laminate leaves. However, there is no trace that the branchlets evolved from an ancestor with bipinnatiform branchlets. Both sections are here combined with as synapomorphy the transformation of branchlets into phylloclades, with or without laminate leaves.

Included species (16 spp.): P. acacioides Urban (1902: 287), P. angustifolius (Swartz 1788: 28) Swartz (1800: 1111), P. arbuscula (Swartz 1788: 28) Gmelin (1791: 204), P. epiphyllanthus Linnaeus (1753: 981), P. eximius Webster \& Proctor in Webster (1960: 283), P. latifolius (Linnaues 1771: 221) Swartz (1800: 1109), P. maleolens Urban \& Ekman in Urban (1928: 60), P. martii Müller (1873: 27), P. megapodus Webster (1955: 62), P. mimosoides Swartz (1788: 27), P. montanus (Swartz 1788: 28) Swartz (1800: 1117), P. myriophyllus Urban (1921: 36), P. obtusatus (Thunberg 1817: 12) Müller (1866: 433), P. ovatus Poiret (1804: 297), P. proctoris Webster (1958: 195), P. robustus Martius ex Colla (1836: 106).

Clade F — Figs. 1, 2J \& K (supplementary fig. 1)

Cicca L.

Cicca Linnaeus (1767: 124); de Jussieu (1789: 386); (1824: 20); Baillon (1858: 617); Robinson (1909: 87); Ridley (1924: 216). — Phyllanthus L. section Cicca (L.) Müller (1863: 3, 50); (1866: 413); Hooker (1887: 287); Boerlage (1900: 213); Pax \& Hoffmann (1931: 62). — Phyllanthus L. subgenus Eucicca Kurz (1873: 238), nom. inval. - Phyllanthus L. subgenus Cicca (L.) Webster (1957: 60); Brunel (1987: 289). - Phyllanthus L. subgen. Kirganelia (A.Juss.) Kurz section Cicca (L.) Webster (2001b: 381). — Type: Cicca disticha L. (= formerly synonym of Phyllanthus acidus (L.) Skeels) = Cicca acida (L.) Merr.
Tricarium de Loureiro (1790: 557). — Type: Tricarium cochinchinense Lour. (= formerly synonym of Phyllanthus acidus (L.) Skeels = Cicca acida (L.) Merr.).

Staurothyrax Griffith (1854: 476). - Type: Not designated (only a S. spec. described).
Phyllanthus L. subgenus Ceramanthus (Hassk.) Jean F.Brunel section Ebolowani Brunel (1987: 412). - Type: Phyllanthus letouzeyanus Jean F.Brunel. = Cicca letouzeyanus (Jean F.Brunel) R.W.Bouman.

Diagnostic features: Herbs, shrubs or trees, monoecious or dioecious, branching (non-)phyllanthoid, branchlets (bi)pinnatiform (sometimes further ramified), rarely opposite (subgenus Menarda (Comm. ex A.Juss.) R.W.Bouman), sometimes specialized in vegetative and floriferous branchlets. Brachyblasts present or absent. Cataphyllary stipules triangular or spinescent, indurate or membranous, base usually not auriculate. Cataphylls triangular to elongate. Leaves distichous to opposite, sometimes spiral at base. Inflorescences axillary, unisexual or bisexual fascicles. Staminate flowers: sepals 4-6; disc entire or 4-6 glands, sometimes absent; stamens 2-6, filaments mostly free, sometimes (basally) connate, basifixed or connate (in some species of subgenus Menarda); anthers dehiscing longitudinally, vertically to obliquely to horizontally, connectives (non-)apiculate; pollen spheroidal or oblate, 3- or 4-(syn)colporate, colpi monoporate (to diploporate in subgenus Menarda), exine reticulate (or perforate in subgenus Menarda); pistillode absent. Pistillate flowers: sepals 4-6; disc entire, segmented or absent; ovary 2-4-locular; styles present or absent; stigmas entire or bifid. Fruits baccate or capsular. Seeds trigonous to rounded or reniform, sometimes with cavity at hilum, smooth or with minute striae.
Distribution: Africa, Madagascar, Asia, Malesia, Pacific, South America.
Notes - 1 . The genus Cicca is here reinstated, but considerably expanded in comparison to its original circumscription. This genus was created because the type species was very different from known Phyllanthus species. Based on fruit morphology, this genus has also been mixed with species of Emblica and Margaritaria. In our treatment, we consider a wider circumscription that includes former Phyllanthus subgenera Anesonemoides, Betsileani and Menarda as these were shown to be closely related (see Bouman et al. 2020; supplementary fig. 1). This clade was found to be sister to the diverse genus Dendrophyllanthus here (but see Kawakita et al. 2009).
2. The monotypic section Ebolowani was placed by Brunel (1987) in Phyllanthus subgenus Ceramanthus (here genus Cathetus) on the basis of a vague similarity in exine morphology. However, this species has phyllanthoid branching (vs nonphyllanthoid in the genus Cathetus) and staminate flowers with free stamens (connate in Cathetus subgenus Cathetus). The anther shape of Cicca letouzeyanus differs considerably from Cathetus subgenus Macraea, therefore we consider placing this species in Cathetus to be incorrect. There is no species in Africa with a close morphological affinity to Cicca letouzeyanus. A macroreticulate exine is also found in some species of Moeroris, but the species of that genus usually have connate

Chapter 8

stamens (or free in Moeroris subgenus Tenellanthus, but then the flower is usually 5 -merous). Free stamens and a small-tree like habit is more common in the genus Cicca. However, the exact subgenus for C. letouzeyanus is unclear, so we transfer this species to the genus Cicca without any subgeneric placement. If the species is shown to be phylogenetically distinct, section Ebolowani could be reinstated again.

Included, but further unplaced species and taxonomic changes (3 spp.):
Cicca analamerae (Leandri 1957: 225) R.W.Bouman, comb. nov. Basionym:
Phyllanthus analamerae Leandri.
Cicca letouzeyanus (Brunel 1987: 409) R.W.Bouman, comb. nov. Basionym: Phyllanthus letouzeyanus Jean F.Brunel.
Cicca vergens (Baillon in Grandidier 1892: pl. 225) R.W.Bouman, comb. nov. Basionym: Phyllanthus vergens Baill.

Cicca L. subgenus Anisonemoides (Jean F.Brunel) R.W.Bouman, comb. nov.
Phyllanthus L. subgenus Anisonemoides (Jean F.Brunel) Ralimanana \& Hoffmann (2014: 267). - Phyllanthus L. subgenus Kirganelia (A.Juss.) Kurz section Anisonemoides Brunel (1987: 276). - Type: Phyllanthus bojerianus (Baill.) Müll.Arg. (based on Kirganelia bojeriana Baill.) = Cicca bojeriana (Baill.) R.W.Bouman.

Diagnostic features: Shrubs, subshrubs or small trees, monoecious or dioecious, branching phyllanthoid, branchlets (bi)pinnatiform. Brachyblasts absent (rarely present). Cataphyllary stipules triangular, indurate, base not auriculate. Cataphylls triangular. Leaves distichous. Inflorescences axillary, unisexual fascicles, rarely bisexual, not on separate branchlets. Staminate flowers: sepals (4)5(6); disc glands (4)5(6); stamens (2-4)5(6), filaments free or inner ones tending to be fused, anthers dehiscing longitudinally, connectives non-apiculate; pollen 3-colporate or 3-syncolporate, colpi monoporate, exine macro- or microreticulate. Pistillate flowers: sepals 5 or 6; disc entire; ovary 3-locular; styles absent or present; stigmas bifid. Fruits capsules. Seeds trigonous, smooth or faintly longitudinally striate. Distribution: Africa, Madagascar.

Included species and taxonomic changes (13 spp.):
Cicca ambatovolana (Leandri 1938: 191) R.W.Bouman, comb. nov. Basionym: Phyllanthus ambatovolanus Leandri.
Cicca ankarana (Leandri 1934: 543) R.W.Bouman, comb. nov. Basionym: Phyllanthus ankarana Leandri.
Cicca bemangidiensis (Ralimanana in Ralimanana \& Hoffmann 2014: 285)
R.W.Bouman, comb. nov. Basionym: Phyllanthus bemangidiensis Ralim.

Cicca bojeriana (Baillon 1861: 47) R.W.Bouman, comb. nov. Basionym: Kirganelia
bojeriana Baill., synonym: Phyllanthus bojerianus (Baill.) Müll.Arg. (1866:343).
Cicca gordonii (Ralimanana in Ralimanana \& Hoffmann 2014: 276) R.W.Bouman, comb. nov. Basionym: Phyllanthus gordonii Ralim. \& Petra Hoffm.
Cicca goudotiana (Baillon 1861: 62) R.W.Bouman, comb. nov. Basionym: Menarda goudotiana Baill., homotypic synonym: Phyllanthus goudotianus (Baill.) Müll. Arg. (1863: 8).
Cicca humbertiana (Leandri 1938: 194) R.W.Bouman, comb. nov. Basionym: Phyllanthus humbertianus Leandri.
Cicca iratsiensis (Leandri 1938: 193) R.W.Bouman, comb. nov. Basionym: Phyllanthus iratsiensis Leandri.
Cicca isomonensis (Leandri 1957: 229) R.W.Bouman, comb. nov. Basionym: Phyllanthus isomonensis Leandri.
Cicca mananarensis (Leandri 1957: 230) R.W.Bouman, comb. nov. Basionym: Phyllanthus mananarensis Leandr.
Cicca mantadiensis (Ralimanana \& Hoffmann 2014: 280) R.W.Bouman, comb. nov. Basionym: Phyllanthus mantadiensis Ralim. \& Petra Hoffm.
Cicca multiflora (Poiret 1804: 229) R.W.Bouman, comb. nov. Basionym: Phyllanthus multiflorus Poir.
Cicca obdeltophylla (Leandri 1957: 232) R.W.Bouman, comb. nov. Basionym: Phyllanthus obdeltophyllus Leandri.

Cicca L. subgenus Betsileani (Jean F.Brunel) R.W.Bouman, comb. nov.
Phyllanthus L. subgenus Macraea (Wight) Jean F.Brunel subsection Betsileani Brunel (1987: 299). - Phyllanthus L. subgenus Betsileani (Jean F.Brunel) Ralimanana \& Hoffmann (2011: 338). -Type: Phyllanthus betsileanus Leandri = Cicca betsileana (Leandri) R.W.Bouman.

Diagnostic features: Herbs or shrubs, monoecious or dioecious, branching nonphyllanthoid. Brachyblasts absent. Leaves spirally arranged at basal nodes, becoming distichous in distal nodes. Inflorescences axillary, unisexual fascicles, found on all axes. Staminate flowers: sepals (5 or) 6; disc glands (5 or) 6, free; stamens 3, filaments free, anthers dehiscing longitudinally, connectives non-apiculate; pollen perisyncolporate, exine reticulate. Pistillate flowers: sepals (5 or) 6; disc entire and lobed; ovary 3-locular; styles absent; stigmas bifid. Fruits capsules. Seeds trigonous, smooth or faintly longitudinally striate.
Distribution: Madagascar.
Included species and taxonomic changes (3 spp.):
Cicca bathiana (Leandri 1933: 371) R.W.Bouman, comb. nov. Basionym: Phyllanthus bathianus Leandri.
Cicca betsileana (Leandri 1933: 372) R.W.Bouman, comb. nov. Basionym:

Chapter 8

Phyllanthus betsileanus Leandri.
Cicca philippioides (Leandri 1933: 373) R.W.Bouman, comb. nov. Basionym:
Phyllanthus philippioides Leandri.

Cicca L. subgenus Cicca

Cicca L. subgenus Cicca: Literature and type as under the genus.
Diagnostic features: Shrubs or trees, monoecious or dioecious, branching phyllanthoid, branchlets pinnatiform, sometimes specialized in vegetative and floriferous branchlets. Brachyblasts present or absent. Cataphyllary stipules triangular or spinescent, indurate, base not auriculate. Cataphylls triangular to elongate. Leaves distichous. Inflorescences axillary, unisexual or bisexual fascicles, sometimes on specialized branchlets. Staminate flowers: sepals 4-6; disc glands 4-6, sometimes absent; stamens 2-6, filaments free, basifixed or connate, anthers dehiscing longitudinally, vertically, connectives non-apiculate; pollen: exine reticulate. Pistillate flowers: sepals 4-6; disc entire or segmented; ovary 2-4-locular; styles absent; stigmas bifid. Fruits baccate or capsular. Seeds trigonous or rounded, sometimes with a cavity at hilum, smooth or with minute striae.
Distribution: Africa, mainland Asia and South America.
Notes - 1 . Subgenus Cicca is distributed in Africa and the Neotropics and has one of the more complicated taxonomic histories. Species of subgenus Cicca have been treated in various genera, including Margaritaria, Emblica and Phyllanthus subgenus Kirganelia (Webster 2001b). Kathriarachchi et al. (2006), showed it to be part of a clade distinct from other species of Kirganelia, but related to section Chorisandra. The African section Omphacodopsis is related to sections Cicca and Chorisandra (Supplementary Fig. 1). All of these sections are characterized by the presence of (usually) leafless branches with the inflorescences (also called cauliflorous panicles: Webster 1957). They also all have staminate flowers with free stamens, but the number of stamens and sepals differ between sections. Inflorescences and baccate fruits are also found in Kirganelia, which complicates the distinction between these two groups, but these can differ considerably in size or locule number.
2. Three sections are included in this treatment: Chorisandra, Cicca, and Omphacodopsis.

Cicca L. subgenus Cicca section Chorisandra (Wight) R.W.Bouman, comb. nov.
Chorisandra Wight (1853: 12, pl. 1994), nom. illeg., non Chorizandra Brown (1810: 221). - Phyllanthus subgenus Kirganelia (A.Juss.) Kurz section Chorisandra (Wight) Müller (1863: 2, 6 as ‘Chorizandra'); (1866: 333); Pax \& Hoffmann (1921: 22); (1931: 61); Webster (1957: 52); (1997: 216). - Chorizonema Brunel
(1987: 256). - Type: Chorisandra pinnata Wight (= formerly Phyllanthus pinnatus $($ Wight $)$ G.L.Webster) $=$ Cicca pinnata $($ Wight $)$ R.W.Bouman.

Diagnostic features: Shrubs or trees, monoecious or dioecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts present. Leaves distichous. Inflorescences axillary, unisexual or bisexual fascicles. Staminate flowers: sepals 4-6; disc glands 4-6; stamens 2 (C. kidna (Challen \& Petra Hoffm.) R.W.Bouman) or 6 , filaments free, basifixed or connate (C. kidna); anthers dehiscing longitudinally, vertically. Pistillate flowers: sepals 4 or 5 (C. kidna) or 6 (C. pinnata (Wight) R.W.Bouman \& C. orientalis (Craib) R.W.Bouman); disc entire; ovary 2- or 3-locular; styles absent; stigmas usually 3, bifid. Fruits baccate. Seeds trigonous, with cavity at hilum, smooth.
Distribution: Africa, mainland Asia.
Note —Brunel (1987) raised section Chorisandra to generic level, but opted to use the name Chorizonema, since the generic name Chorisandra was previously used in Cyperaceae. Chantaranothai (2007) reported that C. orientalis has an entire disc in the staminate flower, although this needs to be corroborated.

Included species and taxonomic changes (4 spp.):
Cicca coluteoides (Baillon ex Müller 1866: 335) R.W.Bouman, comb. nov. Basionym: Phyllanthus coluteoides Baill. ex Müll.Arg.
Cicca kidna (Challen \& Hoffmann 2011: 935) R.W.Bouman, comb. nov. Basionym: Phyllanthus kidna Challen \& Petra Hoffm.
Cicca orientalis (Craib 1914: 285) R.W.Bouman, comb. nov. Basionym: Chorisandra orientalis Craib, homotypic synonym: Phyllanthus orientalis (Craib) Airy Shaw (1971: 495).
Cicca pinnata (Wight 1853: 13) R.W.Bouman, comb. nov. Basionym: Chorisandra pinnata Wight, homotypic synonym: Phyllanthus pinnatus (Wight) Webster (1957: 52).

Cicca L. subgenus Cicca section Cicca

Cicca L. subgenus Cicca section Cicca: Literature and type as under the genus. Phyllanthus L. section Cicca (L.) Müller subsection Eucicca Müller (1863: 50), nom. inval.; (1866: 413). - Phyllanthus subgenus Kirganelia (A.Juss.) Kurz section Cicca (L.) Webster subsection Cheramella Kuntze in Post \& Kuntze(1904: 434). - Type: Phyllanthus acidus (L.) Skeels = Cicca acida (L.) Merr. Aporosella Chodat (1905: 488). - Phyllanthus L. subgenus Cicca (L.) G.L.Webster section Aporosella (Chodat) Webster (1957: 72). - Phyllanthus subgenus Kirganelia (A.Juss.) Kurz section Cicca (L.) Webster subsection Aporosella (Chodat) Webster (2001b: 381). -Type: Phyllanthus chacoensis Morong = Cicca chacoensis (Morong) R.W.Bouman.

Chapter 8

Diagnostic features: Trees, rarely shrubs, monoecious or dioecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Leaves distichous. Inflorescences axillary, unisexual or bisexual fascicles, on separate branchlets without leaves. Staminate flowers: sepals 4-6; disc glands 4-6 or absent; stamens 3 or 4 (rarely 2 or 5), filaments free; anthers dehiscing more or less vertically; pollen 3-syncolporate, exine reticulate. Pistillate flowers: sepals 4; disc lobed or segmented; staminodes sometimes present; ovary 2-4-locular; styles absent or present, short; stigmas bifid. Fruits woody or drupaceous, indehiscent. Seeds trigonous, smooth. Distribution: South America and one widely cultivated species of unknown origin. Note -Two former subsections of Phyllanthus section Cicca are here placed in synonymy. These subsections were upheld by Webster (1957) to distinguish the type species from other species of section Cicca. The species of both subsections were previously only distinguished by their leaf shape and whether they were monoecious (subsection Cheramella Kuntze) or dioecious (subsection Aporosella (Chodat) G.L.Webster). Section Omphacodopsis (Jean F.Brunel) R.W.Bouman is closely related to section Cicca and species of both sections are characterized by specialized floriferous branchlets and staminate flowers with free stamens (some exceptions), but they differ in fruit morphology.

Included species and taxonomic changes (3 spp.):
Cicca acida (L.) Merrill (1917: 314); Basionym: Averrhoa acida Linnaeus (1753: 428), homotypic synonym: Phyllanthus acidus (L.) Skeels (1909: 17).

Cicca chacoensis (Morong in Morong \& Britton 1892: 218) R.W.Bouman, comb. nov. Basionym: Phyllanthus chacoensis Morong.
Cicca elsiae (Urban 1919: 405) R.W.Bouman, comb. nov. Basionym: Phyllanthus elsiae Urb.

Cicca L. subgenus Cicca (L.) G.L.Webster section Omphacodopsis (Jean F.Brunel) R.W.Bouman, comb. nov.

Phyllanthus L. subgenus Kirganelia (A.Juss.) Kurz section Omphacodopsis Brunel (1987: 279). - Type: Phyllanthus physocarpus Müll.Arg. = Cicca physocarpa (Müll.Arg.) R.W.Bouman.
Phyllanthus L. subgenus Kirganelia (A.Juss.) Kurz section Polyanthi Brunel (1987: 283). - Type: Phyllanthus polyanthus Pax = Cicca polyantha (Pax) R.W.Bouman.

Diagnostic features: Shrubs or trees, monoecious or dioecious, branching phyllanthoid, branchlets pinnatiform, sometimes specialized in vegetative and floriferous branchlets. Brachyblasts present. Leaves distichous. Inflorescences axillary, flowers solitary or in unisexual or bisexual fascicles. Staminate flowers: sepals 4 or 5; disc glands 4 or 5 ; stamens 4 or 5 , filaments free, basifixed (or connate in C.
delpyana), anthers dehiscing longitudinally, vertically, connectives non-apiculate. Pistillate flowers: sepals 4 or 5, rarely 6; disc entire; ovary 3- or 4-locular; styles absent; stigmas bifid. Fruits baccate, but corky. Seeds ovoid-trigonous, reniform or rounded, smooth or with minute striae.
Distribution: Africa.
Note - Section Omphacodopsis was found to be nested within section Polyanthi (Bouman et al. 2020; supplementary fig. 1). Sections Omphacodopsis and Polyanthi were originally distinguished based on differences in fruit (berry versus inflated capsule) and seed shape (reniform versus rounded). To prevent paraphyly of section Polyanthi, it is here subsumed in section Omphacodopsis on the basis of their similarity in habit, inflorescence structure and floral morphology.

Included species and taxonomic changes (6 spp.):
Cicca delpyana (Hutchinson 1913: 1047) R.W.Bouman, comb. nov. Basionym: Phyllanthus delpyanus Hutch.
Cicca engleri (Pax 1895: 236) R.W.Bouman, comb. nov. Basionym: Phyllanthus engleri Pax.
Cicca physocarpa (Müller 1864: 515) R.W.Bouman, comb. nov. Basionym: Phyllanthus physocarpus Müll.Arg.
Cicca polyantha (Pax 1899: 19) R.W.Bouman, comb. nov. Basionym: Phyllanthus polyanthus Pax.
Cicca profusa (Brown in Stapf 1905: 113) R.W.Bouman, comb. nov. Basionym: Phyllanthus profusus N.E.Br.
Cicca schliebenii (Mansfeld ex Radcliffe-Smith 1981: 772) R.W.Bouman, comb. nov. Basionym: Phyllanthus schliebenii Mansf. ex Radcl.-Sm.

Cicca L. subgenus Menarda (Comm. ex A.Juss.) R.W.Bouman, comb. nov.
Menarda Comm. ex Jussieu (1824: 23, 109); Baillon (1858: 608); Baillon (1861:46); Baillon (1862b: 231). - Phyllanthus L. section Menarda (Comm. ex A.Juss.) Müller (1863: 2, 7); (1866: 334); Pax \& Hoffmann (1931: 62); Brunel (1987: 269). - Phyllanthus L. subgenus Menarda (Comm. ex A.Juss.) Ralimanana \& Hoffmann (2014: 296). -Type: Menarda cryptophila Comm. ex A.Juss. (formerly Phyllanthus cryptophilus (Comm. ex A.Juss.) Müll.Arg.) = Cicca cryptophila (Comm. ex A.Juss.) R.W.Bouman.
Phyllanthus L. subgenus Anisonemoides (Jean F.Brunel) Ralimanana \& Hoffmann section Pseudogomphidium Ralimanana \& Cable (2020: 3). -Type: Phyllanthus marojejiensis (Leandri) Petra. Hoffm. \& McPherson. = Cicca marojejiensis (Leandri) R.W.Bouman.

Diagnostic features: Subshrubs or shrubs, monoecious, branching phyllanthoid, branchlets pinnatiform (to further ramified with leaves at base of ultimate

Chapter 8

branches), sometimes two opposite branches from same node. Brachyblasts absent. Cataphyllary stipules triangular, indurate, base not auriculate. Cataphylls triangular. Leaves opposite, sometimes sub-opposite, or alternate. Inflorescences axillary, unisexual or bisexual fascicles, not on separate branchlets. Staminate flowers: sepals 5 (-6); disc glands 5, free, globose, reniform or absent; stamens 3-5, filaments free or fused, anthers dehiscing longitudinally, vertically, connectives (non-)apiculate; pollen 3- or 4-colporate, colpi diploporate, exine perforate to microreticulate. Pistillate flowers: sepals 5 (or 6); disc entire, lobed or reduced; ovary 3-locular, globose or depressed globose; styles present or absent; stigmas entire or bifid for up to $2 / 3$ of the length. Fruits capsules. Seeds trigonous, smooth or thinly longitudinally striate.
Distribution: Madagascar.
Notes - 1. Ralimanana \& Hoffmann (2014) listed the wrong author of the name Menarda. This should remain de Jussieu, who first described it (de Jussieu 1824) as a separate genus, instead of Müller, who reduced it to a section (Müller 1863).
2. Baillon (1861b) strangely treats subgenus Menarda both as a separate genus (1861: 46), but also describes some species in Phyllanthus section Menarda (1862a: 62).
3. Phyllanthus subgenus Anesonemoides section Pseudogomphidium was created in the fourth part of the taxonomic revision of Phyllanthus in Madagascar (Ralimanana \& Cable 2020). A new section was deemed necessary as the species that were originally placed in Phyllanthus subgenus Gomphidium (Ralimanana \& Hoffmann 2011) were found to be closer to other species from Madagascar in the phylogenetic tree from Kawakita et al. (2009). However, if retained, this section would be paraphyletic as Phyllanthus subgenus Menarda was found to be the nested within this clade of species (Bouman et al. 2021; Supplementary Fig. 1).

Included species and taxonomic changes (13 spp.):
Cicca ankaratrae (Leandri 1957: 214) R.W.Bouman, comb. nov. Basionym:
Glochidion ankaratrae Leandri, homotypic synonym: Phyllanthus ankaratrae (Leandri) Hoffmann \& McPherson (2003: 308).
Cicca ankirindrensis (Ralimanana \& Cable 2020: 3) R.W.Bouman, comb. nov. Basionym: Phyllanthus ankirindrensis Ralim. \& Cable.
Cicca bernieriana (Baillon ex Müller 1866: 361) R.W.Bouman, comb. nov. Basionym: Phyllanthus bernierianus Baill. ex Müll.Arg.
Cicca coodei (Ralimanana \& Hoffmann 2014: 298) R.W.Bouman, comb. nov. Basionym: Phyllanthus coodei Ralim. \& Petra Hoffm.
Cicca cryptophila (Commerson ex de Jussieu 1824: 109) R.W.Bouman, comb. nov. Basionym: Menarda cryptophila Comm. ex A.Juss., homotypic synonym: Phyllanthus cryptophilus (Comm. ex A.Juss.) Müller (1863: 8).
Cicca humbertii (Leandri 1957: 215) R.W.Bouman, comb. nov. Basionym:
Glochidion humbertii Leandri, homotypic synonym: Phyllanthus humbertii
(Leandri) Hoffman \& McPherson (2003: 308).
Cicca lichenisilvae (Leandri 1937: 29) R.W.Bouman, comb. nov. Basionym: Glochidion lichenisilvae Leandri, homotypic synonym: Phyllanthus lichenisilvae (Leandri) Hoffmann \& McPherson (2003: 308).
Cicca marojejiensis (Leandri 1957: 215) R.W.Bouman, comb. nov. Basionym: Glochidion marojejiense Leandri, homotypic synonym: Phyllanthus marojejiensis (Leandri) Hoffmann \& McPherson (2003: 308).
Cicca oreichtitus (Leandri 1934: 450) R.W.Bouman, comb. nov. Basionym: Phyllanthus monticola Leandri, nom. illeg., non Phyllanthus monticola Hutchinson \& Dalziel (1928: 291), homotypic synonym: Phyllanthus oreichtitus Leandri (1935: 24).
Cicca perrieri (Leandri 1934: 606) R.W.Bouman, comb. nov. Basionym: Glochidion perrieri Leandri, homotypic synonym: Phyllanthus perrieri (Leandri) Hoffman \& McPherson (2003: 308).
Cicca razakamalalae (Ralimanana \& Cable 2020: 6) R.W.Bouman, comb. nov. Basionym: Phyllanthus razakamalalae Ralim. \& Cable.
Cicca sambiranensis (Leandri 1934: 451) R.W.Bouman, comb. nov. Basionym: Phyllanthus sambiranensis Leandri.
Cicca vakinankaratrae (Leandri 1957: 233) R.W.Bouman, comb. nov. Basionym: Phyllanthus vakinankaratrae Leandri.

Dendrophyllanthus S.Moore

Dendrophyllanthus Moore (1921:395). - Type: Dendrophyllanthus comptonii S.Moore (= formerly Phyllanthus moorei M.Schmid).

Phyllanthus L. section Gomphidium Baillon (1862b: 234); Müller (1866: 319); Schmid (1991: 64). - Phyllanthus L. section Paragomphidium Müller (1863: 3, 14), nom. superfl; (1866: 351). - Glochidion J.R.Forst. \& G.Forst. section Gomphidium (Baill.) Müller (1863: 58, 70); Pax \& Hoffmann (1931: 58). — Phyllanthus L. subgenus Gomphidium (Baill.) Webster (1967b: 338); (1971: 92). —Lectotype (selected by Webster 1967b): Phyllanthus chamaecerasus Baill. = Dendrophyllanthus chamaecerasus (Baill.) R.W.Bouman.

Diagnostic features: Herbs, shrubs or trees, monoecious, branching phyllanthoid, branchlets (bi)pinnatiform, glabrous or pubescent. Brachyblasts absent.
Cataphyllary stipules triangular, indurate, base not auriculate. Cataphylls triangular. Leaves distichous, sometimes opposite, branchlets sometimes with a single leaf. Inflorescences axillary, unisexual, rarely bisexual fascicles, sometimes paniculate but generally not on separate specialized branchlets. Staminate flowers: sepals 5 or 6 , usually in two whorls, inner whorl often longer than androecium; disc entire or 3 or 6 massive glands or absent; stamens 3-20, filaments free or connate, anthers dehiscing vertically to obliquely to horizontally, connectives sometimes apiculate;

Chapter 8

pollen 3-colporate or 3-syncolporate, exine reticulate, vermiculate, pilate or \pm vermiculate. Pistillate flowers: sepals 5 or 6 , in two whorls, often differing in length, one whorl possibly accrescent or reduced to absent; disc entire, segmented or absent; ovary 3-5-locular; style present or absent; stigma tips entire or bifid. Fruits capsules. Seeds trigonous, smooth.
Distribution: Malesia, Australia and Pacific.
Included, but further unplaced species and taxonomic changes (1 sp.):
Dendrophyllanthus ciliaris (Baillon 1876: 373) R.W.Bouman, comb. nov. Basionym: Phyllanthus ciliaris Baill.

Dendrophyllanthus S.Moore section Dendrophyllanthus

Dendrophyllanthus S.Moore section Dendrophyllanthus: Literature and type as under the genus.
Phyllanthus L. section Phyllocalyx Baillon (1862b: 236). - Glochidion J.R.Forst. \& G.Forst. section Physoglochidion Müller (1863: 58, 71), nom. superfl.; Pax \& Hoffmann (1931: 58). —Phyllanthus L. section Physoglochidion (Müll.Arg.) Müller (1866: 318), nom. superfl. - Phyllanthus L. subgenus Gomphidium (Baill.) G.L.Webster section Gomphidium Baill. subsection Physoglochidion (Müll.Arg.) Bouman in Bouman et al. (2018: 170). - Type: Phyllanthus faguetii Baill. = Dendrophyllanthus faguetii (Baill.) R.W.Bouman.
Leichhardtia Mueller (1876: 67), nom. illeg., non Leichardtia Brown (1849: 81). — Phyllanthus L. section Leichhardtia (F.Muell.) Diels (1931: 308). - Type: Leichhardtia clamboides F.Muell. (formerly Phyllanthus clamboides (F.Muell.) Diels) = Dendrophyllanthus clamboides (F.Muell.) R.W.Bouman.
Nymania Schumann (1905: 291), nom. illeg., non Nymania Lindberg (1868: 290). - Phyllanthus L. subgenus Gomphidium (Baill.) G.L.Webster section Nymania (K.Schum.) Smith (1912: 781). —Type: Nymania insignis K.Schum (= formerly a synonym of Phyllanthus schumannianus L.S.Sm.) = Dendrophyllanthus clamboides (F.Muell.) R.W.Bouman.
Hexaspermum Domin (1927: 869)). - Type: Hexaspermum paniculatum (Oliv.) Domin (= based on Phyllanthus paniculatus Oliv.; formerly synonyms of Phyllanthus clamboides (F.Muell.) Diels) = Dendrophyllanthus clamboides (F.Muell.) R.W.Bouman.

Diagnostic features: Shrubs or trees, monoecious, branching phyllanthoid, branchlets (bi)pinnatiform, glabrous or pubescent. Brachyblasts absent. Leaves distichous, sometimes opposite. Inflorescences axillary, mostly unisexual, some bisexual fascicles, or panicles. Staminate flowers: sepals 6, in two whorls, inner whorl often longer than androecium; disc 3 massive (bilobed) glands (rarely 6); stamens 3, filaments free or connate, anthers dehiscing vertically to obliquely,
connectives apiculate; pollen oblate, 3-colporate or 3-syncolporate, exine rugulosereticulate, vermiculate, pilate or \pm vermiculate. Pistillate flowers: sepals 6 , in two whorls, often differing in length, one whorl sometimes accrescent or reduced to absent; disc entire, sometimes very small to absent; ovary 3-locular; styles present or absent; stigmas entire (rarely bifid). Fruits capsules. Seeds trigonous. Distribution: Malesia, Australia and Pacific.
Notes - 1. McPherson \& Schmid (1991) grouped many other taxa together in their informal groups 6 and 7, which correspond to Dendrophyllanthus sections Dendrophyllanthus and Leptonema (Baill.) R.W.Bouman. Any previously defined subsections were not treated separately by McPherson \& Schmid (1991) since they are morphologically very similar. Phyllanthus subsection Physoglochidion was represented by only one species in the phylogenetic study of Bouman et al. (2021), if retained it would necessitate the recognition of several other subsections. As this might result in a confusing classification with morphologically very similar subsections, we have opted to subsume subsection Physoglochidion within Dendrophyllanthus section Dendrophyllanthus.
2. Phyllanthus subgenus Gomphidium section Nymania (K.Schum) J.J.Sm. was found to be paraphyletic with the rest of Phyllanthus section Gomphidium nested within (Bouman et al. 2021). Both sections have the same number of stamens and disc glands, but differ slightly in the fusion of the filaments and some pollen characters (Airy Shaw 1980a). However, species with free and connate filaments occur in the previous classification of Phyllanthus section Nymania (e.g. D. tenuirhachis (J.J.Sm.) R.W.Bouman: free; and D. cuscutiflorus (S.Moore) R.W.Bouman: connate). Bipinnatiform branchlets also occur in both sections, resulting in almost no distinction between the groups and hence they are here combined.
3. Some species with six staminate disc glands from the Philippines were shown to belong to the genus Emblica (e.g., E. rufuschaneyi (Welzen, R.W.Bouman \& Ent) R.W.Bouman; Bouman et al. 2021), which casts some doubt on the placement of similar species, such as D. rheophila (Airy Shaw) R.W.Bouman; this requires further study.

Included species and taxonomic changes (88 spp.):
Dendrophyllanthus acinacifolius (Airy Shaw \& Webster 1971: 95) R.W.Bouman, comb. nov. Basionym: Phyllanthus acinacifolius Airy Shaw \& G.L.Webster.
Dendrophyllanthus actephilifolius (Smith 1917: 543) R.W.Bouman, comb. nov. Basionym: Phyllanthus actephilifolius J.J.Sm.
Dendrophyllanthus amicorus (Webster 1986: 100) R.W.Bouman, comb. nov. Basionym: Phyllanthus amicorum G.L.Webster.
Dendrophyllanthus amieuensis (Guillaumin 1962: 242) R.W.Bouman, comb. nov. Basionym: Phyllanthus amieuensis Guillaumin.
Dendrophyllanthus aphanostyla (Airy Shaw \& Webster 1971: 106) R.W.Bouman,

Chapter 8

comb. nov. Basionym: Phyllanthus aphanostylus Airy Shaw \& G.L.Webster.
Dendrophyllanthus apiculatus (Merrill 1920: 540) R.W.Bouman, comb. nov. Basionym: Phyllanthus apiculatus Merr.
Dendrophyllanthus ardisianthus (Airy Shaw \& Webster 1971: 94) R.W.Bouman, comb. nov. Basionym: Phyllanthus ardisianthus Airy Shaw \& G.L.Webster.
Dendrophyllanthus avanguiensis (Schmid 1991: 182) R.W.Bouman, comb. nov. Basionym: Phyllanthus avanguiensis M.Schmid.
Dendrophyllanthus balansanus (Guillaumin 1929: 4) R.W.Bouman, comb. nov. Basionym: Phyllanthus balansanus Guillaumin.
Dendrophyllanthus bourgeoisii (Baillon 1862b: 235) R.W.Bouman, comb. nov. Basionym: Phyllanthus bourgeoisii Baill.
Dendrophyllanthus buxoides (Guillaumin 1929: 6) R.W.Bouman, comb. nov. Basionym: Phyllanthus buxoides Guillaumin.
Dendrophyllanthus calcicola (Schmid 1991: 118) R.W.Bouman, comb. nov. Basionym: Phyllanthus calcicola M.Schmid.
Dendrophyllanthus castus (Moore 1921: 401) R.W.Bouman, comb. nov. Basionym: Phyllanthus castus S.Moore.
Dendrophyllanthus caudatus (Müller 1866: 321) R.W.Bouman, comb. nov. Basionym: Phyllanthus caudatus Müll.Arg.
Dendrophyllanthus chamaecerasus (Baillon 1862b: 235) R.W.Bouman, comb. nov. Basionym: Phyllanthus chamaecerasus Baill.
Dendrophyllanthus clamboides (Mueller 1876: 68) R.W.Bouman, comb. nov. Basionym: Leichhardtia clamboides F.Muell., homotypic synonym: Phyllanthus clamboides (F.Muell.) Diels (1931: 309).
Dendrophyllanthus cordatulus (Robinson 1909: 76) R.W.Bouman, comb. nov. Basionym: Phyllanthus cordatulus C.B.Rob.
Dendrophyllanthus cornutus (Baillon 1862b: 236) R.W.Bouman, comb. nov. Basionym: Phyllanthus cornutus Baill.
Dendrophyllanthus comptonii Moore (1921: 395), non Phyllanthus comptonii Moore 1921: 398), homotypic synonym: Phyllanthus moorei Schmid (1991: 159).
Dendrophyllanthus cuscutiflorus (Moore 1905: 148) R.W.Bouman, comb. nov. Basionym: Phyllanthus cuscutiflorus S.Moore.
Dendrophyllanthus dzumacensis (Schmid 1991: 105) R.W.Bouman, comb. nov. Basionym: Phyllanthus dzumacensis M.Schmid.
Dendrophyllanthus effusus (Moore 1923: 45) R.W.Bouman, comb. nov. Basionym: Phyllanthus effusus S.Moore.
Dendrophyllanthus faguetii (Baillon 1862b: 237) R.W.Bouman, comb. nov. Basionym: Phyllanthus faguetii Baill.
Dendrophyllanthus finschii (Schumann 1887: 205) R.W.Bouman, comb. nov. Basionym: Phyllanthus finschii K.Schum.
Dendrophyllanthus flaviflorus (Schumann \& Lauterbach 1900:388) R.W.Bouman, comb. nov. Basionym: Actephila flaviflora K.Schum. \& Lauterb., homotypic
synonym: Phyllanthus flaviflorus (K.Schum. \& Lauterb.) Airy Shaw (1969: 39).
Dendrophyllanthus frodinii (Airy Shaw 1972: 74) R.W.Bouman, comb. nov.
Basionym: Phyllanthus frodinii Airy Shaw.
Dendrophyllanthus gjellerupi (Smith 1912: 780) R.W.Bouman, comb. nov.
Basionym: Phyllanthus gjellerupi J.J.Sm.
Dendrophyllanthus glochidioides (Elmer 1911: 1302) R.W.Bouman, comb. nov.
Basionym: Phyllanthus glochidioides Elmer.
Dendrophyllanthus helenae (M.Schmid 1991:77) R.W.Bouman, comb. nov.
Basionym: Phyllanthus helenae M.Schmid.
Dendrophyllanthus heterodoxus (Müller in de Candolle 1866: 321) R.W.Bouman, comb. nov. Basionym: Phyllanthus heterodoxus Müll.Arg.
Dendrophyllanthus houailouensis (Schmid 1991: 93) R.W.Bouman, comb. nov. Basionym: Phyllanthus houailouensis M.Schmid.
Dendrophyllanthus insulae-japen (Airy Shaw 1978: 37) R.W.Bouman, comb. nov. Basionym: Phyllanthus insulae-japen Airy Shaw.
Dendrophyllanthus jaffrei (Schmid 1991: 113) R.W.Bouman, comb. nov. Basionym: Phyllanthus jaffrei M.Schmid.
Dendrophyllanthus jaubertii (Vieillard ex Guillaumin 1929: 9) R.W.Bouman, comb. nov. Basionym: Phyllanthus jaubertii Vieill. ex Guillaumin.
Dendrophyllanthus koghiensis (Guillaumin 1929: 10) R.W.Bouman, comb. nov. Basionym: Phyllanthus koghiensis Guillaumin.
Dendrophyllanthus koniamboensis (Schmid 1991: 136) R.W.Bouman, comb. nov. Basionym: Phyllanthus koniamboensis M.Schmid.
Dendrophyllanthus kostermansii (Airy Shaw 1974: 296) R.W.Bouman, comb. nov. Basionym: Phyllanthus kostermansii Airy Shaw.
Dendrophyllanthus kouaouaensis (Schmid 1991: 114) R.W.Bouman, comb. nov. Basionym: Phyllanthus kouaouaensis M.Schmid.
Dendrophyllanthus koumacensis (Guillaumin 1965: 35) R.W.Bouman, comb. nov. Basionym: Phyllanthus koumacensis Guillaumin.
Dendrophyllanthus macphersonii (Schmid 1991: 142) R.W.Bouman, comb. nov. Basionym: Phyllanthus macphersonii M.Schmid.
Dendrophyllanthus mangenotii (Schmid 1991: 156) R.W.Bouman, comb. nov. Basionym: Phyllanthus mangenotii M.Schmid.
Dendrophyllanthus merinthopodus (Diels 1931:310) R.W.Bouman, comb. nov. Basionym: Phyllanthus merinthopodus Diels.
Dendrophyllanthus montis-fontius (Schmid 1991: 78) R.W.Bouman, comb. nov. Basionym: Phyllanthus montis-fontium M.Schmid.
Dendrophyllanthus mouensis (Schmid 1991: 104) R.W.Bouman, comb. nov. Basionym: Phyllanthus mouensis M.Schmid.
Dendrophyllanthus natoensis (Schmid 1991: 171) R.W.Bouman, comb. nov. Basionym: Phyllanthus natoensis M.Schmid.
Dendrophyllanthus ningaensis (Schmid 1991: 144) R.W.Bouman, comb. nov.

Chapter 8

Basionym: Phyllanthus ningaensis M.Schmid.
Dendrophyllanthus nothisii (Schmid 1991: 179) R.W.Bouman, comb. nov.
Basionym: Phyllanthus nothisii M.Schmid.
Dendrophyllanthus ovatifolius (Smith 1920:390) R.W.Bouman, comb. nov. Basionym: Phyllanthus ovatifolius J.J.Sm.
Dendrophyllanthus pancherianus (Baillon 1862b: 235) R.W.Bouman, comb. nov. Basionym: Phyllanthus pancherianus Baill.
Dendrophyllanthus papuanus (Gage 1917: 479) R.W.Bouman, comb. nov. Basionym: Phyllanthus papuanus Gage.
Dendrophyllanthus paucitepalus (Schmid 1991: 140) R.W.Bouman, comb. nov. Basionym: Phyllanthus paucitepalus M.Schmid.
Dendrophyllanthus pergracilis (Gillespie 1932: 18) R.W.Bouman, comb. nov. Basionym: Phyllanthus pergracilis Gillespie.
Dendrophyllanthus petchikaraensis (Schmid 1991: 90) R.W.Bouman, comb. nov. Basionym: Phyllanthus petchikaraensis M.Schmid.
Dendrophyllanthus pilifer (Schmid 1991: 120) R.W.Bouman, comb. nov. Basionym: Phyllanthus pilifer M.Schmid.
Dendrophyllanthus pindaiensis (Schmid 1991: 183) R.W.Bouman, comb. nov. Basionym: Phyllanthus pindaiensis M.Schmid.
Dendrophyllanthus pinjenensis (Schmid 1991: 92) R.W.Bouman, comb. nov. Basionym: Phyllanthus pinjenensis M.Schmid.
Dendrophyllanthus platycalyx (Müller in de Candolle 1866:318) R.W.Bouman, comb. nov. Basionym: Phyllanthus platycalyx Müll.Arg.
Dendrophyllanthus poliborealis (Airy Shaw 1978: 36.) R.W.Bouman, comb. nov. Basionym: Phyllanthus poliborealis Airy Shaw.
Dendrophyllanthus polygynus (Schmid 1991: 97) R.W.Bouman, comb. nov. Basionym: Phyllanthus polygynus M.Schmid.
Dendrophyllanthus poueboensis (Schmid 1991: 154) R.W.Bouman, comb. nov. Basionym: Phyllanthus poueboensis M.Schmid.
Dendrophyllanthus poumensis (Guillaumin 1929: 15) R.W.Bouman, comb. nov. Basionym: Phyllanthus poumensis Guillaumin.
Dendrophyllanthus praelongipes (Airy Shaw \& Webster 1971: 100) R.W.Bouman, comb. nov. Basionym: Phyllanthus praelongipes Airy Shaw \& G.L.Webster.
Dendrophyllanthus pterocladus (Moore 1921:400) R.W.Bouman, comb. nov. Basionym: Phyllanthus pterocladus S.Moore.
Dendrophyllanthus pulchellus (Airy Shaw 1969: 22) R.W.Bouman, comb. nov. Basionym Glochidion pulchellum Airy Shaw, homotypic synonym: Phyllanthus stultitiae Airy Shaw (1978: 368).
Dendrophyllanthus pullenii (Airy Shaw \& Webster 1971: 105) R.W.Bouman, comb. nov. Basionym: Phyllanthus pullenii Airy Shaw \& G.L.Webster.
Dendrophyllanthus quintuplinervis (Schmid 1991: 148) R.W.Bouman, comb. nov. Basionym: Phyllanthus quintuplinervis M.Schmid.

Dendrophyllanthus rheophilus (Airy Shaw 1966: 385) R.W.Bouman, comb. nov. Basionym: Phyllanthus rheophilus Airy Shaw.
Dendrophyllanthus rosselensis (Airy Shaw \& Webster 1971: 103) R.W.Bouman, comb. nov. Basionym: Phyllanthus rosselensis Airy Shaw \& G.L.Webster.
Dendrophyllanthus rubriflorus (Smith 1912: 781) R.W.Bouman, comb. nov. Basionym: Phyllanthus rubriflorus J.J.Sm.
Dendrophyllanthus rupiinsularis (Hosokawa 1935: 19) R.W.Bouman, comb. nov. Basionym: Phyllanthus rupiinsularis Hosok.
Dendrophyllanthus salomonis (Airy Shaw 1978: 368) R.W.Bouman, comb. nov. Basionym: Phyllanthus salomonis Airy Shaw.
Dendrophyllanthus securinegoides (Merrill 1914: 490) R.W.Bouman, comb. nov. Basionym: Phyllanthus securinegoides Merr.
Dendrophyllanthus smithianus (Webster 1986: 99) R.W.Bouman, comb. nov. Basionym: Phyllanthus smithianus G.L.Webster.
Dendrophyllanthus stenophyllus (Guillaumin 1929: 17) R.W.Bouman, comb. nov. Basionym: Phyllanthus stenophyllus Guillaumin.
Dendrophyllanthus stipitatus (Schmid 1991: 178) R.W.Bouman, comb. nov. Basionym: Phyllanthus stipitatus M.Schmid.
Dendrophyllanthus tabularis (Airy Shaw 1980b: 598) R.W.Bouman, comb. nov. Basionym: Phyllanthus tabularis Airy Shaw.
Dendrophyllanthus tagulae (Airy Shaw \& Webster 1971: 102) R.W.Bouman, comb. nov. Basionym: Phyllanthus tagulae Airy Shaw \& G.L.Webster.
Dendrophyllanthus tangoensis (Schmid 1991: 162) R.W.Bouman, comb. nov. Basionym: Phyllanthus tangoensis M.Schmid.
Dendrophyllanthus tenuipedicellatus (Schmid 1991: 98) R.W.Bouman, comb. nov. Basionym: Phyllanthus tenuipedicellatus M.Schmid.
Dendrophyllanthus tenuirhachis (Smith 1908: t. 263) R.W.Bouman, comb. nov. Basionym: Phyllanthus tenuirhachis J.J.Sm.
Dendrophyllanthus tiebaghiensis (Schmid 1991: 94) R.W.Bouman, comb. nov. Basionym: Phyllanthus tiebaghiensis M.Schmid.
Dendrophyllanthus unioensis (Schmid 1991: 139) R.W.Bouman, comb. nov. Basionym: Phyllanthus unioensis M.Schmid.
Dendrophyllanthus utricularis (Airy Shaw \& Webster 1971: 101) R.W.Bouman, comb. nov. Basionym: Phyllanthus utricularis Airy Shaw \& G.L.Webster.
Dendrophyllanthus veillonii (Schmid 1991: 130) R.W.Bouman, comb. nov. Basionym: Phyllanthus veillonii M.Schmid.
Dendrophyllanthus vieillardii (Müller 1863: 70) R.W.Bouman, comb. nov. Basionym: Glochidion vieillardii Müll.Arg. (non Phyllanthus vieillardii Baillon 1862b: 236), homotypic synonym: Phyllanthus tritepalus Schmid (1991: 153).
Dendrophyllanthus virgultiramus (Däniker 1931: 169) R.W.Bouman, comb. nov. Basionym: Phyllanthus virgultiramus Däniker.
Dendrophyllanthus warburgii (Schumann 1905: 286) R.W.Bouman, comb. nov.

Chapter 8

Basionym: Phyllanthus columnaris Warburg (1891: 356), nom. illeg., non Phyllanthus columnaris Müller (1863: 15), homotypic synonym: Phyllanthus warburgii K.Schum.
Dendrophyllanthus wilkesianus (Müller 1866: 396) R.W.Bouman, comb. nov. Basionym: Phyllanthus wilkesianus Müll.Arg.

Dendrophyllanthus L. section Leptonema (Baill.) R.W.Bouman, comb. nov.
Phyllanthus L. section Leptonema Baillon (1862b: 234). — Glochidion J.R.Forst. \& G.Forst. section Pentaglochidion Müller (1863: 58, 59), nom. superfl.; Pax \& Hoffmann (1931:58). — Phyllanthus L. section Pentaglochidion (Müll. Arg.) Müller (1866:315), nom. superfl. - Phyllanthus L. (informal) groupe 6: Schmid (1991: 184). - Type: Phyllanthus kanalensis Baill. = Dendrophyllanthus kanalensis (Baill.) R.W.Bouman.
Glochidion J.R.Forst. \& G.Forst. section Adenoglochidion Müller (1863: 58); Pax \& Hoffmann (1931:58). — Phyllanthus L. section Adenoglochidion (Müll.Arg.) Müller (1866:319). - Type: Phyllanthus aeneus Baill. = Dendrophyllanthus aeneus (Baill.) R.W.Bouman.
Phyllanthus L. section Polyandroglochidion Moore (1921: 402); Pax \& Hoffmann (1931:61). - Type: Phyllanthus sylvincola S.Moore $=$ Dendrophyllanthus sylvincolus (S.Moore) R.W.Bouman.
Phyllanthus L. section Meiandroglochidion Moore (1921: 402); Pax \& Hoffmann (1931: 61). -Type: Phyllanthus ligustrifolius S.Moore = Dendrophyllanthus ligustrifolius (S.Moore) R.W.Bouman.
Phyllanthus L. section Eleutherogynium Müller (1863: 4, 14). - Glochidion J.R.Forst. \& G.Forst. section Eleutherogynium (Müll.Arg.) Pax \& Hoffmann (1931:58). - Phyllanthus L. subgenus Gomphidium (Baill.) G.L.Webster section Adenoglochidion (Müll.Arg.) Müll.Arg. subsection Eleutherogynium (Müll. Arg.) Webster ex Bouman in Bouman et al. (2018: 170). - Type: Phyllanthus loranthoides Baill. = Dendrophyllanthus loranthoides (Baill.) R.W.Bouman.
Glochidion J.R.Forst. \& G.Forst. section Chorizogynium Müller (1863:58). Lectotype (designated by Webster 1986): Phyllanthus macrochorion Baill. = Dendrophyllanthus macrochorion (Baill.) R.W.Bouman.
Phyllanthus L. section Heteroglochidion Müller (1866: 319). —Glochidion J.R.Forst. \& G.Forst. section Heteroglochidion (Müll.Arg.) Pax \& Hoffmann (1931: 58). - Type: Phyllanthus baladensis Baill. = Dendrophyllanthus baladensis (Baill.) R.W.Bouman.

Phyllanthus L. section Scleroglochidion Müller (1866: 317). -Glochidion J.R.Forst. \& G.Forst. section Scleroglochidion (Müll.Arg) Pax \& Hoffmann (1931: 62). Type: Phyllanthus myrianthus Müll.Arg. = Dendrophyllanthus myrianthus (Müll. Arg.) R.W.Bouman.

Diagnostic features: Herbs, shrubs to trees, monoecious, branching phyllanthoid, branchlets pinnatiform, glabrous. Brachyblasts absent. Leaves distichous, sometimes branchlets bearing only a single leaf. Inflorescences axillary, often bisexual fascicles. Staminate flowers: sepals 5, sometimes 6, not clearly biseriate; disc entire or free glands, sometimes absent; stamens 3 or $5(7-20)$, filaments free, inserted often on a large receptacle, anthers dehiscing vertically to horizontally, often oblique, connectives non-apiculate; pollen 3 -syncolporate, exine reticulate. Pistillate flowers: sepals 5 or 6; disc entire or segmented, sometimes absent; ovary 3- to 5-locular; styles absent or present; stigmas entire, rarely bifid (D. nitens (M.Schmid) R.W.Bouman, D. torrentium (Müll.Arg.) R.W.Bouman). Fruits capsules. Seeds trigonous.
Distribution: Malesia, Australia and Pacific (mainly New Caledonia).
Notes - 1. Phyllanthus section Leptonema is nested within a paraphyletic Phyllanthus section Adenoglochidion (Bouman et al. 2021) and the two groups are therefore combined and transferred as Dendrophyllanthus section Leptonema. Section Leptonema was originally distinguished from other groups based on its absent disc and the 5 -locular ovary in the pistillate flower (Baillon 1862b). However, several species within former Phyllanthus section Adenoglochidion (specifically the former subsection Eleutherogynium) have a reduced or an absent disc, so the combination of these two sections is not surprising. The number of locules is variable within Dendrophyllanthus and also in the genus Glochidion and is probably related to a pollination mutualism with moths as the pollinator.
2. McPherson \& Schmid (1991) adopted a broad delimitation of Phyllanthus section Adenoglochidion, which is here subsumed within section Leptonema. This means that sections Polyandroglochidion S.Moore and Meiandroglochidion S.Moore are also subsumed, which only alters the description in relation to the number of stamens, with the other characters, including those from pistillate flowers, overlapping. Polyandroglochidion was defined on the basis of its absent discs glands, the 14 free stamens, 3 - or 4 -locular ovary and 3 or 4 free undivided stigmas. Phyllanthus section Meiandroglochidion was defined as close to Phyllanthus section Polyandroglochidion, but differing in the presence of a disc in the staminate flowers and with fewer stamens (7-10).

Included species and taxonomic changes (72 spp.):
Dendrophyllanthus aeneus (Baillon 1862b: 231) R.W.Bouman, comb. nov.
Basionym: Phyllanthus aeneus Baill.
Dendrophyllanthus aoupinieensis Schmid 1991: 275) R.W.Bouman, comb. nov. Basionym: Phyllanthus aoupinieensis M.Schmid.
Dendrophyllanthus artensis (Schmid 1991: 242) R.W.Bouman, comb. nov. Basionym: Phyllanthus artensis M.Schmid.
Dendrophyllanthus baladensis (Baillon 1862b: 233) R.W.Bouman, comb. nov. Basionym: Phyllanthus baladensis Baill.

Chapter 8

Dendrophyllanthus baraouaensis (Schmid 1991: 272) R.W.Bouman, comb. nov. Basionym: Phyllanthus baraouaensis M.Schmid.
Dendrophyllanthus boguenensis (Schmid 1991: 286) R.W.Bouman, comb. nov. Basionym: Phyllanthus boguenensis M.Schmid.
Dendrophyllanthus bupleuroides (Baillon 1862b) 233) R.W.Bouman, comb. nov. Basionym: Phyllanthus bupleuroides Baill.
Dendrophyllanthus brassii (White 1936: 81) R.W.Bouman, comb. nov. Basionym: Phyllanthus brassii C.T.White.
Dendrophyllanthus casearioides (Moore 1921:397) R.W.Bouman, comb. nov. Basionym: Phyllanthus casearioides S.Moore.
Dendrophyllanthus caesius (Airy Shaw \& Webster 1971: 90) R.W.Bouman, comb. nov. Basionym: Phyllanthus caesius Airy Shaw \& G.L.Webster.
Dendrophyllanthus carlottae (Schmid 1991: 258) R.W.Bouman, comb. nov. Basionym: Phyllanthus carlottae M.Schmid.
Dendrophyllanthus caudatifolius (Merrill 1926: 403) R.W.Bouman, comb. nov. Basionym: Phyllanthus caudatifolius Merr.
Dendrophyllanthus cherrieri (Schmid 1991: 278) R.W.Bouman, comb. nov. Basionym: Phyllanthus cherrieri M.Schmid.
Dendrophyllanthus chrysofructa Strijk \& R.W.Bouman, nom. nov. Basionym: Phyllanthus valeriae Schmid (1991: 217), nom. illeg., non Phyllanthus valerii Standley (1937: 619).
Dendrophyllanthus conjugatus (Schmid 1991: 279) R.W.Bouman, comb. nov. Basionym: Phyllanthus conjugatus M.Schmid.
Dendrophyllanthus dracunculoides (Baillon 1862b: 239) R.W.Bouman, comb. nov. Basionym: Phyllanthus dracunculoides Baill.
Dendrophyllanthus deciduiramus (Däniker 1931: 167) R.W.Bouman, comb. nov. Basionym: Phyllanthus deciduiramus Däniker.
Dendrophyllanthus dorotheae (Schmid 1991: 300) R.W.Bouman, comb. nov. Basionym: Phyllanthus dorotheae M.Schmid.
Dendrophyllanthus dumbeaensis (Schmid 1991: 200) R.W.Bouman, comb. nov. Basionym: Phyllanthus dumbeaensis M.Schmid.
Dendrophyllanthus erwinii (Hunter \& Bruhl 1996: 130) R.W.Bouman, comb. nov. Basionym: Phyllanthus erwinii J.T.Hunter \& J.J.Bruhl.
Dendrophyllanthus favieri (Schmid 1991: 262) R.W.Bouman, comb. nov. Basionym: Phyllanthus favieri M.Schmid.
Dendrophyllanthus fimbriatitepalus (Guillaumin 1937: 300) R.W.Bouman, comb. nov. Basionym: Phyllanthus fimbriatitepalus Guillaumin.
Dendrophyllanthus fractiflexus (Schmid 1991: 238) R.W.Bouman, comb. nov. Basionym: Phyllanthus fractiflexus M.Schmid.
Dendrophyllanthus francii (Guillaumin 1927: 273) R.W.Bouman, comb. nov. Basionym: Phyllanthus francii Guillaumin.
Dendrophyllanthus gneissicus (Moore 1921: 399) R.W.Bouman, comb. nov.

Basionym: Phyllanthus gneissicus S.Moore.
Dendrophyllanthus golonensis (Schmid 1991: 304) R.W.Bouman, comb. nov. Basionym: Phyllanthus golonensis M.Schmid.
Dendrophyllanthus guillauminii (Däniker 1931: 167) R.W.Bouman, comb. nov. Basionym: Phyllanthus guillauminii Däniker.
Dendrophyllanthus hypospodius (Mueller 1892: 177) R.W.Bouman, comb. nov. Basionym: Phyllanthus hypospodius F.Muell.
Dendrophyllanthus kanalensis (Baillon 1862b: 234) R.W.Bouman, comb. nov. Basionym: Phyllanthus kanalensis Baill.
Dendrophyllanthus lacerosus (Airy Shaw 1980c: 386) R.W.Bouman, comb. nov. Basionym: Phyllanthus lacerosus Airy Shaw.
Dendrophyllanthus lacunarius (Mueller 1855: 14) R.W.Bouman, comb. nov. Basionym: Phyllanthus lacunarius F.Muell.
Dendrophyllanthus lacunellus (Airy Shaw 1980c: 387) R.W.Bouman, comb. nov. Basionym: Phyllanthus lacunellus Airy Shaw.
Dendrophyllanthus ligustrifolius (Moore 1921: 402) R.W.Bouman, comb. nov. Basionym: Phyllanthus ligustrifolius S.Moore.
Dendrophyllanthus longiramosus (Guillaumin 1962: 292, as 'longeramosa') R.W.Bouman, comb. nov. Basionym: Phyllanthus longiramosus Guillaumin.

Dendrophyllanthus loranthoides (Baillon 1862b: 238) R.W.Bouman, comb. nov. Basionym: Phyllanthus loranthoides Baill.
Dendrophyllanthus luciliae (Schmid 1991: 269) R.W.Bouman, comb. nov. Basionym: Phyllanthus luciliae M.Schmid.
Dendrophyllanthus macrochorion (Baillon 1862b: 232) R.W.Bouman, comb. nov. Basionym: Phyllanthus macrochorion Baill.
Dendrophyllanthus mandjeliaensis (Schmid 1991:315) R.W.Bouman, comb. nov. Basionym: Phyllanthus mandjeliaensis M.Schmid.
Dendrophyllanthus margaretae (Schmid 1991:316) R.W.Bouman, comb. nov. Basionym: Phyllanthus margaretae M.Schmid.
Dendrophyllanthus maritimus (Smith 1912: 779) R.W.Bouman, comb. nov. Basionym: Phyllanthus maritimus J.J.Sm.
Dendrophyllanthus memaoyaensis (Schmid 1991:274) R.W.Bouman, comb. nov. Basionym: Phyllanthus memaoyaensis M.Schmid.
Dendrophyllanthus meuieensis (Schmid 1991: 249) R.W.Bouman, comb. nov. Basionym: Phyllanthus meuieensis M.Schmid.
Dendrophyllanthus montrouzieri (Guillaumin 1913: 109) R.W.Bouman, comb. nov. Basionym: Phyllanthus montrouzieri Guillaumin.
Dendrophyllanthus mooreanus R.W.Bouman, nom. nov. Basionym: Phyllanthus comptonii S.Moore (1921: 398) (non Dendrophyllanthus comptonii S.Moore 1921: 395).

Dendrophyllanthus moratii (Schmid 1991:313) R.W.Bouman, comb. nov. Basionym: Phyllanthus moratii M.Schmid.

Chapter 8

Dendrophyllanthus myrianthus (Müller 1866: 317) R.W.Bouman, comb. nov. Basionym: Phyllanthus myrianthus Müll.Arg.
Dendrophyllanthus nitens (Schmid 1991: 239) R.W.Bouman, comb. nov. Basionym: Phyllanthus nitens M.Schmid.
Dendrophyllanthus ouveanus (Däniker 1931: 168) R.W.Bouman, comb. nov. Basionym: Phyllanthus ouveanus Däniker.
Dendrophyllanthus parainduratus (Schmid 1991: 228) R.W.Bouman, comb. nov. Basionym: Phyllanthus parainduratus M.Schmid.
Dendrophyllanthus parangoyensis (Schmid 1991: 250) R.W.Bouman, comb. nov. Basionym: Phyllanthus parangoyensis M.Schmid.
Dendrophyllanthus peltatus (Guillaumin 1929: 13) R.W.Bouman, comb. nov. Basionym: Phyllanthus peltatus Guillaumin.
Dendrophyllanthus pronyensis (Guillaumin 1927: 273) R.W.Bouman, comb. nov. Basionym: Phyllanthus pronyensis Guillaumin.
Dendrophyllanthus pseudotrichopodus (Schmid 1991: 245) R.W.Bouman, comb. nov. Basionym: Phyllanthus pseudotrichopodus M.Schmid.
Dendrophyllanthus ramosii (Quisumbing \& Merrill 1928: 160) R.W.Bouman, comb. nov. Basionym: Phyllanthus ramosii Quisumb. \& Merr.
Dendrophyllanthus rhodocladus (Moore 1921: 397) R.W.Bouman, comb. nov. Basionym: Phyllanthus rhodocladus S.Moore.
Dendrophyllanthus rozennae (Schmid 1991: 303) R.W.Bouman, comb. nov. Basionym: Phyllanthus rozennae M.Schmid.
Dendrophyllanthus salicifolius (Baillon 1862b: 239) R.W.Bouman, comb. nov. Basionym: Phyllanthus salicifolius Baill.
Dendrophyllanthus sarasinii (Guillaumin 1929: 16) R.W.Bouman, comb. nov. Basionym: Phyllanthus sarasinii Guillaumin.
Dendrophyllanthus sauropodoides (Airy Shaw 1980c: 216) R.W.Bouman, comb. nov. Basionym: Phyllanthus sauropodoides Airy Shaw.
Dendrophyllanthus serpentinus (Moore 1921: 399) R.W.Bouman, comb. nov. Basionym: Phyllanthus serpentinus S.Moore.
Dendrophyllanthus sylvincola (Moore 1921: 401) R.W.Bouman, comb. nov. Basionym: Phyllanthus sylvincola S.Moore.
Dendrophyllanthus tireliae (Schmid 1991: 246) R.W.Bouman, comb. nov. Basionym: Phyllanthus tireliae M.Schmid.
Dendrophyllanthus tixieri (Schmid 1991: 241) R.W.Bouman, comb. nov. Basionym: Phyllanthus tixieri M.Schmid.
Dendrophyllanthus torrentium (Müller 1866: 316) R.W.Bouman, comb. nov. Basionym: Phyllanthus torrentium Müll.Arg.
Dendrophyllanthus trichopodus (Guillaumin 1929: 17) R.W.Bouman, comb. nov. Basionym: Phyllanthus trichopodus Guillaumin, Arch. Bot. Mém. 2(3: (.
Dendrophyllanthus umbricolus (Guillaumin 1929: 18) R.W.Bouman, comb. nov. Basionym: Phyllanthus umbricola Guillaumin.

Dendrophyllanthus unifoliatus (Schmid 1991: 198) R.W.Bouman, comb. nov. Basionym: Phyllanthus unifoliatus M.Schmid.
Dendrophyllanthus verrucicaulis (Airy Shaw 1978: 35) R.W.Bouman, comb. nov. Basionym: Phyllanthus verrucicaulis Airy Shaw.
Dendrophyllanthus vespertilio (Baillon 1862b: 233) R.W.Bouman, comb. nov. Basionym: Phyllanthus vespertilio Baill.
Dendrophyllanthus vulcani (Guillaumin 1962: 248) R.W.Bouman, comb. nov. Basionym: Phyllanthus vulcani Guillaumin.
Dendrophyllanthus yaouhensis (Schlechter 1906: 146) R.W.Bouman, comb. nov. Basionym: Phyllanthus yaouhensis Schltr.
Dendrophyllanthus yvettae (Schmid 1991: 309) R.W.Bouman, comb. nov. Basionym: Phyllanthus yvettae M.Schmid.

Clade G - Figs. 1, 2L \& M (supplementary fig. 1)

Emblica Gaertn.

Emblica Gaertner (1790: 122); de Jussieu (1824: 20); Wight (1852: t. 1896); Ridley (1924: 217); Das (1940: 159). - Phyllanthus L. subgenus Emblica (Gaertn.) Kurz (1873: 238); Webster (1967a: 194). — Phyllanthus L. section Emblica (Gaertn.) Baillon (1858: 626); Müller (1863: 3, 14); (1866:351); Hooker (1887: 286); Boerlage (1900: 212); Pax \& Hoffmann (1931: 64); Webster (1997: 219). — Type: Emblica officinalis Gaertn. (= formerly Phyllanthus emblica L.).
Dichelactina Hance in Walpers (1852:375). - Type: Dichelactina nodicaulis Hance = Emblica officinalis Gaertn.
Phyllanthus L. section Typhophyllanthus Kuntze subsection Urinaria Kuntze in Post \& Kuntze (1904: 434). — Phyllanthus L. subgenus Emblica (Gaertn.) Kurz section Urinaria (Kuntze) Webster (1955: 51); (1957: 192); (1970: 65); (1997: 227); Schmid (1991:54); Ralimanana \& Hoffmann in Ralimanana et al. (2013: 555). - Phyllanthus L. subgenus Emblica (Gaertn.) Kurz section Urinaria G.L.Webster subsection Urinaria (Kuntze) Haicour \& Rossignol in Rossignol et al. (1987: 1857). - Type: Phyllanthus urinaria L. = Emblica urinaria (L.) R.W.Bouman.

Phyllanthus L. subgenus Emblica (Gaertn.) Kurz section Emblica (Gaertn.) Baill. subsection Baeobotryoides Brunel (1987: 232). - Type: Phyllanthus baeobotryoides Wall. ex Müll.Arg. = Emblica baeobtoryoida (Wall. ex Müll.Arg.) R.W.Bouman.

Diagnostic features: Herbs, shrubs or trees, monoecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts sometimes present. Cataphyllary stipules ovatetriangular, membranous or indurate, base (not) auriculate. Cataphylls triangular to elongate. Leaves distichous. Inflorescences axillary, unisexual or bisexual fascicles,

Chapter 8

sometimes paniculate. Staminate flowers: sepals 6; disc glands 6, alternating with sepals; stamens 3 , filaments connate, anthers elongate, dehiscing vertically, connectives sometimes apiculate; pollen prolate to spheroidal, 4 - or 5-colporate or 5-brevisulcate, colpi monoporate, exine reticulate; pistillode absent. Pistillate flowers: sepals 6; disc entire; ovary 3-locular, sometimes tuberculate in herbaceous species; styles present; stigmas bifid. Fruits capsules or drupes. Seeds trigonous, smooth or with transverse ridges.
Distribution: Mainland Asia, Malesia, Australia and one pantropical invasive (E. urinaria).
Notes - 1. Phyllanthus subgenus Emblica was considered to have a disjunct distribution with four included sections, two from the Neotropics (Microglochidion and Pityrocladus) and two from the Palaeotropics (Urinaria and Emblica) (Webster 2002). In Bouman et al. (2021) it was shown that Phyllanthus subgenus Emblica was polyphyletic. The genus Emblica is here separated as a strictly Palaeotropical genus and the Neotropical sections are retained within Phyllanthus (as subgenus Microglochidion and subgenus Phyllanthus section Pityrocladus).
2. The genus Emblica is sister to a clade that contains the genera Glochidion (including Phyllanthodendron (Hemsl.) R.W.Bouman), Breynia (including Sauropus) and Synsostemon. The androecium may be similar to those found in the species of Glochidion subgenus Phyllanthodendron, but species in the groups differ in the shape of the disc glands in both types of flowers (ligulate glands in both flower types in subgenus Phyllanthodendron).
3. Staminate flowers within this genus are quite typical and usually have six sepals, six free orbicular disc glands and three stamens with connate filaments and vertically dehiscing anthers. However, some treatments are contradicting with six reported stamens, although this possibly refers to thecae (Chantaranothai 2007) or an entire disc (Chakrabarty \& Balakrishnan 2018). These characters need to be verified as they contradict earlier descriptions (Hooker 1887; Beille 1927) without explanation. These characters have been tentatively included in the provided keys, but not in the above description.
4. We retain no further subdivision within the genus Emblica as the diagnostic characters of previously defined sections and subsections are minor. Phyllanthus section Emblica and section Urinaria differed mostly in habit (shrubs and trees vs. herbs), although woody shrubby plants from the Philippines were also placed in section Urinaria. Emblica rufuschaneyi, a shrubby species that would be placed in section Emblica is sister to a clade of herbaceous species and would result in a morphologically heterogeneous group if included. The staminate flowers in Phyllanthus sections Emblica and Urinaria are similar and we therefore opted to not retain any of the infrageneric groups. Phyllanthus subsection Baeobotryoides, which was created by Brunel (1987) to accommodate species with specialized inflorescence stalks, is also subsumed to avoid paraphyly. The genus has not been revised recently and species treatments have been scattered across several other
sections in older classifications of the genus Phyllanthus.
5. Rossignol et al. (1987) conducted a very thorough study of E. urinaria and several related species including morphology, Karyology and cross-breeding barriers. This resulted in a systematic revision which aimed to divide Phyllanthus section Urinaria into three subsections (subsection Urinaria, subsection Arenarius and subsection Benguetensis), but they only provided a full description for subsection Urinaria. Another of these subsections was planned to be published by Webster (2002 manuscript synopsis of subgenus Phyllanthus). Since these subsections delimit only a few species with very limited characters, these will not be pursued further. 6. Webster (1955) used the name of section Urinaria, based on the pre-Linnean work by Hermann (1717) and Burman (1737), but the name was validly published before as a subsection by Kuntze (1904) and placed in his section Typhophyllanthus. Therefore, the original author becomes Kuntze and not Webster as listed in Ralimanana \& Hoffmann (2011) and Bouman et al. (2018).

Included species and taxonomic changes (45 spp.):
Emblica albizzioides (Kurz 1873: 239) R.W.Bouman, comb. nov. Basionym: Cicca albizzioides Kurz, homotypic synonym: Phyllanthus albizzioides (Kurz) Hooker (1887: 289).
Emblica anamalayanus (Gamble 1925: 330) R.W.Bouman, comb. nov. Basionym: Pseudoglochidion anamalayanum Gamble, homotypic synonym: Phyllanthus anamalayanus (Gamble) Webster (1994: 45).
Emblica andamanicus (Balakrisnan \& Nair 1982 publ. 1983: 35) R.W.Bouman, comb. nov. Basionym: Phyllanthus andamanicus N.P.Balakr. \& N.G.Nair. (non Phyllanthus andamanicus Kurz (1870: 47) pro syn. = Glochidion helferi (Müler 1865a: 372) Hook.f. (1887: 311)), homotypic synonym: Phyllanthus balakrishnairii Govaerts \& Radcliffe-Smith (1996: 176).
Emblica angkorensis (Beille 1927:583) R.W.Bouman, comb. nov. Basionym: Phyllanthus angkorensis Beille.
Emblica arenarius (Beille 1927: 587) R.W.Bouman, comb. nov. Basionym: Phyllanthus arenarius Beille.
Emblica baeobotryoides (Wallich ex Müller 1863: 15) R.W.Bouman, comb. nov. Basionym: Phyllanthus baeobotryoides Wall. ex Müll.Arg.
Emblica benguetensis (Robinson 1909: 78) R.W.Bouman, comb. nov. Basionym: Phyllanthus benguetensis C.B.Rob.
Emblica bokorensis (Tagane 2015: 126) R.W.Bouman, comb. nov. Basionym: Phyllanthus bokorensis Tagane.
Emblica chamaepeuce (Ridley 1893: 345) R.W.Bouman, comb. nov. Basionym: Phyllanthus chamaepeuce Ridl.
Emblica chayamaritiae (Chantaranothai \& Kantachot in Kantachot \& Chantaranothai 2013: 217) R.W.Bouman, comb. nov. Basionym: Phyllanthus chayamaritiae Chantar. \& Kantachot.

Chapter 8

Emblica coi (Wu, Ferreras \& Chen 2017: 375) R.W.Bouman, comb. nov. Basionym: Phyllanthus coi M.J.Wu, Ferreras \& Y.J.Chen.
Emblica collinsiae (Craib 1913: 72) R.W.Bouman, comb. nov. Basionym: Phyllanthus collinsiae Craib.
Emblica columnaris (Müller 1863: 15) R.W.Bouman, comb. nov. Basionym: Phyllanthus columnaris Müll.Arg. (non Phyllanthus columnaris Warburg 1891: 356, nom. illeg.).
Emblica dealbatus (Alston 1931: 257) R.W.Bouman, comb. nov. Basionym: Phyllanthus dealbatus Alston.
Emblica embergeri (Haicour \& Rossignol in Rossignol et al. 1987: 1860)
R.W.Bouman, comb. nov. Basionym: Phyllanthus embergeri Haicour \& Rossignol.

Emblica erythrotrichus (Robinson 1911: 333) R.W.Bouman, comb. nov. Basionym: Phyllanthus erythrotrichus C.B.Rob.
Emblica geoffrayi (Beille 1927: 584) R.W.Bouman, comb. nov. Basionym: Phyllanthus geoffrayi Beille.
Emblica harmandii (Beille 1927: 586) R.W.Bouman, comb. nov. Basionym: Phyllanthus harmandii Beille.
Emblica multiflora (Hasskarl 1844: 240) R.W.Bouman, comb. nov. Basionym: Agyneia multiflora Hassk. (non Phyllanthus multiflorus Poiret (1804: 299), homotypic synonym: Phyllanthus hasskarlianus Müller (1863: 16).
Emblica fischeri Gamble (1925: 330) (non Phyllanthus fischeri Pax 1894: 77), homotypic synonym: Phyllanthus indofischeri Bennet in Raizada \& Bennet (1983: 221).
Emblica kerrii (Airy Shaw 1969: 32) R.W.Bouman, comb. nov. Basionym: Phyllanthus kerrii Airy Shaw.
Emblica lawii (Graham 1839: 181) R.W.Bouman, comb. nov. Basionym: Phyllanthus lawii J.Graham.
Emblica marianus (Müller 1863: 17) R.W.Bouman, comb. nov. Basionym: Phyllanthus marianus Müll.Arg.
Emblica niinamii (Hayata 1904: 14) R.W.Bouman, comb. nov. Basionym: Phyllanthus niinamii Hayata.
Emblica officinalis Gaertner (1791: 122), homotypic synonym: Phyllanthus emblica Linnaeus (1753: 982), homotypic synonym: Cicca emblica (L.) Kurz (1877: 352).
Emblica oxyphyllus (Miquel 1861: 448) R.W.Bouman, comb. nov. Basionym: Phyllanthus oxyphyllus Miq. (non Phyllanthus oxyphyllus Müller, 1863: 40, nom. illeg.).
Emblica pachyphyllus (Müller 1866: 353) R.W.Bouman, comb. nov. Basionym: Phyllanthus pachyphyllus Müll.Arg.
Emblica pacoensis (Thin 1992: 19) R.W.Bouman, comb. nov. Basionym: Phyllanthus pacoensis Thin.
Emblica pectinata (Hooker 1887: 290) Ridley (1924: 217), Basionym: Phyllanthus pectinatus Hook.f.

Emblica petelotii (Croizat 1942a: 30) R.W.Bouman, comb. nov. Basionym: Phyllanthus petelotii Croizat.
Emblica phuquocensis (Beille 1927: 581) R.W.Bouman, comb. nov. Basionym: Phyllanthus phuquocensis Beille.
Emblica prainianus (Collett \& Hemsley 1890: 123) R.W.Bouman, comb. nov. Basionym: Phyllanthus prainianus Collett \& Hemsl.
Emblica racemosa (Linnaeus f. 1782: 415) Sprengel (1826: 29), Basionym: Phyllanthus racemosus L.f., homotypic synonym: Phyllanthus polyphyllus Willdenow (1805: 586).
Emblica rheophyticus (Gilbert \& Li 2008: 188) R.W.Bouman, comb. nov. Basionym: Phyllanthus rheophyticus M.G.Gilbert \& P.T.Li.
Emblica rufuschaneyi (van Welzen, Bouman \& van der Ent in Bouman et al. 2018a: 4) R.W.Bouman, comb. nov. Basionym: Phyllanthus rufuschaneyi Welzen, R.W.Bouman \& Ent.

Emblica rupicola (Elmer 1910: 927) R.W.Bouman, comb. nov. Basionym: Phyllanthus rupicola Elmer.
Emblica saffordii (Merrill 1914: 104) R.W.Bouman, comb. nov. Basionym: Phyllanthus saffordii Merr.
Emblica scabrifolius (Hooker 1887: 299) R.W.Bouman, comb. nov. Basionym: Phyllanthus scabrifolius Hook.f.
Emblica societatis (Müller 1866: 364) R.W.Bouman, comb. nov. Basionym: Phyllanthus societatis Müll.Arg.
Emblica submarginalis (Airy Shaw 1982: 33) R.W.Bouman, comb. nov. Basionym: Phyllanthus submarginalis Airy Shaw.
Emblica sulcatus (Hunter \& Bruhl 1997b: 15) R.W.Bouman, comb. nov. Basionym: Phyllanthus sulcatus J.T.Hunter \& J.J.Bruhl.
Emblica thaii (Thin 1992: 22) R.W.Bouman, comb. nov. Basionym: Phyllanthus thaii Thin.
Emblica trungii (Thin 1992: 22) R.W.Bouman, comb. nov. Basionym: Phyllanthus trungii Thin.
Emblica tsarongensis (Smith 1921: 177) R.W.Bouman, comb. nov. Basionym: Phyllanthus tsarongensis W.W.Sm.
Emblica urinaria (Linnaeus 1753: 982) R.W.Bouman, comb. nov. Basionym: Phyllanthus urinaria L .

Clade H — Figs. 1, 2P, Q \& R (Supplementary Fig. 1)

Glochidion J.R.Forst. \& G.Forst.

Glochidion Forster \& Forster (1776: t.57), nom. cons; Hooker (1887: 305); Beille (1927: 608); Airy Shaw (1972: 271); Whitmore (1973: 98); Webster (1994: 46); van Welzen (2000: 56); van Welzen in van Welzen et al. (2000: 81); Radcliffe-

Chapter 8

Smith (2001: 47); van Welzen (2007: 308); Webster (2014: 79). — Type:
Glochidion ramiflorum J.R.Forst \& G.Forst.
Agyneia Linnaeus (1771: 161); Baillon (1858: 630). - Lectotype (designated by
Webster 1994): Agyneia pubera L. = Glochidion puberum (L.) Müll.Arg.
Bradleia Banks ex Gaertner (1790: 127). - Type: Bradleia sinica Gaertn. = Glochidion sinicum (Gaertn.) Hook. \& Arn.
Gynoon de Jussieu (1823: 335); (1824: 17). — Type: Gynoon rigidum A.Juss. = Glochidion rigidum (A.Juss.) Müll.Arg.
Glochidionopsis Blume (1826: 588); Baillon (1858: 639). - Type: Glochidionopsis sericea Blume $=$ Glochidion sericeum (Blume) Hook.f.
Glochisandra Wight (1852: 26). - Type: Glochisandra acuminata Wight = Glochidion lanceolarium (Roxb.) Voigt.
Zarcoa Llanos (1857: 423). — Type: Zarcoa philippica Llanos = Glochidion album (Blanco) Boerl.
Glochidion J.R.Forst. \& G.Forst. section Hemiglochidion Müller (1863: 58 61). — Hemiglochidion (Müll.Arg.) Schumann (1905: 289). - Lectotype (designated by Wheeler 1975): Glochidion ramiflorum J.R.Forst \& G.Forst.
Phyllanthodendron Hemsley (1898: t. 2563, 2564). —Phyllanthus subgenus Phyllanthodendron (Hemsl.) Webster in Webster \& Carpenter (2008: 608). Type: Phyllanthus mirabilis Müll.Arg. (= formerly Phyllanthodendron mirabile (Müll.Arg.) Hemsl.) = Glochidion mirabilis (Müll.Arg.) R.W.Bouman.
Coccoglochidion Schumann (1905: 292). — Type: Coccoglochidion erythrococcus
K.Schum. = Glochidion philippicum (Cav.) C.B.Rob.

Tetraglochidion Schumann (1905: 291). — Type: Tetraglochidion gimi K.Schum =
Glochidion gimi (K.Schum.) Pax \& K.Hoffm.

Diagnostic features: Shrubs (sometimes climbing) or trees, base sometimes succulent, monoecious or dioecious, branching phyllanthoid, branchlets pinnatiform, sometimes differentiated in vegetative and floriferous branchlets. Brachyblasts absent. Cataphyllary stipules triangular, indurate, base (not) auriculate. Cataphylls triangular. Leaves distichous. Inflorescences axillary, unisexual or bisexual fascicles, rarely paniculate. Staminate flowers: sepals 4-6; disc absent or sometimes segmented, 5 or 6 , then usually alternating with sepals, ligulate; stamens 3-8, filaments connate, anthers elongate, erect, dehiscing vertically, connectives apiculate or not, when apiculate extensions tightly together (pyramidal), separating when flowers get older; pollen subprolate to prolate, 3-6-colporate, colpi monoporate, exine tectate to reticulate; pistillode absent (except in G. moi (P.T.Li) R.W.Bouman). Pistillate flowers: sepals 2-8, obovate to elliptic; disc absent or segmented, same number as sepals, alternating with sepals; ovary 3-15-locular; styles present or absent, usually connate in a slender or globular column; stigmas usually reduced, seldom free, subentire, bifid or usually completely fused in a cap-like structure. Fruits (inflated) capsules, sometimes with soft tissue. Seeds trigonous, woody or
fleshy, smooth or striate, with or without sarcotesta. Distribution: Mainland Asia, Malesia, Australia, Pacific. Note -Former Phyllanthus subgenus Phyllanthodendron is paraphyletic with the genus Glochidion nested within and is therefore synonymized with Glochidion. While the former subgenus Phyllanthodendron is morphologically distinguishable from Glochidion, by retaining it as a separate genus, Phyllanthus section Pseudoactephila Croizat would also need to be separated. When split this would result in two genera that are only distinguished based on inflorescence structure. Section Pseudoactephila is here transferred and raised to subgenus level to resolve the paraphyly of subgenus Phyllanthodendron and the previously defined sections are subsumed in the two subgenera. Not all sections have been included in a phylogenetic study so placement in either subgenus Phyllanthodendron or Pseudoactephila is here based on the presence or absence of specialized floriferous branchlets next to vegetative branchlets.

Glochidion J.R.Forst. \& G.Forst. subgenus Glochidion

Glochidion J.R.Forst. \& G.Forst. subgenus Glochidion: Literature and type as under the genus.

Diagnostic features: Shrubs or trees, monoecious or dioecious, branching phyllanthoid, branchlets pinnatiform, not differentiated in vegetative and floriferous branchlets. Brachyblasts absent. Leaves distichous. Inflorescences axillary, unisexual or bisexual fascicles, rarely paniculate. Staminate flowers: sepals 5 or 6 , spreading to recurving when old; disc absent; stamens 3-8, filaments connate, anthers erect, dehiscing vertically, connectives usually apiculate and apicula tightly together, sometimes broadened into a head; pollen suboblate to prolate, 3-6-colporate, exine reticulate to tectate; pistillode absent. Pistillate flowers: sepals 2-8; disc absent; ovary 3-15-locular; stigmas usually connate in a slender or globular column or cap-like structure, apex split into short stigmatic lobes, sometimes free and then stigmas bifid. Fruits capsules. Seeds trigonous, often with sarcotesta. Distribution: Mainland Asia, Malesia, Australia, Pacific.
Notes - 1 . The combination of the genus Glochidion with Phyllanthus has been made several times in its history. As circumscribed here, subgenus Glochidion covers the traditional genus Glochidion excluding Phyllanthodendron. The relationship with subgenus Phyllanthodendron is remarkable as the flowers are very different: whereas the androecium consisting of connate stamens is similar, the absence of a floral disc in subgenus Glochidion is a notable distinction. Species of Glochidion are well known for their pollination system that involves mutualistic moths (Kato et al. 2003), but pollination observations in subgenus Phyllanthodendron are limited, with flies possibly implicated as potential pollinators (Kato \& Kawakita 2017).

Chapter 8

2. Several sections have been proposed for Glochidion by Müller (1865b, 1866), but the diagnostic characters, like the number of stamens, or locules in the ovary, overlap between sections. Within the genus (here subgenus) Glochidion, the following sections have been proposed: Hemiglochidion Müll.Arg., Glochidiopsis (Blume) Pax \& K.Hoffm., Scleroglochidion (Müll.Arg.) Pax \& K.Hoffm. and Tetraglochidion (K.Schum) Pax \& K.Hoffm, but none are retained here. The species in subgenus Glochidion are usually difficult to distinguish and keys, where available, mostly rely on minute characters (van Welzen 2007).
3. Aside from morphological similarity between species that are usually quite variable, the phylogeny of Glochidion is poorly resolved (Luo et al. 2017). Reported branch lengths are often short or result in polytomies, suggesting that the diversification of Glochidion might have been a recent event and possibly enhanced by co-evolution with their mutualistic pollinators.

Included species and taxonomic changes: about 340 species, which are not all listed here. Transfers of Glochidion species to the genus Phyllanthus by Wagner \& Lorence (2011) and Govaerts (2018) are reversed and treated below. The Indian species of subgenus Glochidion that were transferred to Phyllanthus by Chakrabarty \& Balakrishnan (2009b), were reinstated following Chakrabarty \& Balakrishnan (2018).

Glochidion acuminatissimum Airy Shaw (1972: 55), homotypic synonym: Phyllanthus lalongatanus Govaerts (2018: 95).
Glochidion acustylum Airy Shaw (1980b: 591), homotypic synonym: Phyllanthus acustylus (Airy Shaw) Govaerts (2018: 94).
Glochidion alstonii Airy Shaw (1981: 600), homotypic synonym: Phyllanthus alstonii (Airy Shaw) Govaerts (2018: 94).
Glochidion alticola Airy Shaw (1972: 8), homotypic synonym: Phyllanthus alticola (Airy Shaw) Govaerts (2018: 94).
Glochidion aluminescens Airy Shaw (1972: 16), homotypic synonym: Phyllanthus aluminescens (Airy Shaw) Govaerts (2018: 94).
Glochidion ambiguum Airy Shaw (1972: 62), homotypic synonym: Phyllanthus ambiguus (Airy Shaw) Govaerts (2018: 94).
Glochidion amentuligerum (Müller 1865a: 390) Croizat (1942b: 46). Basionym: Phyllanthus amentuliger Müll. Arg.
Glochidion andersonii Airy Shaw (1974: 287), homotypic synonym Phyllanthus sarawakensis Govaerts (2018: 95).
Glochidion anfractuosum Gibbs (1909: 168), homotypic synonym: Phyllanthus anfractuosus (Gibbs) Wagner \& Lorence (2011: 69).
Glochidion angulatum Robinson (1909: 91), homotypic synonym: Phyllanthus malesianus Govaerts (2018: 95).
Glochidion apodogynum Airy Shaw (1972: 44), homotypic synonym: Phyllanthus apodogynus (Airy Shaw) Govaerts (2018: 94).

Glochidion atalotrichum Smith (1967: 74; homotypic synonym: Phyllanthus atalotrichus (A.C.Sm.) Wagner \& Lorence (2011: 70).
Glochidion atrovirens Smith (1981: 481, 491), homotypic synonym: Phyllanthus atrovirens (A.C.Sm.) Wagner \& Lorence (2011: 70).
Glochidion bracteatum Gillespie (1932: 15), homotypic synonym: Phyllanthus bracteatus (Gillespie) Wagner \& Lorence (2011: 70).
Glochidion brothersonii Florence (1997a: 68), homotypic synonym: Phyllanthus brothersonii (J.Florence) Wagner \& Lorence (2011: 70).
Glochidion brunnescens Smith (1981: 491), homotypic synonym: Phyllanthus brunnescens (A.C.Sm.) Wagner \& Lorence (2011:71).
Glochidion calciphilum Croizat (1942b: 46), homotypic synonym: Phyllanthus calciphilus (Croizat) Wagner \& Lorence (2011:71).
Glochidion christophersenii Croizat (1943a: 213), homotypic synonym: Phyllanthus christophersenii (Croizat) Wagner \& Lorence (2011: 71).
Glochidion cleistanthoides Fosberg in Fosberg \& Oliver (1991: 263), homotypic synonym: Phyllanthus cleistanthoides (Fosberg) Wagner \& Lorence (2011:71).
Glochidion comitum Florence (1997b: 29), homotypic synonym: Phyllanthus comitus (J.Florence) Wagner \& Lorence (2011: 72).
Glochidion collinum Smith (1981: 494), homotypic synonym: Phyllanthus vitilevuensis Wagner \& Lorence (2011: 90).
Glochidion concolor Müller (1863: 62), homotypic synonym: Phyllanthus concolor (Müll.Arg.) Müller (1865a: 374).
Glochidion cordatum Seemann ex Müller (1863: 64), homotypic synonym: Phyllanthus cordatus (Seem. ex Müll.Arg.) Müller (1865a: 376).
Glochidion cuspidatum (Müll.Arg.) Pax (1898: 645), homotypic synonym: Phyllanthus cuspidatus Müller (1865a: 377).
Glochidion emarginatum Moore (1933: 30), homotypic synonym: Phyllanthus emarginatus (J.W.Moore) Wagner \& Lorence (2011: 73).
Glochidion euryoides Smith (1952:373), homotypic synonym: Phyllanthus euryoides (A.C.Sm.) Wagner \& Lorence (2011:74).
Glochidion gillespiei Croizat (1942b: 46), homotypic synonym: Phyllanthus gillespiei (Croizat) Wagner \& Lorence (2011: 74).
Glochidion gimi (Schumann 1905: 291); Pax \& Hoffmann (1931:58) Basionym: Tetraglochidion gimi K.Schum., homotypic synonym: Phyllanthus gimi (K.Schum.) Govaerts (2018: 94).

Glochidion grantii Florence (1996: 250), homotypic synonym: Phyllanthus grantii (J.Florence) Wagner \& Lorence (2011:74).

Glochidion grayanum (Müller 1865a: 380) Florence (1996: 253), homotypic synonym: Phyllanthus grayanus Müll.Arg.
Glochidion heterodoxum (Müller 1866: 321) Pax \& Hoffmann (1931:58), homotypic synonym: Phyllanthus heterodoxus Müll.Arg.
Glochidion hivaoaense Florence (1997a: 74), homotypic synonym: Phyllanthus

Chapter 8

hivaoaensis (J.Florence) Wagner \& Lorence (2011: 74).
Glochidion hosokawae Fosberg in Fosberg \& Oliver (1991: 261), homotypic synonym: Phyllanthus hosokawae (Fosberg) Wagner \& Lorence (2011:75).
Glochidion huahineense Florence (1997a: 75), homotypic synonym: Phyllanthus huahineensis (J.Florence) Wagner \& Lorence (2011: 77).
Glochidion inusitatum Smith (1981: 493), homotypic synonym: Phyllanthus inusitatus (A.C.Sm.) Wagner \& Lorence (2011: 77).
Glochidion kanehirae Hosokawa (1935: 22), homotypic synonym: Phyllanthus kanehirae (Hosok.) Wagner \& Lorence (2011: 77).
Glochidion longfieldiae (Riley 1926: 55) Brown (1935: 141), homotypic synonym: Phyllanthus longfieldiae L.Riley.
Glochidion macrosepalum Hosokawa (1935: 21), homotypic synonym: Phyllanthus macrosepalus (Hosok.) Wagner \& Lorence (2011:78).
Glochidion manono Baillon ex Müller (1863: 65), homotypic synonym: Phyllanthus manono (Baill. ex Müll.Arg.) Müller (1865a: 377).
Glochidion marchionicum Brown (1935: 142), homotypic synonym: Phyllanthus marchionicus (F.Br.) Wagner \& Lorence (2011: 79).
Glochidion marianum Müller (1863: 65), homotypic synonym: Phyllanthus mariannensis Wagner \& Lorence (2011: 79), non Phyllanthus marianus Müller (1863: 17).
Glochidion melvilleorum Airy Shaw (1971: 487), homotypic synonym: Phyllanthus melvilleorum (Airy Shaw) Wagner \& Lorence (2011: 81).
Glochidion multilobum Smith (1981: 493), homotypic synonym: Phyllanthus multilobus (A.C.Sm.) Wagner \& Lorence (2011:81).
Glochidion nadeaudii Florence (1996: 253), homotypic synonym: Phyllanthus nadeaudii (J.Florence) Wagner \& Lorence (2011: 81).
Glochidion orohenense Moore (1940: 6), homotypic synonym: Phyllanthus orohenensis (J.W.Moore) Wagner \& Lorence (2011:81).
Glochidion palauense Hosokawa (1935: 22), homotypic synonym: Phyllanthus otobedii Wagner \& Lorence (2011:81), non Phyllanthus palauensis Hosokawa (1935: 19).
Glochidion papenooense Florence (1996: 254), homotypic synonym: Phyllanthus papenooensis (J.Florence) Wagner \& Lorence (2011: 83).
Glochidion pitcairnense (Brown 1935: 142) H.St.John in St. John \& Philipson (1962: 187), Basionym: Glochidion taitense Baill. ex Müll.Arg. var. pitcairnensis F.Br., homotypic synonym: Phyllanthus pitcairnensis (F.Br.) Wagner \& Lorence (2011: 83).
Glochidion podocarpum (Müller 1865a: 388) Robinson (1911:330), homotypic synonym: Phyllanthus podocarpus Müll.Arg.
Glochidion ponapense Hosokawa (1935: 24), homotypic synonym: Phyllanthus ponapensis (Hosok.) Wagner \& Lorence (2011: 84).
Glochidion moorei Li (1982: 117), homotypic synonym: Phyllanthus raiateaensis

Wagner \& Lorence (2011: 84).
Glochidion raivavense Brown (1935: 142), homotypic synonym: Phyllanthus raivavensis (F.Br.) Wagner \& Lorence (2011: 85).
Glochidion rapaense Florence (1996: 258), homotypic synonym: Phyllanthus rapaensis (J.Florence) Wagner \& Lorence (2011: 85).
Glochidion myrtifolium Moore (1963: 10), homotypic synonym: Phyllanthus stjohnii Wagner \& Lorence (2011: 86).
Glochidion samoanus (Müller (1866: 289) R.W.Bouman, comb. nov., stat. nov. Basionym: Phyllanthus ramiflorus (J.R.Forst. \& G.Forst.) Müll.Arg. var. samoanus Müll.Arg., homotypic synonym: Phyllanthus samoanus (Müll.Arg.) Wagner \& Lorence (2011: 86).
Glochidion seemannii Müller (1863: 63), homotypic synonym: Phyllanthus seemannii (Müll.Arg.) Müller (1865a: 374).
Glochidion senyavinianum Glassman (1952: 71), homotypic synonym: Phyllanthus senyavinianus (Glassman) Wagner \& Lorence (2011:87).
Glochidion sessilis (Warburg 1891: 357) R.W.Bouman, comb. nov. Basionym: Phyllanthus sessilis Warb.
Glochidion taitense Baillon ex Müller (1863: 66), homotypic synonym: Phyllanthus taitensis (Baill. ex Müll.Arg.) Müller (1865a: 380).
Glochidion temehaniense Moore (1963: 15), homotypic synonym: Phyllanthus temehaniensis (J.W.Moore) Wagner \& Lorence (2011: 88).
Glochidion tuamotuense Florence (1997a: 98), homotypic synonym: Phyllanthus tuamotuensis (J.Florence) Wagner \& Lorence (2011: 89).
Glochidion vitiense (Müller 1865a: 374) Gillespie (1932: 17), homotypic synonym: Phyllanthus vitiensis Müll.Arg.
Glochidion websteri Fosberg in Fosberg \& Oliver (1991: 262), homotypic synonym: Phyllanthus websteri (Fosberg) Wagner \& Lorence (2011: 90).
Glochidion wilderi Florence (1997a: 99), homotypic synonym: Phyllanthus wilderi (J.Florence) Wagner \& Lorence (2011: 90).

Glochidion J.R.Forst. \& G.Forst. subgenus Phyllanthodendron (Hemsl.)
R.W.Bouman, comb. nov.

Phyllanthodendron Hemsley (1898: t. 2563); Ridley (1924: 205); Croizat (1942a: 33); Li (1987b: 8). - Phyllanthus L. section Phyllanthodendron (Hemsl.) Beille (1925: 160); Pax \& Hoffmann (1931: 63). - Phyllanthus L. subgenus Phyllanthodendron (Hemsl.) Webster (2008: 608). - Type: Phyllanthodendron mirabile (Müll.Arg.) Hemsl. (formerly Phyllanthus mirabilis Müll.Arg.) = Glochidion mirabilis (Müll. Arg.) R.W.Bouman.
Phyllanthodendron Hemsl. section Euphyllanthodendron Croizat (1942a: 33), nom. inval. - Type: Phyllanthus mirabilis Müll.Arg.(see Airy Shaw (1960: 469) and note 2) $=$ Glochidion lingulatum (Beille) R.W.Bouman.

Chapter 8

Phyllanthodendron Hemsl. section Calophyllum Croizat (1942a: 33). - Type:
Phyllanthus anthopotanicum Hand.-Mazz (formerly Phyllanthodendron anthopotamicum (Hand.-Mazz.) Croizat) = Glochidion anthopotanicum (Hand.Mazz) R.W.Bouman.

Diagnostic features: Shrubs (sometimes climbing) or trees, base sometimes succulent, monoecious or dioecious, branching phyllanthoid, branchlets pinnatiform, differentiated in vegetative and floriferous branchlets. Brachyblasts absent. Leaves distichous. Inflorescences axillary, bisexual fascicles. Staminate flowers: sepals 5 or 6 ; disc glands 5 or 6 , free, ligulate; stamens 3 (or 4), filaments connate, anthers erect, dehiscing vertically, connectives usually apiculate; pollen subprolate, 4 -colporate, colpi monoporate, exine reticulate; pistillode absent. Pistillate flowers: sepals 5 or 6, oblong, obovate-elliptic; disc glands 5 or 6, free, ligulate; ovary 3-locular; styles present or absent; stigmas bifid or subentire. Fruits (inflated) capsules. Seeds trigonous, striate, hollow ventrally.
Distribution: Mainland Asia.
Notes - 1. Phyllanthodendron Hemsl. was a separate genus that was retained in the Flora of China (Li 1987b), while other treatments include it as a section within Phyllanthus (see treatment of species in Beille 1925; Chantaranothai 2007). Several sections have been defined, often based on the habit or number of sepals and stamens, but the differences are often small. These sections are here subsumed, with Phyllanthus sections Phyllanthodendron and Calophyllum placed in subgenus Phyllanthodendron on account of the specialized floriferous branchlets. Sections Tetrandrum, Pseudoactephila and Arachnodes do not have floriferous branchlets and are subsumed in subgenus Pseudoactephila.
2. Croizat (1942a) divided the genus Phyllanthodendron Hemsl. in three sections, section Phyllanthodendron, Pseudoactephila and Calophyllum Croizat. Phyllanthus lingulatus Beille was incorrectly designated as the type of section Phyllanthodendron (type of the genus Phyllanthodendron is P. mirabilis (Müll.Arg.) Hemsl.), which was later corrected by Airy Shaw (1960).

Included species and taxonomic changes (5 spp.):
Glochidion anthopotamicus (Handel-Mazzetti 1931: 223) R.W.Bouman, comb. nov.
Basionym: Phyllanthus anthopotamicus Hand.-Mazz.
Glochidion dongmoensis (Thin 1992: 16) R.W.Bouman, comb. nov. Basionym: Phyllanthus dongmoensis Thin.
Glochidion dunnianus (Léveillé 1911: 324) R.W.Bouman, comb. nov. Basionym: Phyllanthodendron dunnianum H.Lév., homotypic synonym: Phyllanthus dunnianus (H.Lév.) Hand.-Mazz. ex Rehder (1933: 230).
Glochidion kaweesakii (Pornpongrungrueng, Chantaranothai \& Parnell in Pornpongrungrueng et al. 2017: 572) R.W.Bouman, comb. nov. Basionym: Phyllanthus kaweesakii Pornp., Chantar. \& J.Parn.

Glochidion mirabilis (Müller 1864: 513) R.W.Bouman, comb. nov. Basionym: Phyllanthus mirabilis Müll.Arg.

Glochidion J.R.Forst. \& G.Forst. subgenus Pseudoactephila (Croizat)
R.W.Bouman, stat. et comb. nov.

Phyllanthus L. subgenus Phyllanthodendron (Hemsl.) G.L.Webster section Pseudoactephila Croizat (1942a: 33). - Type: Phyllanthus roseus (Craib \& Hutch.) Beille (= Phyllanthodendron roseum Craib \& Hutch. = Glochidion roseum (Craib \& Hutch.) R.W.Bouman).
Uranthera Pax \& Hoffmann (1911: 95), nom. illeg., non Uranthera Naudin (1845: 189). - Type: Uranthera siamensis Pax \& K.Hoffm. (= formerly Phyllanthus roseus (Craib \& Hutch.) Beille) = Glochidion roseum (Craib \& Hutch.) R.W.Bouman.

Arachnodes Gagnepain (1950: 32). - Phyllanthus L. subgenus Phyllanthodendron (Hemsl.) G.L.Webster section Arachnodes (Gagnep.) Airy Shaw (1960: 470). - Type: Arachnodes chevalieri Gagnep. (non Glochidion chevalieri Beille 1927: 615) (= formerly Phyllanthus arachnodes Govaerts \& Radcl.-Sm.) = Glochidion arachnodes (Govaerts \& Radcl.-Sm.) R.W.Bouman.
Phyllanthodendron Hemsl. section Tetrandrum Li (1987b: 8). - Type:
Phyllanthodendron moi (P.T.Li) P.T.Li (= formerly Phyllanthus moi P.T.Li) = Glochidion moi (P.T.Li) R.W.Bouman.

Diagnostic features: Shrubs, sometimes twining, monoecious, branching phyllanthoid, branchlets pinnatiform, not differentiated in vegetative and floriferous branchlets. Brachyblasts absent. Leaves distichous. Inflorescences axillary, bisexual, flowers crowded in long-pedicelled clustered fascicles. Staminate flowers: sepals 4-6; disc glands 4-6, free, ligulate; stamens 3 or 4, filaments connate, anthers erect, dehiscing vertically, connectives usually apiculate; pollen subprolate, 4 -colporate, colpi monoporate, exine reticulate; pistillode absent (except in G. moi). Pistillate flowers: sepals 5 or 6; disc glands 5 or 6, free, ligulate; ovary 3-locular; styles?; stigmas bifid to entire. Fruits (inflated) capsules. Seeds trigonous. Distribution: Mainland Asia.
Note -Phyllanthodendron section Tetrandrum was a monotypic section for a species with a 4-merous staminate flower that is here subsumed as the number of sepals is considered variable within the subgenus. Phyllanthodendron section Arachnodes was mainly distinguished by its twining habit.

Included species and taxonomic changes (14 spp.):
Glochidion arachnodes (Govaerts \& Radcliffe-Smith 1996: 175) R.W.Bouman, comb. nov. Basionym: Arachnodes chevalieri Gagnepain (1950: 32, non Glochidion chevalieri Beille 1927: 615), homotypic synonym: Phyllanthus

Chapter 8

arachnodes Govaerts \& Radcl.-Sm.
Glochidion breyniopsis Esser \& R.W.Bouman, nom. nov. (non G. breynioides Robinson 1909: 95), Basionym: Phyllanthodendron breynioides P.T.Li (1987b: 6), homotypic synonym: Phyllanthus breynioides (P.T.Li) Govaerts \& RadcliffeSmith (1996: 176).
Glochidion carinatum (Beille 1925: 160) R.W.Bouman, comb. nov. Basionym: Phyllanthus carinatus Beille, homotypic synonym: Phyllanthodendron carinatum (Beille) Croizat (1942a: 36).
Glochidion caudatifolium (Li 1987b: 7) R.W.Bouman, comb. nov. Basionym: Phyllanthodendron caudatifolium P.T.Li, homotypic synonym: Phyllanthus lii Govaerts \& Radcliffe-Smith (1996: 177).
Glochidion lativenium (Croizat 1942a: 36) R.W.Bouman, comb. nov. Basionym: Phyllanthodendron lativenium Croizat, homotypic synonym: Phyllanthus lativenius (Croizat) Govaerts \& Radcliffe-Smith (1996: 177).
Glochidion lingulatum (Beille 1925: 161) R.W.Bouman, comb. nov. Basionym: Phyllanthus lingulatus Beille.
Glochidion moi (Li 1983: 167) R.W.Bouman, comb. nov. Basionym: Phyllanthus moi P.T.Li.

Glochidion orbicularifolium (Li 1987b: 5) R.W.Bouman, comb. nov. Basionym: Phyllanthodendron orbicularifolium P.T.Li, homotypic synonym: Phyllanthus orbicularifolius (P.T.Li) Govaerts \& Radcliffe-Smith (1996: 177).
Glochidion petraeum (Li 1987b: 4) R.W.Bouman, comb. nov. Basionym: Phyllanthodendron petraeum P.T.Li, homotypic synonym: Phyllanthus guanxiensis Govaerts \& Radcliffe-Smith (1996: 176).
Glochidion poilanei (Beille 1925: 162) R.W.Bouman, comb. nov. Basionym: Phyllanthus poilanei Beille.
Glochidion minutiflorum (Ridley 1911: 169) R.W.Bouman, comb. nov. Basionym: Cleistanthus minutiflorus Ridl., homotypic synonym: Phyllanthus ridleyanus Airy Shaw (1972: 323).
Glochidion roseum (Craib \& Hutchinson 1910: 23) R.W.Bouman, comb. nov. Basionym: Phyllanthodendron roseum Craib \& Hutch., homotypic synonym: Phyllanthus roseus (Craib \& Hutch.) Beille (1927: 590).
Glochidion rubicundum (Beille 1925: 162) R.W.Bouman, comb. nov. Basionym: Phyllanthus rubicundus Beille.
Glochidion yunnanense (Croizat 1942a: 36) R.W.Bouman, comb. nov. Basionym: Phyllanthodendron yunnanense Croizat, homotypic synonym Phyllanthus yunnanensis (Croizat) Govaerts \& Radcliffe-Smith (1996: 178).

Clade I - Fig. 1, 2N \& O (supplementary fig. 1)

Breynia J.R.Forst. \& G.Forst.
Breynia Forster \& Forster (1776: 145), nom. cons.- Type: Breynia disticha J.R.Forst.
\& G.Forst. (for a more expanded nomenclature of Breynia and its subgeneric groups, see van Welzen et al. 2014a).

Diagnostic features: Shrubs or herbs, monoecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Cataphyllary stipules triangular, indurate, base not auriculate. Cataphylls triangular to elongate. Leaves distichous. Inflorescences axillary, usually unisexual fascicles, sometimes larger compound inflorescences. Staminate flowers discoid or campanulate to turbinate; sepals 6, usually connate for half to whole length with some exceptions, with sepal scales (absent in B. granulosa (Airy Shaw) Welzen \& Pruesapan, B. kerrii (Airy Shaw) Welzen \& Pruesapan, B. pierrei (Beille) Welzen \& Pruesapan, B. pulchella (Airy Shaw) Welzen \& Pruesapan, B. shawii (Welzen) Welzen \& Pruesapan, B. subterblanca (C.E.C.Fisch.) C.E.C.Fisch., and B. rostrata Merr.); disc absent; stamens 3, filaments connate, free parts horizontal or oblique or fused and vertical; anthers dehiscing lengthwise (same as vertically in other genera); pollen 4-16-colporate, colpi diploporate, exine (micro) reticulate, tectate; pistillode absent. Pistillate flowers: sepals 6; disc absent; ovary 3-locular, sometimes with an apical rim; styles absent; stigmas bifid or entire, horizontal to erect, sometimes reduced. Fruits capsules, tardily dehiscent, wider than long. Seeds trigonous, smooth. Distribution: Mainland Asia (to China), Malesia, Australia, Pacific.
Note - Mainly distinguished from the genus Synostemon by the subglobose ovaries that are usually flattened apically, bifid stigmas that are usually split for more than half of their length and smooth seeds (van Welzen et al. 2014a). Species in the genus Synostemon have ovate ovaries with an obtuse or lobed apex, usually entire or only slightly bifid stigmas (less than half of their length) and seeds ornamented (van Welzen et al. 2014a).

Breynia J.R.Forst. \& G.Forst. subgenus Breynia

Breynia J.R.Forst. \& G.Forst. subgenus Breynia: Literature and type as under the genus.

Diagnostic features: Shrubs or herbs, monoecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Inflorescences axillary, usually unisexual fascicles. Staminate flowers discoid or campanulate to turbinate; sepals 6, connate for half to almost completely; disc absent; stamens 3, filaments connate, connective also sometimes fused; anthers dehiscing vertically; pollen 4-12-colporate, colpi diploporate, exine (micro-) reticulate, tectate. Pistillate flowers: sepals 6; disc absent; ovary 3-locular, sometimes with an apical rim; styles absent; stigmas bifid or entire, horizontal to erect, sometimes reduced in size. Fruits capsules, tardily dehiscent, wider than long. Seeds trigonous, smooth.
Distribution: Mainland Asia, Malesia, Australia, Pacific.

Chapter 8

Breynia J.R.Forst. \& G.Forst. section Breynia

Breynia J.R.Forst. \& G.Forst. section Breynia: Literature and type as under the genus.
Breynia section Breyniastrum Baillon (1866: 344). - Lectotype (designated by Esser in van Welzen et al. 2014a): Breynia stipitata Müll.Arg.

Diagnostic features: Shrubs or herbs, monoecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Staminate flowers: campanulate to turbinate; sepals 6, usually connate for whole length; disc absent; stamens 3, filaments connate, connective also sometimes fused; anthers dehiscing vertically; pollen 4-12-colporate, colpi diploporate, exine (micro) reticulate, tectate. Pistillate flowers: sepals 6; disc absent; ovary 3-locular; styles absent; stigmas bifid or entire, horizontal to erect, often reduced in size. Fruits capsules, tardily dehiscent, wider than long. Seeds trigonous, smooth.
Distribution: Mainland Asia, Malesia, Australia, Pacific.
Breynia J.R.Forst. \& G.Forst. section Cryptogynium (Müll.Arg.) Welzen \& Pruesapan

Breynia J.R.Forst. \& G.Forst. section Cryptogynium (Müll.Arg.) Welzen \& Pruesapan in van Welzen et al. (2014: 89); van Welzen (2017: 90). —Type: Ceratogynum rhamnoides Wight = Breynia quadrangularis (J.G.Klein ex Willd.) Chakrab. \& N.P.Balakr.

Diagnostic features: Shrubs or herbs, monoecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Staminate flowers discoid; sepals 6 , usually connate for half to whole length with some exceptions; disc absent; stamens 3, filaments connate, connective also sometimes fused, anthers dehiscing horizontally to vertically; pollen 6-12-colporate, colpi diploporate, exine (micro) reticulate, tectate. Pistillate flowers: sepals 6; disc absent; ovary 3-locular, sometimes with an apical rim; styles absent; stigmas bifid, horizontal to erect. Fruits capsules, tardily dehiscent, wider than long. Seeds trigonous, smooth.
Distribution: Mainland Asia, Malesia.
Breynia J.R.Forst. \& G.Forst. subgenus Sauropus (Blume) Welzen \& Pruesapan
Breynia J.R.Forst. \& G.Forst. subgenus Sauropus (Blume) Welzen \& Pruesapan in van Welzen et al. (2014: 91). - Type: Sauropus stipitatus Hook.f. = Breynia gynophora Welzen \& Pruesapan.

Diagnostic features: Shrubs or herbs, monoecious, branching phyllanthoid, branchlets pinnatiform. Brachyblasts absent. Inflorescences axillary, usually unisexual fascicles, sometimes larger and longer compound inflorescences. Staminate flowers discoid; sepals 6, usually connate for half to completely with some exceptions; disc absent; stamens 3, filaments connate, connectives horizontal, with thecae hanging underneath, dehiscing vertically; pollen 8-16-colporate, colpi diploporate, exine (micro) reticulate, tectate. Pistillate flowers: sepals 6; disc absent; ovary 3-locular; styles absent; stigmas bifid, horizontal to ascending. Fruits capsules, tardily dehiscent, wider than long. Seeds trigonous, smooth.
Distribution: Mainland Asia, Malesia, Australia.
Note - Other characters that might be useful for distinguishing this group from other Breynia species include the considerably large leaf size in most species, with the exception of B. carnosa Welzen \& Pruesapan (Van Welzen et al. 2014a).

Synostemon F.Muell.

Synostemon Mueller (1859: 32). - Lectotype (designated by Wheeler 1975): Synostemon ramosissimus F.Muell.

Diagnostic features: Shrubs or herbs, monoecious, branching phyllanthoid or subphyllanthoid, branchlets pinnatiform. Brachyblasts absent (except in S. rigens F.Muell.). Cataphyllary stipules triangular, indurate or membranous, base not auriculate. Cataphylls triangular to elongate. Inflorescences axillary, usually unisexual fascicles. Staminate flowers: campanulate to turbinate; sepals 6, connate or free, without sepal scales (except present in S. bacciformis (L.) G.L.Webster and S. anemoniflorus (J.T.Hunter \& J.J.Bruhl) I.Telford \& Pruesapan); disc absent; stamens 3, filaments connate, connectives often fused, apiculate with apicula free or fused in a cap; anthers dehiscing vertically; pollen 3-8-colporate, colpi diploporate, exine (micro) reticulate, heterobrochate; pistillode absent. Pistillate flowers: sepals 6; disc absent; ovary 3-locular, sometimes with a (slight) rim; styles absent; stigmas bifid (except in S. elachophyllus (F.Muell.) Airy Shaw), erect or spreading. Fruits capsules, schizocarpic, subglobose or ovoid, longer than wide. Seeds trigonous, prominently sculptured.
Distribution: Mainly Australia with one species also occurring in Malesia (Synostemon sphenophyllus Airy Shaw in Papua New Guinea) and one widespread tropical coastal Indian and western Pacific Ocean species, S. bacciformis. Notes - Synostemon has recently been enlarged through close taxonomic study (Telford \& Naaykens 2015; Telford et al. 2015, 2016, 2019) and consists of about 41 species (one unpublished). Only species that were still not transferred are listed below.

Included species and taxonomic changes: Five previously untreated species of

Chapter 8

Sauropus are transferred here to Synostemon to complete the reinstatement of Synostemon.
Synostemon anemoniflorus (Hunter \& Bruhl 1997a: 662) I.Telford \& J.J.Bruhl, comb. nov. Basionym: Sauropus anemoniflorus J.T.Hunter \& J.J.Bruhl.
Synostemon arenosus (Hunter \& Bruhl 1997b: 166) I.Telford \& J.J.Bruhl, comb. nov. Basionym: Sauropus arenosus J.T.Hunter \& J.J.Bruhl.
Synostemon brunonis (Moore 1920: 213) I.Telford \& J.J.Bruhl, comb. nov. Basionym: Sauropus brunonis (S.Moore) Airy Shaw (1980c: 672).
Synostemon huntii (Ewart \& Davies 1917: 164) I.Telford \& J.J.Bruhl, comb. nov. Basionym: Sauropus huntii (Ewart \& O.B.Davies) Airy Shaw (1980c: 679).
Synostemon paucifolius (Hunter \& Bruhl 1997b: 172) I.Telford \& J.J.Bruhl, comb. nov. Basionym: Sauropus paucifolius J.T.Hunter \& J.J.Bruhl.

Doubtful species

Phyllanthus petiolaris Roxb. was described by Roxburgh (1832), but he only mentioned the habit and the presence of flowers. More details on the flowers are necessary to place it in any genus. Based on its location, the species could be in any of these genera: Cathetus, Nymphanthus or Emblica. Balakrishnan \& Chakrabarty (2007) treat this as an unplaced name.

Discussion \& conclusions

This treatment is a proposed solution to the paraphyly of the genus Phyllanthus. By reinstating nine other genera separated from Phyllanthus along with other subgeneric realignments we feel confident that this classification is a much better reflection of the evolutionary history of this group. All genera proposed here are monophyletic in our phylogenetic analyses (Suppl Fig.1; Bouman et al. 2021) and might be used for further extensive studies. Many genera have not received a full taxonomic treatment as a group, and future revisions could result in the recognition of new species. Some of relationships found in Bouman et al. (2021) were surprising and in contrast with morphology based classification as the morphological character states used are of parallel origin. These are interesting for further study (such as the relation between groups within the genus Glochidion).

Acknowledgements

This work was carried out as part of the Ph.D. research of the first author, funded by the Hortus botanicus Leiden and Leiden University. The second author thanks the Leiden University Fund (LUF) for their support of the chair 'Botanical Gardens and Botany of Southeast Asia.' The last author thanks the Treub Maatschappij, the Society for the Advancement of Research in the Tropics, for their support of the Ornstein chair in Tropical Plant Biogeography. Royal Botanic Gardens Kew (K), Naturalis Biodiversity Center (L, U, WAG), Missouri Botanical Garden (MO) and the Muséum National d'Histoire Naturelle (P) are gratefully acknowledged for
lending us material or sending us scans of herbarium material. Two anonymous reviewers are thanked for their comments to help improve our manuscript. Photographs were kindly supplied by several contributors and the authors wish to thank T. Williams of the Société des Mines de Fer de Guinée, C. Jongkind, R.-Y. Yu and M.S. Nuraliev (whose photos were made during expeditions of the Joint Russian-Vietnamese Tropical Scientific and Technological Center).

Chapter 8

Revised phylogenetic classification of Phyllanthus

Chapter 8

Appendix 8-1. Species specific differences with previous classification by Bouman et al. (2018: table 2).

Several species were treated in the main text in other subgeneric groups differing from the species table presented by Bouman et al. (2018b). In this appendix we briefly explain minor changes and species transfers that are not treated in the main text, but were the result of new information.

Australian species of Dendrophyllanthus

Three Australian species here treated in the genus Cicca (C. lacunella, C. lacunaria and C. erwinii) were originally placed in Phyllanthus section Antipodanthus or Lysiandra, but were found to be nested in the clade of Dendrophyllanthus (supplementary fig. 1).

Species by Blanco (1837,1845)

Two species described by Blanco (1845) were brought to our attention by P. Pelser (pers. comm.) while discussing identifications for Co's Digital Flora of the Philippines (Pelser et al., 2011 onwards). At the time we had seen no material of these species and they were treated by Müller (1866) in a section that seemed to be synonymized under the genus Flueggea Barker \& Welzen 2010). However, this was a consequence of a wrong identification of the type material of P. glaucus, which was corrected in Chakrabarty \& Balakrishnan (2018). The two following species were originally published in the genus Kirganelia and seemed valid, but were reduced to synonymy by Merrill (1918), which is followed here until more material is collected. This means that we still treat both names as synonyms and do not include them in the genus Kirganelia. Merrill (1918) synonymized P. nigrescens (Blanco) Müll.Arg. under Glochidion lancifolium and P. pumilus (Blanco) Müll.Arg. as P. niruri (though P. amarus or P. debilis, here M. amara and M. debilis are more likely).

Species by Koorders

The affinities of P. celebicus Koord. and P. minahassae Koord. were not known during the study of Bouman et al. (2018b). Subsequent study of the type material showed these species to have the characteristic flowers of species in Phyllanthus subgenus Eriococcus (Bouman et al. 2019), which are all transferred here to the reinstated genus Nymphanthus.

Indian species of Phyllanthus s.l.

The subgeneric placements in Chakrabarty \& Balakrishnan (2018) mostly follow Webster (1956, 1957, 1958), but later modifications proposed by Brunel (1987) or Ralimanana \& Hoffmann $(2011,2013)$ are not incorporated. Phyllanthoid branching, which is a phylogenetically informative character, is mentioned in the descriptions of several groups, but not applied consistently. Without the inclusion of
pictures of the flowers and specimens with clear depiction of the branching system, many placements here await inclusion of a palynological or phylogenetic study. Phyllanthus ajmerianus L.B.Chaudhary \& R.R.Rao (here Moeroris ajmerianus (L.B.Chaudhary \& R.R.Rao) R.W.Bouman) is treated here in Moeroris subgenus Tenellanthus on account of its 5 -merous staminate flower with 5 stamens that are partially connate at the base (see Chaduhary \& Rao 2006). The longitudinally striate seed is also common in the genus Moeroris and subgenus Tenellanthus contains more cryptophytic species.
Phyllanthus brevipes Hook.f. was treated in Phyllanthus subgenus Afroswartziani (Bouman et al. 2018b), but is probably a species of Cathetus subgenus Macraea. Chakrabarty \& Balakrishnan (2018) treat this species in Phyllanthus subgenus Phyllanthus, but mention that laminate leaves are present on all axes (nonphyllanthoid branching?) and it is therefore treated here in the genus Cathetus. The staminate flower has 3 partially connate stamens and the pistillate disc is 6 lobed, but not segmented which is more typical for Cathetus subgenus Macraea than the genus Nellica.
Phyllanthus griffithii Müll.Arg. was listed in Bouman et al. (2018b), but P. stylosus Griff. was published earlier and is a valid epithet. Phyllanthus griffithii is therefore listed here as a synonym of P. stylosus following treatments that consider this to be the same species (Chakrabarty \& Balakrishnan 2018). Specimens attributed to P. stylosus bear leaves on all axes (specimen W. Griffith 4822 deposited at K with barcodes K000246565, K000246566), only basally connate stamens and an entire pistillate disc (Chakrabarty \& Balakrishnan 2018). It is treated here in Cathetus subgenus Macraea.
Phyllanthus hakgalensis Thwaites ex Trimen was tentatively placed by Webster (1997) in section Paraphyllantus (now genus Nellica), but he mentioned that this species has an entire pistillate disc, which is more typical for Cathetus subgenus Macraea. Based on the entire pistillate disc and three free stamens in the staminate flower, it is here treated in Cathetus subgenus Macraea. Verwijs et al. (2019) did not include this species in their treatment of subgenus Macraea, but did discuss similarities. Chakrabarty \& Balakrishnan (2018) treated this species in Phyllanthus subgenus Eriococcus (now genus Nymphanthus) based on descriptions by Alston (1931), which would need to be confirmed. Unfortunately, this species is only known from the type specimen. Webster (1997) described the phyllotaxis as spiral, which could be plesiomorphic or this species might be related to Cicca subgenus Betsileani (Jean F.Brunel) Ralim. \& Petra Hoffm. (very unlikely considering its geographical range). Perhaps the pollen could be informative, but this species has not been included in any previous palynological study.
Phyllanthus leschenaultii Müll.Arg. has phyllanthoid branching and is described as having partially connate filaments in the staminate flower with horizontally dehiscing orbicular anthers (Chakrabarty \& Balakrishnan 2018). This is comparable to Moeroris subgenus Moeroris. However, we could not confidently confirm the

Chapter 8

branching type and, less likely, it could also be a species of Cathetus subgenus Macraea.
Phyllanthus mozambicensis Gand. was still listed as an accepted species in Govaerts et al. (2000) and Bouman et al. (2018b), but Radcliffe-Smith (1996) treats it as a synonym of P. parvulus. As this epithet has to our knowledge not been reinstated as a separate species, it is only treated as a synonym here and not separately transferred to the genus Moeroris.
Phyllanthus parvifolius Buch.-Ham. ex D.Don is treated similarly to P. stylosus and P. praetervisus and placed in Cathetus subgenus Macraea (see Mitra \& Sanjappa 2003 for more information on these complex species). The difficulty in assigning these species also lies in the apparent fusion of the filaments, which can be variable in species of Cathetus subgenus Macraea. A palynological study by Sagun \& Van der Ham (2003) mentions unpublished data from Punt gouping the pollen of P. griffithii (here C. stylosus), P. parvifolius and P. praetervisus in one type that approaches pantoporate pollen (as seen in Cathetus subgenus Cathetus).
Phyllanthus pseudoparvifolius R.L.Mitra \& Sanjappa is treated in the genus Cathetus. The free stamens in the staminate flower and ornamentation of the seeds are similar to other species of Cathetus subgenus Macraea, and it is therefore included here. Unfortunately, this placement is also tentative and awaits a palynological or phylogenetic study.
The syntypes of Phyllanthus praetervisus Müll.Arg. in BR seem to be a mixture. One appears to have non-phyllanthoid branching with leaves on all axes (BR0000013336042) and the other has phyllanthoid branching with fascicled branchlets (BR0000005100972). Phyllanthus praetervisus is tentatively placed in Cathetus subgenus Macraea, but the material listed in Chakrabarty \& Balakrishnan (2018) as isotypes do not appear to be from the same collection.

Phyllanthus pendulus Roxb. is placed in the genus Moeroris, but there are only some meagre literature descriptions available (see Chakrabarty \& Balakrishnan 2007, 2018).

Individual cases (treated alphabetically)

Phyllanthus caesius Airy Shaw \& G.L.Webster was originally placed by Airy Shaw \& Webster (1971) in subgenus Kirganelia, but later treated in subgenus Gomphidium (Airy Shaw 1980). After reviewing the isotype stored at L (L0016415), we decided to follow the latter placement in subgenus Gomphidium (here in genus Dendrophyllanthus).
Phyllanthus caudatifolius Merr. was placed in subgenus Kirganelia with some doubt and after seeing the type specimen R.C. McGregor 43867 from K (K001056679) and dissecting a flower, it seems better placed in what we consider Dendrophyllanthus section Leptonema.
Phyllanthus dumetosus Poir. was treated in subgenus Kirganelia and listed as occurring in the Philippines, but this was a mistake in the JSTOR's Global Plants
database (https://plants.jstor.org/). After studying material of this species from K, we treat it in the genus Moeroris subgenus Tenellanthus.
Phyllanthus fallax Müll.Arg. is treated in Phyllanthus section Loxopodium since the type seems to have non-phyllanthoid branching.
Phyllanthus lasiogynus Müll.Arg. is not further placed in any subgenus, but appears to have phyllanthoid branching and is probably better suited to stay in the genus Phyllanthus.
Phyllanthus lunifolius Gilbert \& Thulin is doubtfully treated in the genus Moeroris, mainly because of its distribution. Staminate flowers are needed to confirm placement. It has large brachyblasts, but these also occur in the genus Cicca. Its ericoid leaves are unusual within the African species of Phyllanthus and its relation to other species is unknown.
Phyllanthus polyphyllus Willd. is treated as synonym of Emblica racemosus following Chakrabarty \& Balakrishnan (2017 as Phyllanthus racemosus).
Phyllanthus pseudocarunculatus Radcl.-Sm. is a later homotypic synonym of
Brunel's (1987) P. carunculatus. Both names are based for the same material and Radcliffe-Smith (1996) published his later name under the assumption that Brunel's name (1987) was not validly published.
Phyllanthus rupicola Elmer is treated in the genus Emblica since it bears great similarity to E. erythrotrichus. However, the staminate flower was never described and is needed to confirm this placement.
Phyllanthus securinegoides Merr. could also be Emblica based on pollen described in Wu et al. 2016. The same is true for P. glochidioides which has no description of the staminate flower. The Philippine P. apiculatus should also be checked to determine whether it belongs in the genus Dendrophyllanthus (here done provisionally) or in the genus Emblica.
Phyllanthus squamifolius (Lour.) Stokes and P. villosus (Lour.) Müll.Arg. were also treated in Nymphanthus on account of their geography and because they were originally also treated in that genus. No material was seen of these species and more collections are needed to confirm our placement.
Phyllanthus triphlebius C.B.Rob. is treated in the genus Nymphanthus, but its pollen is very different from the other species of this genus (see Wu et al. 2016).
Phyllanthus udoricola Radclf.-Sm. was described by Radcliffe-Smith (1996b) with P. pusillus Jean F.Brunel listed as a invalidly published synonym since Brunel's (1987) thesis was not yet accepted as validly published. However, since his thesis contains a printing company and copies of it have been distributed to several institutes, it can be seen as validly published under article 30.8 of the Shenzhen Code (Turland $e t$ al. 2018). Brunel (1987). The thesis is now accepted and followed in several studies (Ralimanana \& Hoffmann 2011, 2014; Ralimanana et al. 2013). Therefore, P. pusillus (here transferred to Moeroris pusillus) becomes the oldest legitimate name and P. udoricola is placed in synonymy.
Phyllanthus vergens Baill. has not yet been placed in any specific subgenus within

Chapter 8

Phyllanthus (Ralimanana \& Hoffman, 2011; Ralimanana \& Cable, 2020), the staminate flowers with (to five) free stamens suggest an affinity to the genus Cicca. The inflorescences borne on leafless branches (Ralimanana \& Cable 2020) are also consistent with other species of the genus Cicca. Phyllanthus zippelianus Müll.Arg. is treated in Kirganelia since it was described originally with 5 stamens, but more material is needed to confirm our placement.

Appendix 8-2. Shown on following pages.
Supplementary figure 8-1. Phylogeny of tribe Phyllantheae from combined dataset of Bouman et al. (2021) and Falcón et al. (2020) showing the new classification proposed here; clade labels A-I follow figure 1. Dataset is composed of nuclear (ITS and PHYC) and plastid (accD-psaI, matK and trnS-trnG) markers. Posterior probabilities (PP) from Bayesian inference are displayed above nodes; Maximum Likelihood bootstrap scores are displayed below the nodes. Undescribed species are indicated with an asterisk (*).
https://www.biotaxa.org/Phytotaxa/article/view/phytotaxa.540.1.1/71295
Appendix 8-2. GenBank accessions numbers used in phylogenetic analyses. The majority of sequences came from Kathriarachchi et al. (2006), Pruesapan et al. (2008, 2012), Kawakita \& Kato (2009), Falcón et al. (2020) and Bouman et al. (2021). GenBank accessions from Falcón et al. (2020) are highlighted in bold.

Matrix name	Voucher	ITS	PHYC	accD-psaI	matK	trnS-trnG
Actephila excelsa	Bouman \& Yong RWB057 (HITBC)		MN904188	MN915296	MN916079	
Antidesma bunius	Gent living collection xx0Gent19002015		MN904189		MN916080	
Breynia amoebiflora	Maxwell 90-721 (L)				EU643747	
Breynia amoebiflora	Kerr 19655 (P)	GQ503379	GQ503437	GQ503498		GQ503562
Breynia androgyna (1)	Van Welzen 2006-4 (L)	EU623563	GQ503439	GQ503500	EU643748	GQ503564
Breynia androgyna (3)	Kathriarachchi et al. 40 (K)	AY936747	GQ503459	GQ503517		GQ503588
Breynia asteranthos	Esser 99-13 (L)	EU623565		GQ503501	EU643751	
Breynia bicolor	Esser 99-21 (L)	EU623567		GQ503503	EU643754	
Breynia brevipes	Middleton et al. 974 (L)	EU623568			EU643755	
Breynia cf. macrantha	Bouman \& Yong RWB050 (HITBC)	MN915813	MN904190	MN915297	MN916081	MN915580
Breynia discigera	Takeuchi et al. 18873 (L)	EU623550	GQ503410		EU643736	
Breynia discocalyx	Beusekom \& Phengklai 566 (L)	GQ503387			EU643757	GQ503569
Breynia disticha (1)	Bouman \& Verwijs RWB024 (L)	MN915814	MN904191	MN915298	MN916082	MN915581
Breynia disticha (2)	Yu 63 (L)	MN915815	MN904192	MN915299	MN916083	MN915582
Breynia fruticosa	Bouman et al. RWB025 (L)	MN915816	MN904193	MN915300	MN916084	MN915583
Breynia garrettii	Mino-American Guizhou Botanical Expedition 1872 (L)	EU623570	GQ503444	GQ503507	EU643760	GQ503572

Breynia glauca	Pooma et al. 2702 (L)	EU623551	GQ503411		EU643737	GQ503532
Breynia hirsuta	Larsen et al. 33993 (P)	GQ503391	GQ503445		EU643762	
Breynia kerrii	Van Beusekom \& Phengklai 1065 (P)	EU623574	GQ503452		EU643764	GQ503579
Breynia lanceolata	Esser 2001-4 (L)	EU623584			EU643774	
Breynia lithophila	Phonsena et al. 5595 (L)		GQ503464	GQ503522		GQ503595
Breynia macrantha	Telford \& Bruhl 13107 (L)	GQ503396				
Breynia macrantha	Maxwell 95-1125 (L)				MT551232	
Breynia micrasterias	Erwin \& Chai S 27479 (L)	EU623578	GQ503455		EU643768	GQ503582
Breynia novoguineensis*	Baker et al. 37 (L)	EU623549	GQ503409	GQ503472		GQ503530
Breynia oblongifolia	Forster 32745 (NE)	GQ503355	GQ503414	GQ503475		GQ503534
Breynia orbicularis	Soejarto \& Southavong 10792 (L)	EU623580	GQ503456	GQ503513	AY936645	GQ503584
Breynia poomae	Phonsena et al. 5245 (L)	EU623582	GQ503457	GQ503515	EU643771	GQ503586
Breynia repens	Middleton et al. 2287 (L)	GQ503385				GQ503566
Breynia retusa	Kathriarachchi et al. 43 (K)				AY936565	
Breynia retusa	Soejarto \& Southavong 10783 (L)	GQ503358	GQ503417	GQ503477		GQ503536
Breynia rostrata	Bouman \& Yong RWB055 (HITBC)	MN915817	MN904194	MN915301	MN916086	MN915585
Breynia similis (1)	Larsen et al. 46639 (L)	GQ503399	GQ503462	GQ503520	EU643778	GQ503592
Breynia similis (2)	Bouman \& Yong RWB054 (HITBC)	MN915818	MN904195	MN915302	MN916085	MN915584
Breynia sp. (1)	Middleton 1715 (L)	MN915843	MN9042155	MN915327	MN916112	MN915600
Breynia sp. (2)	Tagane et al. T570 (L)	MN915844	MN904216	MN915328	MN916113	
Breynia spatulifolia	Wong s.n. (L)	EU623588		GQ503523	AY936647	GQ5035966
Breynia stipitata	Chase 14461 (K)			AY552422		

Breynia stipitata	Bruhl 2478 (NE)	GQ503359	GQ503418	GQ503478		GQ503537
Breynia thorelii	Van Welzen 2006-1 (L)	EU623590	GQ503468	GQ503526	EU643782	GQ503600
Breynia thyrsiflora	Kostermans 765 (L)	EU623591	GQ503469	GQ503527	EU643783	GQ503601
Breynia vestita	Barker \& Beaman 70 (L)	EU623553	GQ503419	GQ503480	EU643738	GQ503540
Breynia villosa	Phengklai et al. 12122 (BKF)	EU623593			EU643786	
Breynia vitis-idea (1)	Tagane et al. V388 (L)	MN915819	MN904184	MN915303	MN916087	
Breynia vitis-idea (2)	Tagane et al. V404 (L)	MN915820	MN904185	MN915304	MN916088	MN915586
Breynia vitis-idea (3)	Majaducon 5676 (L)	MN915821	MN904186	MN915305	MN916089	
Breynia vitis-idea (4)	Yu 157 (L)	MN915822	MN904187	MN915306	MN916090	MN915587
Bridelia tomentosa	Bouman \& Yong RWB063 (HITBC)		MN904196	MN915307	MN916359	
Cathetus aff. fasciculatus (1)	Bouman \& Yong RWB052 (HITBC)	MN915840	MN904250	MN915324	MN916144	MN915601
Cathetus aff. fasciculatus (2)	Bouman \& Yong RWB065 (HITBC)	MN915841	MN904251	MN915325	MN916145	MN915602
Cathetus aff. fasciculatus (3)	Bouman \& Yong RWB060 (HITBC)	MN915842	MN904252	MN915326	MN916146	MN915603
Cathetus beckleri	Hosking 2680 (NE)	MN915861	MN904231	MN915347	MN916127	MN915618
Cathetus chrysanthus	Munzinger \& McPherson 796 (MO)	AY936680			AY936585	
Cathetus fasciculatus	Bouman et al. RWB026 (L)	MN915895	MN904262	MN915384	MN916154	MN915648
Cathetus distichus	Harold st. John 17.985 (L)	MN915912	MN904276	MN915404	MN916163	MN915665
Cathetus exilis	Hunter et al. 1528 (L)	MN915922	MN904283		MN916362	MN915672
Cathetus filicaulis	Telford 13516 (NE)	MN915923	MN904284	MN915415	MN916170	MN915673
Cathetus gardnerianus	Kathriarachchi et al. 42 (K)	AY936694	MN904314	MN915429	AY936598	MN915684

Cathetus glaucophyllus (1)	Van der Brugt 1156 (WAG)	MN915938	MN904317	MN915432	MN916183	MN915687
Cathetus glaucophyllus (2)	Haba 123 (WAG)	MN915939	MN904318	MN915433	MN916340	MN915688
Cathetus kerstingii (1)	Darbyshire 562 (WAG)	MN915950	MN905074	MN915447	MN916189	MN915701
Cathetus kerstingii (2)	Malaisse 14792 (WAG)	MN915951		MN915448		MN915702
Cathetus myrtifolius (1)	Bouman \& Liu RWB034 (L)	MN915995	MN904370	MN915495	MN916214	MN915736
Cathetus myrtifolius (2)	Bouman \& Yong RWB053 (HITBC)	MN915996	MN904371	MN915496	MN916215	MN915737
Cathetus myrtifolius (3)	Yu 58 (L)	MN915997	MN904372		MN916216	MN915738
Cathetus patentipilis*	Bruhl 1810 (NE)	MN916020	MN904392	MN915518	MN916234	MN915759
Cathetus petraeus	Blyden 1037 (WAG)	MN916026	MN904397	MN915524	MN916239	MN915763
Cathetus recurvatus	Wilson 612 (NE)	MN916046	MN904414	MN915543	MN916258	MN915778
Cathetus simplex (1)	Bouman RWB069 (L)	MN916074	MN904440	MN915572	MN916276	MN915805
Cathetus simplex (2)	Bouman RWB070 (L)	MN916075	MN904441	MN915573	MN916277	MN915806
Cathetus ussuriensis	Kawakita 124 (KYO)		FJ235366		FJ235274	
Cathetus virgatus	Wrigley \& Telford 46642 (K)	AY936738	MN904442	MN915574	AY936639	MN915807
Cathetus welwitschianus	Bidgooet et al. 1882 (K)	AY936739			AY936640	
Cathetus wheeleri	Kathriarachchi et al. 33 (K)	AY936740	MN904445	MN915577	AY936641	MN915810
Cicca ambatovolanus	Randriamampionona et al. 51 (K)	MN915848	MN904218	MN915332	MN916115	MN915605
Cicca ankarana	Ralimanana et al. 663 (K)	MN915851	MN904221	MN915335	MN916118	MN915608
Cicca ankaratrae	Rakotonasolo \& Zachary 802 (K)	MN915852	MN904222	MN915336	MN916119	MN915609
Cicca bernieranus	Phillipson 5373 (K)	MN915862	MN904232	MN915348	MN916128	MN915619
Cicca betsileanus	Labat 2402 (K)	MN915863	MN904233	MN915349	MN916360	MN915620

| Cicca chacoensis | Krapovickas et al. 45628 (K) | AY936677 | | | AY936582 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Cicca cryptophila | Dumetz 593 (WAG) | MN915899 | MN904265 | MN915390 | MN916358 | MN915653 |
| Cicca delpyana (1) | Kami 1215 (WAG) | MN915906 | | MN915397 | MN916161 | MN915659 |
| Cicca delpyana (2) | M'Boungou 659 (WAG) | | MN904272 | MN915398 | MN916160 | |
| Cicca elsiae | Davidse \& Gonzalez 13359 (L) | MN915916 | MN904278 | MN915408 | MN916337 | MN915667 |
| Cicca engleri | Mwangulango 1138 (WAG) | | MN905066 | MN915410 | MN916168 | MN915669 |
| Cicca humbertii | Kawakita 235 (KYO) | | FJ235345 | | FJ235253 | |
| Cicca kidna | Cheek 11531 | FR715993 | | | FR715992 | |
| Cicca lichenisilvae | Antilahimena 7638 (MO) | | MN904343 | MN915464 | MN916199 | |
| Cicca mantadiensis (1) | Rasoazanany 110 (MO) | MN915979 | MN904353 | MN915479 | MN916204 | |
| Cicca mantadiensis (2) | Rasoazanany 514 (MO) | MN915980 | MN904354 | MN915480 | MN916319 | |
| Cicca marojejiensis | Kawakita 243 (KYO) | | FJ235346 | | FJ235254 | |
| Cicca oreichtitus | Antilahimena 4824 (MO) | MN916013 | MN904385 | | MN916226 | |
| Cicca perrieri | Rakotonasolo et al. 814 (K) | MN916024 | MN904395 | MN915522 | MN916238 | MN915762 |
| Cicca philippioides | Ralimanana et al. 627 (K) | MN916027 | MN904398 | MN915525 | MN916240 | MN915764 |
| Cicca physocarpa | McPherson 16148 (WAG) | MN916030 | MN904401 | MN915528 | MN916243 | MN915766 |
| Cicca pinnata | Mav 1580 (K) | MN916032 | MN904403 | MN915530 | MN916245 | MN915704 |
| Cicca polyantha | Breteler 1938 (WAG) | MN916033 | | MN915531 | MN916246 | MN915767 |
| Cicca sambiranensis | Bürki et al. 3 (K) | MN916053 | MN904421 | MN915552 | MN916315 | MN915784 |
| Cicca sp. | Ravelonarivo 3808 (MO) | MN915845 | MN904295 | MN915329 | MN916282 | |
| Moeroris vakinankaratrae | Ralimanana et al. 435 (K) | AY936737 | | | AY936638 | |
| Dendrophyllanthus aff.
 Comptonii | Munzinger 608 (MO) | MN915839 | MN904214 | MN915323 | MN916111 | |
| Dendrophyllanthus
 bourgeoisii | McMillan 5201 (WAG) | MN915870 | MN905064 | MN915357 | MN916134 | |

Dendrophyllanthus bupleuroides	Mcpherson 18692 (MO)	MN915872	MN904237	MN915359	MN916136	
Dendrophyllanthus castus (1)	Mackee 16581 (L)	MN915879	MN904246	MN915367	MN916327	MN915632
Dendrophyllanthus castus (2)	Mcpherson 19255 (MO)	MN915880	MN904245	MN915368	MN916304	
Dendrophyllanthus caudatus	Kawakita 278 (KYO)		FJ235351		FJ235259	
Dendrophyllanthus chamaecerasus	Munzinger \& McPherson 573 (MO)	AY936678			AY936583	
Dendrophyllanthus clamboides	Forster 26376 (L)	MN915893	MN904260	MN915382	MN916152	MN915646
Dendrophyllanthus cuscutiflorus	Yu 61 (L)	MN915901	MN904268	MN915392	MN916299	MN915654
Dendrophyllanthus dallachyanus	Forster 32938 (NE)	MN915913	MN905065	MN915405	MN916164	MN915666
Dendrophyllanthus dzumacensis	Jaffre 2412 (L)	MN915920	MN904281	MN915413	MN916338	
Dendrophyllanthus erwinii	Mitchell PRP1456 (NE)	MN915393	MN916298	MN915655		
Dendrophyllanthus favieri	McPherson \& Munzinger 18028 (MO)	AY936690		AY936596		
Dendrophyllanthus finschii	Takeuchi \& Ama 15603 (L)	MN915924	MN904285	MN915416	MN916171	MN915674
Dendrophyllanthus guillauminii	Kawakita 273 (KYO)	F535353	FJ235261			

Dendrophyllanthus hypospodius	Bruhl et al. 1123 (L)		GQ503435	GQ503495	EU643744	GQ503559
Dendrophyllanthus kanalensis	McPherson \& Van der Werff $17886(K)$	AY936701			AY936604	
Dendrophyllanthus koniamboensis	Kawakita 277 (KYO)		FJ235350		FJ235258	
Dendrophyllanthus koumacensis	McPherson 19163A (MO)	MN915953	MN904331	MN915451	MN916191	
Dendrophyllanthus lacunarius	Bates 62700 (NE)	MN915955	MN904333	MN915453	MN916312	MN915706
Dendrophyllanthus lacunellus	Bates 62500 (NE)	MN915956	MN904334	MN915454	MN916313	MN915707
Dendrophyllanthus ligustrifolius (1)	McPherson 19091 (MO)	MN915965	MN904344	MN915465	MN916310	
Dendrophyllanthus ligustrifolius (2)	McPherson 5025 (L)	MN915966	MN904309	MN915466	MN916311	MN915714
Dendrophyllanthus loranthoides	MacKee 31810 (K)	AY936705		AY936607		
Dendrophyllanthus mangenotii	Kawakita 270 (KYO)	F5235349		FJ235257		
Dendrophyllanthus pancherianus	McPherson \& Munzinger 18264 (K)	AY936721	MN904391	MN915517	AY936623	MN915758
Dendrophyllanthus pilifer	McPherson 18525 (MO)	MN916031	MN904402	MN915529	MN916244	
Dendrophyllanthus poumensis	Mackee 20748 (L)	MN916039	MN904408	MN915537	MN916251	MN915772

Dendrophyllanthus sauropodoides	Forster 29857 (L)	EU623558	GQ503436	GQ503496	EU643745	GQ503560
Dendrophyllanthus serpentinus	Mackee 20770 (L)	MN916057		MN915556		MN915788
Dendrophyllanthus tenuirhachis	Yu \& Tutie 165 (L)	MN916068	MN904435	MN915567	MN916271	MN915800
Dendrophyllanthus unifoliatus	Veillon 7986 (L)	AY936734			AY936635	
Dendrophyllanthus vulcani	Kawakita 274 (KYO)		F5235354		FJ235262	
Emblica sp.	Yu 250 (L)	MN915889	MN904253	MN915377	MN916148	MN915640
Emblica pachyphylla (1)	Yahara et al. V3843 (L)	MN915853	MN904223	MN915337	MN916120	
Emblica pachyphylla (2)	Tagane et al. V3863 (L)	MN915854	MN904224	MN915338	MN916121	
Emblica bokorensis	Toyama et al. 1740 (FU)			MN915354	MN916132	
Emblica collinsae	Middleton 3302 (L)	MN915896	MN904263	MN915385	MN916155	MN915649
Emblica columnaris (1)	Fujikawa et al. 095327 (L)		MN904302	MN915387	MN916157	MN915651
Emblica columnaris (2)	Funakoshi et al. 085264 (L)	MN915897		MN915388	MN916283	MN915652
Emblica geoffrayi	Larsen et al. 3259 (L)	MN915936	MN904315	MN915430	MN935816	MN915685
Emblica officinalis (1)	Makino banical garden expedition(2015) 103008	MN915917	MN904279	MN915409	MN916167	MN915668
Emblica officinalis (2)	van Welzen 2003-11 (L)	GQ503378	GQ503434	GQ503494	EU643743	GQ503558
Emblica oxyphylla (1)	Middleton 3191 (L)	MN916018	MN904388	MN915515	MN916232	MN915755
Emblica oxyphylla (2)	Yu 174 (L)	MN916019	MN904389		MN916233	MN915756
Emblica pectinata	Yu65 (L)	MN916022		MN915520	MN916236	MN915761
Emblica phuquocensis	Tagane et al. 5532 (FU)	MN916029	MN904400	MN915527	MN916242	
Emblica racemosa	Cooray 69090414 (L)	MN916035	MN904405	MN915533	MN9162488	MN915769

Emblica rufuschaneyi	Van der Ent (L)		MN904418	MN915547	MN916259	MN915781
Emblica saffordii	Fosberg 5960 (L)	MN916050	MN904419	MN915549	MN916260	
Emblica urinaria (1)	Majaducon 5750 (L)	MN916071	MN904437	MN915569	MN916273	MN915802
Emblica urinaria (2)	Bouman RWB018 (L)	MN916072	MN904438	MN915570	MN916274	MN915803
Flueggea acidoton	S. Fuentes et al. 868 (B, HAJB)	LS975740			LS975798	
Flueggea virosa (1)	Bouman \& Yunhong RWB068 (HITBC)	MN915824	MN904197	MN915308	MN916091	
Flueggea virosa (2)	Mitchel 2890 (BRI)	MN915823			MN916104	
Flueggea virosa (3)	Chase 2104 (K)				AY552426	
Flueggea virosa (3)	Larsen et al. 45328 (L)			GQ503420	GQ503481	
Flueggea virosa (4)	Yu 64 (L)	MN915825	MN904198		MN916092	MN915588
Glochidion benthamianum	Bruhl 1026 (NE)	GQ503363		GQ503482		GQ503541
Glochidion carinatum	Toyama et al. 3212 (FU)		MN904243	MN915363	MN916138	
Glochidion ellipticum (1)	Bouman \& Yong RWB058 (HITBC)	MN915826	MN904199	MN915310	MN916093	MN915589
Glochidion ellipticum (2)	Bouman \& Yong RWB061 (HITBC)	MN915827	MN904200	MN915311	MN916094	MN915590
Glochidion ellipticum (3)	Bouman \& Yong RWB062 (HITBC)	MN915829	MN904202	MN915309	MN916096	MN915591
Glochidion eriocarpum	Bouman et al. RWB027 (L)	MN915828	MN904201		MN916095	MN915592
Glochidion ferdinandi	Bruhl 2457 (NE)	GQ503366	GQ503421	GQ503484		GQ503543
Glochidion harveyanum	Bruhl 2527 (NE)	GQ503368	GQ503423	GQ503486		GQ503545
Glochidion kaweesakii	 Triyuttachai 1174 (KKU)	KY091120			KY091108	

Glochidion lanceolarium	Bouman \& Yong RWB064 (HITBC)	MN915830	MN904203	MN915312	MN916097	MN915593
Glochidion lanceolatum	Kawakita 116 (KYO)	AY525687	FJ235327		FJ235235	
Glochidion lobocarpum	Bruhl 1146 (NE)	GQ503371	GQ503424	GQ503488		GQ503548
Glochidion mirabilis	Sirichamorn YSM 2009-05 (L)	HM132100	HM132101	HM132099		HM132102
Glochidion philippicum	Forster 29379 (NE)	GQ503373	GQ503426	GQ503490		GQ503550
Glochidion puberum	Chase 11460 (K)	AY936659			AY552428	
Glochidion roseum	Kawakita 143 (KYO)	KC913110	FJ235332		FJ235240	
Glochidion sphaerogynum (1)	Van der Scheur 128 (L)	MN915831	MN904204	MN915313	MN916280	MN915594
Glochidion sphaerogynum (2)	Van Welzen 2003-21 (L)	EU623555	GQ503427		EU643740	GQ503551
Glochidion wrightii	Bouman \& Liu RWB032 (L)	MN915832	MN904205	MN915314	MN916098	MN915595
Heterosavia bahamensis	Wurdack D048 (US)	AY936749	AY830381		AY830284	
Kirganelia baccata	Mitchell PRP1514 (NE)			MN915342	MN916126	MN915613
Kirganelia castica	Wolhauser SW60172 (WAG)	MN915878	MN904244	MN915366	MN916141	
Kirganelia ciccoides	Paijmans 2876 (DAV)	MN915891			MN916150	
Kirganelia dinklagei (1)	Bissiengou (WAG)	MN915908	MN904273	MN915399	MN916333	MN915660
Kirganelia dinklagei (2)	Maas 9993 (WAG)	MN915909	MN904274	MN915400	MN916334	MN915661
Kirganelia flexuosa (1)	Chow 132 (L)	MN915927	MN904289	MN915419	MN916173	MN915677
Kirganelia flexuosa (2)	Mcnamara 162 Living collection Berkeley	MN915928	MN904290	MN915420	MN916174	MN915678
Kirganelia flexuosa (3)	Aung et al. 092433 (MBK)	MN915929	MN904288	MN915421	MN916172	MN915679
Kirganelia fuscolurida (1)	Dorr 3650 (WAG)	MN915933	MN905068	MN915425	MN916180	
Kirganelia fuscolurida (2)	Schatz 1737 (WAG)	MN915934	MN904296	MN915426	MN916179	

Kirganelia glauca	Bouman \& Liu RWB028 (L)	MN915940	MN904291	MN915434	MN916175	MN915689
Kirganelia matitanensis	Ravelonarivo 4276 (MO)	MN915981	MN904355	MN915481	MN916205	
Kirganelia microcarpa (1)	Bouman \& Yong RWB056 (HITBC)	MN915985	MN904358	MN915483	MN916207	MN915729
Kirganelia microcarpa (2)	Yang et al. V2332 (L)	MN915986	MN904359	MN915484	MN916356	
Kirganelia microcarpa (3)	Tanaka et al. MY112 (L)	MN915987	MN904360	MN915485	MN916346	
Kirganelia microcarpa (4)	Yahara et al. 4346 (L)		MN904361	MN915486	MN916208	
Kirganelia muelleriana (1)	Kew Seed bank collection 145024	MN915991	MN904366	MN915491	MN916295	
Kirganelia muelleriana (2)	Bingham 6893 (WAG)	MN915992	MN904368	MN915492	MN916212	MN915734
Kirganelia muelleriana (3)	Jongkind 39824 (WAG)	MN915993	MN904367	MN915493	MN916211	MN915735
Kirganelia muelleriana (4)	Wieringa 7074 (WAG)	MN915994	MN904369	MN915494	MN916213	
Kirganelia novae- hollandiae	Telford 13024 (NE)	MN916001	MN904376	MN915500	MN916219	MN915741
Kirganelia oligosperma	Kawakita 101 (KYO)		FJ235360		FJ235268	
Kirganelia ovalifolia (1)	Mallaisse 12688 (WAG)	MN916014	MN904312	MN915512	MN916227	MN915751
Kirganelia ovalifolia (2)	de Wilde 7622 (WAG)	MN916015		MN915513	MN916228	MN915752
Kirganelia ovalifolia (3)	Friis 13337 (WAG)	MN916016	MN904301	MN915514	MN916229	MN915753
Kirganelia pervilleana (1)	Hoffmann et al. 392 (K)	AY936723			AY936625	
Kirganelia pervilleana (2)	Randrianasolo 526 (MO)	MN916025	MN904396	MN915523	MN916351	
Kirganelia polypserma (1)	Kew seed bank HBL20160135 (Kew seed bank 174282)	MN916037	MN904406	MN915535	MN916249	

Kirganelia polypserma (2)	Saolomao 40 (WAG)	MN916038	MN904407	MN915536	MN916250	MN915770
Kirganelia polypserma (3)	Friis 10341 (WAG)	MN916036	MN904386	MN915534	MN916230	MN915771
Kirganelia purpurea	Ward et al. 10442 (K)	MN916042	MN904411	MN915540	MN916254	MN915775
Leptopus chinensis	Brownless (L)	MN915833	MN904206	MN915315	MN916099	
Lingelsheimia sp.	Rabenantoandro et al. 1115 (MO)	AY936662	AY830375		AY830272	
Lysiandra calycina	Chase MWC 2163 (K)	AY936674	AY579869		AY552446	
Lysiandra carpentariae	Clarkson \& Neldner 8410 (L)	MN915877	MN905063	MN915365	MN916140	MN915631
Lysiandra cauticola	Mitchell 837 (NE)	MN915881	MN904247	MN915369	MN916303	MN915633
Lysiandra cf. carpentariae	Hyland 8033 (L)	MN915888	MN904256	MN915376	MN916147	MN915639
Lysiandra collina	Telford \& Bruhl 13119 (L)		MN904264	MN915386	MN916156	MN915650
Lysiandra flagellaris	Fryxell \& Craven (L)	MN915926	MN904287	MN915418	MN916307	MN915676
Lysiandra fuernrohrii	Coveny 13478 (NE)		MN904294		MN916178	
Lysiandra grandisepala	Albrecht 13268 (NE)	MN915942	MN904319	MN915436	MN916289	MN915690
Lysiandra graniticola	Telford 13004 (NE)	MN915943	MN904320	MN915437	MN916185	MN915691
Lysiandra gunnii	Coveny 11474 (L)	MN915944	MN904322	MN915439	MN916290	MN915693
Lysiandra hebecarpa	Copeland NE66669 (NE)		MN904324		MN916308	MN915695
Lysiandra hirtella	Pedersen 1328 (L)	MN915947	MN904326	MN915442	MN916187	MN915697
Lysiandra microclada	Telford 13038 (L)	MN915988	MN904362	MN915487	MN916320	MN915730
Lysiandra mitchelii	Bruhl 1919B (NE)	MN915990	MN904365	MN915490	MN916210	MN915733
Lysiandra subcrenulata	Streimann s.n. (L)	MN916063	MN904432		MN916270	MN915795
Lysiandra trachygyne	Egan 2886 (NE)	MN916069	MN904436	MN915568	MN916294	MN915801
Margaritaria anomala	Ramison 413 (MO)	MN915834			MN916100	

Margaritaria discoidea (1)	Nicholson 1 (L)		MN904208	MN915317	MN916102	
Margaritaria discoidea (2)	Nicholson s.n. (L)		MN904207	MN915316	MN916101	
Margaritaria dubiumtraceyi	Forster 29387 (BRI)			MN935815	MN916103	
Margaritaria indica	Orr 80532			MN904209	MN915318	MN916105
Margaritaria nobilis	Orr 875422	Rabenantoandro et al. 656 (K)	AY936665			AY936571
Margaritaria rhomboidalis		MN915835	MN904211	MN915320	MN916107	MN915597
Margaritaria sp. Uganda	Nicholson 3a (L)	MN915846		MN915330	MN916281	
Moeroris sp.	Ravelonarivo 4264 (MO)	EU623557	GQ503433	GQ503493	EU643742	GQ503557
Moeroris amara (1)	van Welzen 2006-5(L)	MN915847	MN904217	MN915331	MN916114	
Moeroris amara (2)	Wieringa 8189 (WAG)	AY936743	AY830380		AY830280	
Moeroris arenaria	Worthington 18323 (L)	MN915864	MN904254	MN915350	MN916302	MN915621
Moeroris boehmii (1)	Gereau 5007 (WAG)	MN915865	MN904234	MN915351	MN916129	MN915622
Moeroris boehmii (2)	Wieringa 8841 (WAG)	MN915866	MN904235	MN915352	MN916130	MN915623
Moeroris boehmii (3)	Bidgood 6838 (WAG)	MN915867	MN904303	MN915353	MN916131	MN915624
Moeroris boehmii (4)	Lisowski 13765 (WAG)	MN915868	MN904305	MN915355	MN916284	
Moeroris bongensis*	de Wilde 7858 (WAG)	MN915875	MN904242	MN915362	MN916137	MN915629
Moeroris caesiifolia	Cheek 10376 (WAG)	MN915882	MN904248	MN915370	MN916142	MN915634
Moeroris ceratostemon	Bidgood 6776 (WAG)	MN915883	MN904249	MN915371	MN916143	MN915635
Moeroris cf. boehmii	Friis 13159 (WAG)	MN915887	MN905067	MN915375	MN916343	MN915725
Moeroris cf. fischeri	de Wilde 4391 (WAG)	MN904329	MN915446	MN916342	MN915700	
Moeroris cf. rotundifolia	Nicholson 2 (L)			MN915596		

Moeroris coursii	Razafindrahaja 184 (MO)	MN915898	MN904266	MN915389	MN916329	
Moeroris debilis (1)	Bouman \& Liu RWB037 (L)	MN915903	MN904269	MN915394	MN916330	MN915656
Moeroris debilis (2)	Bouman RWB071 (L)	MN915904	MN904270	MN915395	MN916331	MN915657
Moeroris debilis (3)	Kamarudim \& Apok (L)	MN915905	MN904271	MN915396	MN916332	MN915658
Moeroris dimorpha	E.R. Bcquer et al. HFC 87940 (HAJB)	LS975738			LS975795	
Moeroris dinteri (1)	Dinter 213 (WAG)	MN915910		MN915401	MN916335	MN915662
Moeroris dinteri (2)	Oliver 6543 (WAG)	MN915911	MN905069	MN915402	MN916336	MN915663
Moeroris fischeri	Gereau 1996 (WAG)	MN915925	MN904286	MN915417		MN915675
Moeroris fraterna	Nooteboom 3010 (L)	MN915931		MN915423	MN9163066	MN915681
Moeroris friesii	Harder et al. 2778 (WAG)	MN915932	MN904293	MN915424	MN916177	MN915682
Moeroris fuertesii	S. Fuentes et al. 294 (B, HAJB)	LS975752			LS975812	
Moeroris gabonensis (1)	Maas 10095 (WAG)		MN904299	MN915427	MN916181	MN915683
Moeroris gabonensis (2)	Wieringa 8492 (WAG)	MN915935	MN904313	MN915428	MN916182	
Moeroris gillettiana	Germishuizen 9727 (WAG)	MN915937	MN904316	MN915431		MN915686
Moeroris harrisii	Faulkner 3179 (WAG)	MN915945	MN904323	MN915440	MN916341	MN915694
Moeroris hutchinsoniana (1)	Poilecot 7974 (K)	AY936697	MN904327	MN915443	AY936601	MN915698
Moeroris hutchinsoniana (2)	Bamps 88 (WAG)	MN9159488	MN904306	MN915444		
Moeroris kaessneri	Pocs 89182 (K)	AY936700			AY936603	
Moeroris leucantha (1)	de Wilde 4604 (WAG)	MN915962	MN904300	MN915460	MN916149	MN915642
Moeroris leucantha (2)	Friis 8619 (WAG)	MN915963	MN904340	MN915461	MN916344	MN915713
Moeroris leucocalyx (1)	Bidgood 7161 (WAG)		MN904341	MN915462	MN916197	
Moeroris leucocalyx (2)	Bidgood 6969 (WAG)	MN915964	MN904342	MN915463	MN916198	

Moeroris limmuensis	de Wilde 6524 (WAG)	MN915967	MN904345	MN915467	MN916291	MN915715
Moeroris loandensis (1)	Pawek R597 (WAG)	MN915968	MN904346	MN915469	MN916201	MN915717
Moeroris loandensis (2)	Pawek 12535 (WAG)	MN915970	MN904297	MN915470	MN916202	MN915718
Moeroris loandensis (3)	Nuvunga 526 (WAG)	MN915969	MN905072	MN915471	MN916203	MN915719
Moeroris lokohensis	Antilahimena 8041 (MO)	MN915971	MN904347		MN916316	
Moeroris macrantha	Biegel et al. 4847 (WAG)	MN915972	MN905075	MN915472	MN916292	MN915720
Moeroris madagascariensis	McPherson 18925 (MO)	MN915973	MN904348	MN915473	MN916317	
Moeroris maderaspatensis	Hunter et al. 1532 (K)	AY936707			AY936609	
Moeroris magnificens	van der Burgt 1196 (WAG)	MN915975	MN904349	MN915475	MN916345	MN915722
Moeroris manniana (1)	Raynal 12256 (WAG)	MN915977	MN904351	MN915477	MN916347	MN915724
Moeroris manniana (2)	Biye 129 (WAG)	MN915978	MN904352	MN915478		MN915726
Moeroris melleri	Lowry et al. 5814 (K)	MN915983	MN904357	MN915482	MN916314	MN915728
Moeroris nirurioides (1)	Bidgood 8049 (WAG)	MN915998	MN904374	MN915497	MN916305	MN915739
Moeroris nirurioides (2)	Wieringa 7502 (WAG)	MN915999	MN904375	MN915498	MN916218	MN915740
Moeroris nummulariifolia (1)	Nicholson 3b (L)	MN916002	MN904377	MN915501	MN916288	MN915742
Moeroris nummulariifolia (2)	Wieringa 8374 (WAG)	MN916003	MN904380	MN915502	MN916361	MN915744
Moeroris nummulariifolia (3)	van Andel 5732 (WAG)	MN916004	MN904381	MN915503	MN916223	MN915743
Moeroris nummulariifolia (4)	Mwangoka 5900 (WAG)	MN916005	MN904379	MN915504	MN916222	
Moeroris nummulariifolia (5)	Razafitsalama 235 (MO)	MN916006	MN904378	MN915505	MN916220	

Moeroris nummulariifolia (6)	Blaxell 1118 (U)	MN916007	MN904310	MN915506	MN916221	MN915745
Moeroris nyale	Etuge 4453 (WAG)	MN916008	MN904382	MN915507	MN916224	MN915746
Moeroris odontadenia (1)	Darbyshire 207 (WAG)	MN916009	MN904311	MN915508	MN916348	MN915747
Moeroris odontadenia (2)	Bouman \& Verwijs RW	MN916010	MN904383	MN915509	MN916349	MN915748
Moeroris odontadenia (3)	Wieringa 7665 (WAG)	MN916011	MN904384	MN915510	MN916350	MN915749
Moeroris oxycoccifolia	Gereau 5219 (WAG)	MN916017	MN904387		MN916231	MN915754
Moeroris paxii	Bidgood 2983 (WAG)	MN916021	MN904393	MN915519	MN916235	MN915760
Moeroris pentandra	Kew Seed bank collection 519962	MN916023	MN904394	MN915521	MN916237	
Moeroris phillyreifolia	van Nek 2188 (WAG)	MN916028	MN904399	MN915526	MN916241	MN915765
Moeroris procera (1)	S. Fuentes et al. 428 (B, HAJB)	LS975737			LS975794	
Moeroris procera (2)	S. Fuentes et al. 414 (B, HAJB)	LS975769			LS975830	
Moeroris rangoloakensis	Schatz et al. 3709 (K)	MN916045	MN904413	MN915542	MN916257	MN915777
Moeroris rheedii	Kathriarachchi et al. 1 (K)	AY936729	MN904415	MN915544	AY936630	MN915779
Moeroris rotundifolia	Wieringa 8849 (WAG)	MN916047	MN904416	MN915545	MN916352	MN915780
Moeroris sepialis	Luke 7112 (K)	AY936732			AY936633	
Moeroris stipulata (1)	Jansen-Jacobs 2813 (U)		MN904430	MN915561	MN916268	MN915793
Moeroris stipulata (2)	Gieteling 114 (WAG)	MN916062	MN904431	MN915562	MN916269	MN915794
Moeroris tenella (1)	Bruhl 2633 (L)	MN916065	MN904433	MN915564	MN916354	MN915797
Moeroris tenella (2)	Bouman RWB019 (L)	MN916066	MN904434	MN915565	MN916355	MN915798
Moeroris tenella (3)	Groenendijk 15 (WAG)	MN916067	MN904308	MN915566	MN916357	MN915799
Moeroris wakensis*	Wieringa 5107 (WAG)		MN904443	MN915575		MN915808
Nellica magudensis	Blokhuis 50 (WAG)	MN915976	MN904350	MN915476	MN916318	MN915723
Nellica mendoncae	de Wilde 6464 (WAG)	MN915984				
Nellica polygonoides	Kim \& Miller 1078 (U)	MN916034	MN904404	MN915532	MN916247	MN915768

Notoleptopus decaisnei	Evans 3222 (K)	AM745836			AM745833	
Notoleptopus decaisnei	Fraser 267 (L)	GQ503431	GQ503491	GQ503555		
Nymphanthus balgooyi (1)	Van der Ent	MN915857	MN904227	MN915343	MN916300	MN915614
Nymphanthus balgooyi (2)	Yu 192 (L)	MN915858	MN904228	MN915344	MN916301	MN915615
Nymphanthus balgooyi (3)	Yu 259 (L)	MN915859	MN904229	MN915345	MN916324	MN915616
Nymphanthus balgooyi (4)	Agoo 5700 (L)	MN915860	MN904230	MN915346	MN916325	MN915617
Nymphanthus buxifolius (1)	Yu 163 (L)	MN915873	MN904240	MN915360	MN916326	MN915627
Nymphanthus buxifolius (2)	Yu 167 (L)	MN915874	MN904241	MN915361	MN916285	MN915628
Nymphanthus cf. buxifolius (1)	Agoo 5659 (L)	MN915884	MN904238	MN915372	MN916286	MN915636
Nymphanthus cf. buxifolius (2)	Agoo 5683 (L)	MN915885	MN905070	MN915373	MN916287	MN915637
Nymphanthus cf. buxifolius (3)	Agoo 5738 (L)	MN915890	MN904428	MN915378	MN916267	MN915643
Nymphanthus cf. sootepensis	Bouman \& Yong RWB059 (HITBC)	MN915900	MN904267	MN915391	MN9161588	MN915604
Nymphanthus curranii	Yu 261 (L)	MN915914		MN915406	MN916165	
Nymphanthus elegans (1)	Yahara et al. V3499 (L)	MN915915	MN904277	MN915407	MN916166	
Nymphanthus elegans (2)	Yahara et al. V5597 (L)	MN915374	MN9163288	MN915638		

Nymphanthus floribundus	Kathriarachchi et al. 66 (K)	AY936682	MN904259	MN915381	AY936587	
Nymphanthus glaucescens (1)	Bouman \& Yong RWB066 (HITBC)	MN916040	MN904409	MN915538	MN916252	MN915773
Nymphanthus glaucescens (2)	Esser 98-68 (L)	MN916041	MN904410	MN915539	MN916253	MN915774
Nymphanthus gomphocarpus	Klackenberg \& Lundin 579 (L)	MN915941	MN905073	MN915435	MN916184	
Nymphanthus kinabalucius	Van der Ent (Kinabalu Parcs living collection)	MN915952	MN904330	MN915449	MN916190	MN915703
Nymphanthus laciniatus	Agoo 5660 (L)	MN915954	MN904332	MN915452	MN916192	MN915705
Nymphanthus leptoclados	Bouman \& Yong RWB051 (HITBC)	MN915961	MN904339	MN915459	MN916196	MN915712
Nymphanthus longifolius	TRP-5004102 (BK)	AB550090			MN916206	MN915727
Nymphanthus megalanthus	Calaramo (L)	MN915982	MN904356			
Nymphanthus ruber	Lee et al. s.n. (CUHK)	AY765298			MN9	
Nymphanthus rubescens	Yahara et al. V2902 (L)	MN916048	MN904417	MN915546	MN916322	
Nymphanthus sootepensis (1)	Makino banical garden expedition(2015) 103251	MN916059	MN904426	MN915558	MN916297	MN915790
Nymphanthus sootepensis (2)	Makino banical garden expedition(2015) 103753	MN916060	MN904427	MN915559	MN916266	MN915791
Nymphanthus tetrandrus	Fujikawa et al. 053175 (L)	MN916058	MN9044255	MN915557	MN916296	MN915789
Nymphanthus watsonii	Yu225 (L)	MN916076	MN904444	MN915576	MN916278	MN915809
Phyllanthus acidus	van welzen 2003-14(L)	MN915836	GQ503432	GQ503492	MN916108	GQ503556

Phyllanthus acuminatus (1)	Breteler 4238 (WAG)	MN915837	MN904212	MN915321	MN916109	MN915598
Phyllanthus acuminatus (2)	Wallnöfer 6031 (U)	MN915838	MN904213	MN915322	MN916110	MN915599
Phyllanthus aeneus	Kawakita 272 (KYO)		FJ235352		FJ235260	
Phyllanthus angustifolius	Lauerer 091479	MN915849	MN904219	MN915333	MN916116	MN915606
Phyllanthus anisolobus	Liesner 14363 (U)	MN915850	MN904220	MN915334	MN916117	MN915607
Phyllanthus arbuscula	Reynders19074182 (L)	MN915855	MN904226	MN915339	MN916123	MN915610
Phyllanthus arenicola	Maas \& Carauta (U)		MN905071	MN915340	MN916124	MN915611
Phyllanthus attenuatus	Breteler 4696 (WAG)	MN915856	MN904304	MN915341	MN916125	MN915612
Phyllanthus botryanthus	de Wilde 31 (WAG)	MN915869	MN904255	MN915356	MN916133	MN915625
Phyllanthus brasiliensis	Ule 6408 (L)	MN915871	MN904236	MN915358	MN916135	MN915626
Phyllanthus caroliniensis	Groenendijk 55 (WAG)	MN915876		MN915364	MN916139	MN915630
Phyllanthus cf.klotzschianus	Carneiro 10 (K)			MN915450		MN915641
Phyllanthus chamaecristoid	van Ee et al. 404 (K)	AY936679			AY936584	
Phyllanthus chryseus	Van Ee et al. 387 (K)	AY936681	MN904257	MN915379	AY936586	MN915644
Phyllanthus cinctus	Ekman 19166 (K)	MN915892	MN904258	MN915380	MN916151	MN915645
Phyllanthus claussenii	Hatschbach 64117 (U)	MN915894	MN904261	MN915383	MN916153	MN915647
Phyllanthus comosus	Gutierrez et al. 81777 (WIS)	AY936685			AY936590	
Phyllanthus comosus (2)	T. Borsch et al. 4271 (B, HAJB)	LS975727			LS975785	
Phyllanthus dawsonii	da Silva 2073 (DAV)	MN915902			MN916159	
Phyllanthus dictyospermus	Santos 5712 (DAV)	MN915907				

Phyllanthus discolor	Berazain et al. 71878 (K)	AY936688	MN904275	MN915403	AY936593	MN915664		
Phyllanthus epiphyllanthus (1)	Lauerer 080405	MN915918	MN904225	MN915411	MN916122	MN915670		
Phyllanthus epiphyllanthus (2)	Reynders IPEN:XX-0- BR-19840633 (L)	MN915919	MN904280	MN915412	MN916169	MN915671		
Phyllanthus evanescens	Stevens 32461 (MO)	MN915921	MN904282	MN915414	MN916339			
Phyllanthus excisus	W. Greuter et al. 28281 (B, HAJB, P-Gr)	LS975746			LS975806			
Phyllanthus fluitans	Krämer xx-0-Dath-518 (L)	MN915930	MN904292	MN915422	MN916176	MN915680		
Phyllanthus graveolens	Klitgaard et al. 399 (K)	AY936696	MN904321	MN915438	AY936600	MN915692		
Phyllanthus heliotropus	Maas et al. 7762 (U)	MN915946	MN904325	MN915441	MN916186	MN915696		
Phyllanthus incrustatus	T. Borsch et al. 4504 (B, HAJB)	LS975731			LS975788			
Phyllanthus juglandifolius	Bouman RWB16	MN915949	MN904328	MN915445	MN916188	MN915699		
Phyllanthus klotzschianus	Grappo et al. 780 (K)	AY936702			AY936605			
Phyllanthus lamprophyllus (1)	Agoo 5592 (L)	MN915957	MN904335	MN915455	MN916193	MN915708		
Phyllanthus lamprophyllus (2)	Telford \& Bruhl 13049 (L)	MN915958	MN904336	MN915456	MN916194	MN915709		
Phyllanthus lamprophyllus (3)	Telford \& Bruhl 13051 (L)	MN915959	MN904337	MN915457	MN916195	MN915710		
Phyllanthus lamprophyllus (4)	Yu 161 (L)	MN915960	MN9043388	MN915458	MN916309	MN915711		
Phyllanthus lindenianus	S. Fuentes et al. 1003 (B)	LS975755		MN915468	MN916200	MN915716		
Phyllanthus lindenianus	Fuertes 345 (K)		MN9159744	MN905078	MN915474	MN916293	MN915721	MN
:---								
Phyllanthus madeirensis								
Vincentini 1206 (U)								

Phyllanthus maleolens	S. Fuentes et al. 1121 (B)	LS975756			LS975816	
Phyllanthus microdictyis	Van Ee 399 (K)	AY936709	MN904363	MN915488	AY936612	MN915731
Phyllanthus mimosoides	Reynders 19074179 (L)	MN915989	MN904364	MN915489	MN916209	MN915732
Phyllanthus mirifcus	T. Borsch et al. 5021 (B, HAJB)	LS975774			LS975835	
Phyllanthus niruri	De la Quintana 333 (MO)	MN916000	MN904373	MN915499	MN916217	
Phyllanthus nummularioides	S. Fuentes et al. 880 (B)	LS975753			LS975813	
Phyllanthus nutans	S. Fuentes et al. 996 (B)	LS975754			LS975814	
Phyllanthus orbicularis	Eschevaria s.n. (L)	MN916012	MN904298	MN915511	MN916225	MN915750
Phyllanthus pachystylus	Van Ee 402 (K)	PY936720	MN904390	MN915516	AY936622	MN915757
Phyllanthus phlebocarpus (HAJB)	LS975758			LS975819		
Phyllanthus pseudocicca $(\mathbf{1})$	B. Falcon et al. HFC 87780 (HAJB)	LS975736		LS975793		
Phyllanthus pseudocicca (2)	P.A. Gonzalez HFC 87681 (HAJB)	LS975759		LS975820		
Phyllanthus purpusii	Breedlove 42730 Living collection Berkeley	MN916043	MN904412	MN915541	MN916255	MN915776
Phyllanthus ramillosus	Arbo 6945 (DAV)	MN916044			MN916256	
Phyllanthus ruscifolius	Cuatrecasas 21631 (U)	MN916049	MN905077	MN915548		MN915782
Phyllanthus salviifolius (1)	Balslev 1888 (U)	MN916051	MN905076	MN915550	MN916261	
Phyllanthus salviifolius (2)	Jorgensen 61204 (U)	MN916052	MN904420	MN915551	MN916262	MN915783
Phyllanthus sellowianus (1)	Chase 14776	MN916054	MN9044222	MN915553	MN916263	MN915785

Phyllanthus sellowianus (2)	Chase 14777	MN916055	MN904423	MN915554	MN916264	MN915786
Phyllanthus sellowianus (3)	Chase 14463	MN916056	MN904424	MN915555	MN916265	MN915787
Phyllanthus sp. sect. Callitrichoides	B. Falcon et al. HFC 87779 (HAJB)	LS975742			LS975801	
Phyllanthus spruceanus	Maas \& Maas 474 (U)	MN916061	MN904429	MN915560	MN916353	MN915792
Phyllanthus subcarnosus	T. Borsch et al. 4707 (B, HAJB)	LS975741			LS975800	
Phyllanthus symphoricarpoides	Cuatrecasas 18421 (U)	MN916064	MN904307	MN915563	MN916321	MN915796
Phyllanthus tuerckheinii	Mendez 8022 (DAV)	MN916070			MN916272	
Phyllanthus vacciniifolius	Hokche et al. 854 (U)	MN916073	MN904439	MN915571	MN916275	MN915804
Phyllanthus williamioides	T. Borsch et al. 4523 (B, HAJB)	LS975730			LS975787	
Phyllanthys myrtilloides subsp. Alainii	S. Fuentes et al. 556 (B, HAJB)			LS975799		
Phyllanthys myrtilloides subsp. Erythrinus	W. Greuter et al. 28014 (B, HAJB, P-Gr)	LS975734			LS975791	
Phyllanthys myrtilloides subsp. Shaferi	S. Fuentes et al. 426 (B, HAJB)	LS975743			LS975833	
Phyllanthys myrtilloides subsp. Spathulifolius	P.A. Gonzalez HFC 87731 (HAJB)	LS975772			AY936592	
Plagiocladus diandrus	Wieringa 2903 (WAG)					
Plagiocladus diandrus	de Wilde \& de Wilde 11641 (WAG)	AY936687				
Synostemon albiflorus (1)	Forster 32329 (NE)	MN916077	MN904446	MN9155788	MN916279	MN915811

Synostemon albiflorus (2)	Forster 34400 (NE)	MN916078	MN904447	MN915579	MN916323	MN915812
Synostemon bacciformis	Cowie I 3418 (L)	GQ503382		GQ503502		
Synostemon bacciformis	Kerr 8350 (L)				EU643753	
Synostemon bacciformis	Pruesapan 2009-4 (L)		GQ503440			
Synostemon hirtellus	Bean 15558 (BRI)	EU623573	GQ503447	GQ503508	EU643763	GQ503574
Synostemon kakadu	Bruhl 1270 (NE)	GQ503395	GQ503451	GQ503510		GQ503578
Synostemon sphenophyllus	Gray 08597 (BRI)	GQ503402	GQ503465		EU643780	GQ503597
Synostemon spinosus	Bean 20738 (NE)	Gell 547 (NE)	GQ503403	GQ503466	GQ503524	
Synostemon trachyspermus	GQ503407	GQ503470	GQ503528	EU643784	GQ503602	

