Skip to main content
Log in

Textures, trace element compositions, and sulfur isotopes of pyrite from the Honghai volcanogenic massive sulfide deposit: Implications for ore genesis and mineral exploration

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

In this paper, we present textures, trace element compositions, and sulfur isotope data for pyrite from the Honghai volcanogenic massive sulfide deposit to place new constraints on the source and evolution of the ore-forming fluids and provide insights into the ore genesis with implications for future exploration. The Honghai deposit consists of upper lenticular ores comprising massive sulfides that are underlain by stockwork and disseminated sulfides. The textural and isotopic characteristics of the synsedimentary framboidal pyrite (Syn-Py) indicate its formation by biogenetic processes. Coarse-grained pyrite generations (M-Py1, M-Py2, and M-Py3) from the massive sulfides have high Au, Ag, Cu, Zn, Pb, Sb, and Tl concentrations and low Co, Se, Te, Ti, and Sn concentrations, indicating that they precipitated from metal-rich, low- to intermediate-temperature, oxidizing fluids. The high Te, Ti, and Sn concentrations and high Co/Ni ratios in the massive pyrite (M-Py4) associated with magnetite in the massive sulfide lenses, as well as the high Ti, V, Cr, and Ni concentrations and low Al, Mn, and Zn concentrations in the magnetite, suggest that the coexisting M-Py4 and magnetite precipitated under oxidizing and high-temperature (300°C to 500°C) conditions. In contrast, pyrite grains from the underlying stockwork and veins (V-Py1, V-Py2, and V-Py3) are characterized by low Au, Ag, Cu, Zn, Pb, Sb, and Tl concentrations coupled with high Co, Se, Te, and Ti concentrations and high Co/Ni ratios, which are interpreted in terms of reducing and high-temperature ore-forming fluids. The large variations in δ 34S values from −6.4‰ to +29.9‰ suggest that the ore-forming fluids were derived from magmatic source that were significantly modified by seawater. The spatial variations of trace element assemblages of pyrite from different levels of the main massive orebodies can be used as an indicator for mineral exploration of Cu-Zn ores in the Honghai deposit. Although no significant difference in δ 34S values is observed between the upper massive sulfide lenses and lower stockwork/vein zone, the spiky δ 34S pattern noted in the massive pyrite can be used as a marker for the main massive orebodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraitis P K, Pattrick R A D, Vaughan D J. 2004. Variations in the compositional, textural and electrical properties of natural pyrite: A review. Int J Miner Process, 74: 41–59

    Article  Google Scholar 

  • Achterbergh E V, Ryan C G, Griffin W L. 2000. GLITTER: On-line interactive data reduction for the Laser Ablation ICP-MS Microprobe. Cambridge: Ninth Annual VM Goldschmidt Conference. Abstract 7215

  • Almodóvar G R, Yesares L, Sáez R, Toscano M, González F, Pons J M. 2019. Massive sulfide ores in the Iberian pyrite belt: Mineralogical and textural evolution. Minerals, 9: 653

    Article  Google Scholar 

  • Basori M B I, Gilbert S, Large R R, Zaw K. 2018. Textures and trace element composition of pyrite from the Bukit Botol volcanic-hosted massive sulphide deposit, Peninsular Malaysia. J Asian Earth Sci, 158: 173–185

    Article  Google Scholar 

  • Berner R A. 1969. Migration of iron and sulfur within anaerobic sediments during early diagenesis. Am J Sci, 267: 19–42

    Article  Google Scholar 

  • Bischoff J L, Rosenbauer R J. 1989. Salinity variations in submarine hydrothermal systems by layered double-diffusive convection. J Geol, 97: 613–623

    Article  Google Scholar 

  • Bradshaw G D, Rowins S M, Peter J M, Taylor B E. 2008. Genesis of the Wolverine volcanic sediment-hosted massive sulfide deposit, Finlayson Lake District, Yukon, Canada: Mineralogical, mineral chemical, fluid inclusion, and sulfur isotope evidence. Econ Geol, 103: 35–60

    Article  Google Scholar 

  • Breiter K, Ďurišová J, Dosbaba M. 2017. Quartz chemistry—A step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec/Zinnwald Sn-W-Li deposit, Central Europe. Ore Geol Rev, 90: 25–35

    Article  Google Scholar 

  • Brueckner S M, Piercey S J, Layne G D, Piercey G, Sylvester P J. 2015. Variations of sulphur isotope signatures in sulphides from the metamorphosed Ming Cu(—Au) volcanogenic massive sulphide deposit, Newfoundland Appalachians, Canada. Miner Depos, 50: 619–640

    Article  Google Scholar 

  • Bowers T S, Taylor H P. 1985. An integrated chemical and stable-isotope model of the origin of midocean ridge hot spring systems. J Geophys Res, 90: 12583–12606

    Article  Google Scholar 

  • Butler I B, Rickard D. 2000. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide. Geochim Cosmochim Acta, 64: 2665–2672

    Article  Google Scholar 

  • Chai F M, Zhang Z C, Li W H, Santosh M, Wang H P, Wang W, Xu Q F. 2019. The early Paleozoic Huangtupo VMS Cu-Zn deposit in Kalatag, Eastern Tianshan: Implications from geochemistry and zircon U-Pb geochronology of volcanic host rocks. Lithos, 342–343: 97–113

    Article  Google Scholar 

  • Chowdhury S, Pal D C, Papineau D, Lentz D R. 2020. Major and trace element and multiple sulfur isotope composition of sulfides from the Paleoproterozoic Surda copper deposit, Singhbhum shear zone, India: Implications for the mineralization processes. Ore Geol Rev, 120: 103396

    Article  Google Scholar 

  • Ciobanu C L, Cook N J, Utsunomiya S, Kogagwa M, Green L, Gilbert S, Wade B. 2012. Gold-telluride nanoparticles revealed in arsenic-free pyrite. Am Mineral, 97: 1515–1518

    Article  Google Scholar 

  • Cloutier J, Piercey S J, Layne G, Heslop J, Hussey A, Piercey G. 2015. Styles, textural evolution, and sulfur isotope systematics of Cu-rich sulfides from the Cambrian whalesback volcanogenic massive sulfide deposit, central Newfoundland, Canada. Econ Geol, 110: 1215–1234

    Article  Google Scholar 

  • Cook N J, Ciobanu C L, Meria D, Silcock D, Wade B. 2013. Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements. Econ Geol, 108: 1273–1283

    Article  Google Scholar 

  • Danyushevsky L, Robinson P, Gilbert S, Norman M, Large R, McGoldrick P, Shelley M. 2011. Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochem-Explor Env A, 11: 51–60

    Article  Google Scholar 

  • Dare S A S, Barnes S J, Beaudoin G. 2012. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination. Geochim Cosmochim Acta, 88: 27–50

    Article  Google Scholar 

  • Dehnavi A S, McFarlane C R M, Lentz D R, Walker J A. 2018. Assessment of pyrite composition by LA-ICP-MS techniques from massive sulfide deposits of the Bathurst Mining Camp, Canada: From textural and chemical evolution to its application as a vectoring tool for the exploration of VMS deposits. Ore Geol Rev, 92: 656–671

    Article  Google Scholar 

  • Deng X H, Wang J B, Pirajno F, Wang Y W, Li Y C, Li C, Zhou L M, Chen Y J. 2016. Re-Os dating of chalcopyrite from selected mineral deposits in the Kalatag district in the eastern Tianshan Orogen, China. Ore Geol Rev, 77: 72–81

    Article  Google Scholar 

  • Deng X H, Mathur R, Li Y, Mao Q G, Wu Y S, Yang L Y, Chen X, Xu J. 2019. Copper and zinc isotope variation of the VMS mineralization in the Kalatag district, eastern Tianshan, NW China. J Geochem Explor, 196: 8–19

    Article  Google Scholar 

  • Deng X H, Wang J B, Pirajno F, Mao Q G, Long L L. 2020. A review of Cu-dominant mineral systems in the Kalatag district, East Tianshan, China. Ore Geol Rev, 117: 103284

    Article  Google Scholar 

  • Donald R, Southam G. 1999. Low temperature anaerobic bacterial diagenesis of ferrous monosulfide to pyrite. Geochim Cosmochim Acta, 63: 2019–2023

    Article  Google Scholar 

  • Dupuis C, Beaudoin G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Depos, 46: 319–335

    Article  Google Scholar 

  • Duran C J, Barnes S J, Corkery J T. 2015. Chalcophile and platinum-group element distribution in pyrites from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: Implications for post-cumulus re-equilibration of the ore and the use of pyrite compositions in exploration. J Geochem Explor, 158: 223–242

    Article  Google Scholar 

  • Farina M, Esquivel D M S, de Barros H G P L. 1990. Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature, 343: 256–258

    Article  Google Scholar 

  • Franchini M, McFarlane C, Maydagán L, Reich M, Lentz D R, Meinert L, Bouhier V. 2015. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geol Rev, 66: 366–387

    Article  Google Scholar 

  • Franklin J M, Gibson H L, Jonasson, I R, Galley A G. 2005. Volcanogenic massive sulfide deposits. Econ Geol 100th Anniversary Volume: 523–560

  • Gadd M G, Layton-Matthews D, Peter J M, Paradis S, Jonasson I R. 2017. The world-class Howard’s Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part II: The roles of thermochemical and bacterial sulfate reduction in metal fixation. Miner Depos, 52: 405–419

    Article  Google Scholar 

  • Gaspar M, Knaack C, Meinert L D, Moretti R. 2008. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochim Cosmochim Acta, 72: 185–205

    Article  Google Scholar 

  • Gemmell J B, Large R R. 1992. Stringer system and alteration zones underlying the Hellyer volcanogenic massive sulfide deposit, Tasmania, Australia. Econ Geol, 87: 620–649

    Article  Google Scholar 

  • Genna D, Gaboury D. 2015. Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: An example from the bracemac-mcleod deposits, Abitibi, Canada, and implications for exploration. Econ Geol, 110: 2087–2108

    Article  Google Scholar 

  • Green G R, Solomon M, Walshe J L. 1981. The formation of the volcanic-hosted massive sulfide ore deposit at Rosebery, Tasmania. Econ Geol, 76: 304–338

    Article  Google Scholar 

  • Gregory D, Meffre S, Large R. 2014. Comparison of metal enrichment in pyrite framboids from a metal-enriched and metal-poor estuary. Am Mineral, 99: 633–644

    Article  Google Scholar 

  • Gregory D D, Large R R, Halpin J A, Baturina E L, Lyons T W, Wu S, Danyushevsky L, Sack P J, Chappaz A, Maslennikov V V, Bull S W. 2015. Trace element content of sedimentary pyrite in Black Shales. Econ Geol, 110: 1389–1410

    Article  Google Scholar 

  • Gu X, Heaney P J, Reis F D A A, Brantley S L. 2020. Deep abiotic weathering of pyrite. Science, 370: eabb8092

    Article  Google Scholar 

  • Herzig P M, Hannington M D. 1995. Polymetallic massive sulfides at the modern seafloor a review. Ore Geol Rev, 10: 95–115

    Article  Google Scholar 

  • Huang J H, Chen H Y, Han J S, Deng X H, Lu W J, Zhu R L. 2018. Alteration zonation and short wavelength infrared (SWIR) characteristics of the Honghai VMS Cu-Zn deposit, Eastern Tianshan, NW China. Ore Geol Rev, 100: 263–279

    Article  Google Scholar 

  • Huston D L, Bottrill R S, Creelman R A, Zaw K, Ramsden T R, Rand S W, Gemmell J B, Jablonski W, Sie S H, Large R R. 1992. Geologic and geochemical controls on the mineralogy and grain size of gold-bearing phases, eastern Australian volcanic-hosted massive sulfide deposits. Econ Geol, 87: 542–563

    Article  Google Scholar 

  • Huston D L, Sie S H, Suter G F, Cooke D R, Both R A. 1995. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with δ 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ Geol, 90: 1167–1196

    Article  Google Scholar 

  • Huston D L. 1999. Stable isotopes and their significance for understanding the genesis of volcanic-hosted massive sulfide deposits: A review. Rev Econ Geol, 8: 157–179

    Google Scholar 

  • Hutchison W, Finch A A, Boyce A J. 2020. The sulfur isotope evolution of magmatic-hydrothermal fluids: Insights into ore-forming processes. Geochim Cosmochim Acta, 288: 176–198

    Article  Google Scholar 

  • Ingham E S, Cook N J, Cliff J, Ciobanu C L, Huddleston A. 2014. A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia. Geochim Cosmochim Acta, 125: 440–465

    Article  Google Scholar 

  • Jahn B, Windley B, Natal’in B, Dobretsov N. 2004. Phanerozoic continental growth in Central Asia. J Asian Earth Sci, 23: 599–603

    Article  Google Scholar 

  • Jiang S Y, Yang T, Li L, Zhao K D, Ling H F. 2006. Lead and sulfur isotopic compositions of sulfides from the TAG hydrothermal field, Mid-Atlantic Ridge (in Chinese with English abstract). Acta Petrol Sin, 22: 3597–2602

    Google Scholar 

  • Jochum K P, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob D E, Stracke A, Birbaum K, Frick D A, Günther D, Enzweiler J. 2011. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res, 35: 397–429

    Article  Google Scholar 

  • Kalliokoski J, Cathles L. 1969. Morphology, mode of formation, and diagenetic changes in framboids. Bull Geol Soc Finland, 41: 125–133

    Article  Google Scholar 

  • Keith M, Haase K M, Schwarz-Schampera U, Klemd R, Petersen S, Bach W. 2014. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology, 42: 699–702

    Article  Google Scholar 

  • Keith M, Haase K M, Klemd R, Krumm S, Strauss H. 2016. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus. Chem Geol, 423: 7–18

    Article  Google Scholar 

  • Keith M, Smith D J, Jenkin G R T, Holwell D A, Dye M D. 2018. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geol Rev, 96: 269–282

    Article  Google Scholar 

  • Koglin N, Frimmel H E, Lawrie Minter W E, Brätz H. 2010. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Miner Depos, 45: 259–280

    Article  Google Scholar 

  • Laakso K, Peter J M, Rivard B, White H P. 2016. Short-wave infrared spectral and geochemical characteristics of hydrothermal alteration at the Archean Izok Lake Zn-Cu-Pb-Ag volcanogenic massive sulfide deposit, Nunavut, Canada: Application in exploration target vectoring. Econ Geol, 111: 1223–1239

    Article  Google Scholar 

  • Lalonde E, Beaudoin G, Gibson H. 2015. Petrochemistry, hydrothermal alteration, mineralogy, and sulfur isotope geochemistry of the Turgeon Cu—Zn volcanogenic massive sulfide deposit, northern New Brunswick, Canada. Can J Earth Sci, 52: 215–234

    Article  Google Scholar 

  • Large R R. 1992. Australian volcanic-hosted massive sulfide deposits; features, styles, and genetic models. Econ Geol, 87: 471–510

    Article  Google Scholar 

  • Large R R, Danyushevsky L, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh B, Foster J. 2009. Gold and trace element Zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ Geol, 104: 635–668

    Article  Google Scholar 

  • Large R R, Mukherjee I, Gregory D D, Steadman J A, Maslennikov V V, Meffre S. 2017. Ocean and atmosphere geochemical proxies derived from trace elements in marine pyrite: Implications for ore genesis in sedimentary basins. Econ Geol, 112: 423–450

    Article  Google Scholar 

  • Li J Y, Wang K Z, Sun G, Mo S G, Li W Q, Yang T N, Gao L M. 2006. Paleozoic active margin slices in the southern Turfan-Hami basin: geological records of subduction of the Paleo-Asian Ocean Plate in Central Asian Regions (in Chinese with English abstract). Acta Petrol Sin, 22: 1087–1102

    Google Scholar 

  • Li W Q, Wang R, Wang H, Xia B. 2006. Geochemistry and petrogenesis of the Kalatag intrusion in the “Tuha window” (in Chinese with English abstract). Geol China, 33: 559–565

    Google Scholar 

  • Liu Y N, Fan Y, Zhou T F, Wang J F, Fu B, Ireland T R, White N C, Zhang L J. 2020. Geochemical characteristics of pyrite in the Dabaozhuang deposit in the Middle-Lower Yangtze River Metallogenic Belt, Eastern China. Ore Geol Rev, 124: 103662

    Article  Google Scholar 

  • Liu Y S, Hu Z C, Gao S, Gunther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol, 257: 34–43

    Article  Google Scholar 

  • Love L G. 1957. Mircro-organisms and the presence of syngenetic pyrite. Quart J Geol Soc, 113: 429–440

    Article  Google Scholar 

  • Lowenstam H A. 1981. Minerals formed by organisms. Science, 211: 1126–1131

    Article  Google Scholar 

  • Mao J W, Pirajno F, Lehmann B, Luo M, Berzina A. 2014. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. J Asian Earth Sci, 79: 576–584

    Article  Google Scholar 

  • Mao M, Rukhlov A S, Rowins S M, Spence J, Coogan L A. 2016. Apatite trace element compositions: A robust new tool for mineral exploration. Econ Geol, 111: 1187–1222

    Article  Google Scholar 

  • Mao Q G, Fang T H, Wang J B, Wang S L, Wang N. 2010. Geochronology studies of the early Paleozoic Honghai massive sulfide deposits and its geological significance in Kalatage area, eastern Tianshan Mountain (in Chinese with English abstract). Acta Petrol Sin, 26: 3017–3026

    Google Scholar 

  • Mao Q G, Wang J B, Xiao W J, Fang T H, Yu M J, Ao S J, Zhang J E. 2014. Stratigraphic, U-Pb (zircon) and geochemical constraints on magmas, mineralization and geological evolution of the Kalatage district, the central part of Dananhu arc in eastern Tianshan Mountains. Acta Geol Sin-Engl Ed, 88: 885–886

    Article  Google Scholar 

  • Mao Q G. 2015. The geological, metallogenesis and metallogenic prognosis studies of the Kalatage copper polymetallic ore district in eastern Tianshan, NW China (in Chinese). Post-Doctoral Research Report: 1–154

  • Mao Q G, Wang J B, Xiao W J, Windley B F, Schulmann K, Yu M J, Fang T H, Li Y C. 2019. Mineralization of an intra-oceanic arc in an accretionary orogen: Insights from the Early Silurian Honghai volcanogenic massive sulfide Cu-Zn deposit and associated adakites of the Eastern Tianshan (NW China). GSA Bull, 131: 803–830

    Article  Google Scholar 

  • Ma R S, Wang C G, Ye S F. 1993. Tectonic framework and crust evolution of eastern Tianshan mountains. Nanjing: Nanjing University Publishing House (in Chinese)

    Google Scholar 

  • Ma Z J, Chai F M, Xu Q F, Wang W, Mao Q G, Qi D M. 2021. The discovery of Low-Carboniferous arc volcanic rocks and its tectonic significance at the Kalatag area in the eastern Tianshan (in Chinese with English abstract). China J Geol, 56: 683–700

    Google Scholar 

  • Maslennikov V V, Maslennikova S P, Large R R, Danyushevsky L V. 2009. Study of Trace Element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ Geol, 104: 1111–1141

    Article  Google Scholar 

  • Maslennikov V V, Maslennikova S P, Large R R, Danyushevsky L V, Herrington R J, Ayupova N R, Zaykov V V, Lein A Y, Tseluyko A S, Melekestseva I Y, Tessalina S G. 2017. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geol Rev, 85: 64–106

    Article  Google Scholar 

  • Meric J, Dare S A S, Barnes S J, Beaudoin G. 2012. The use of trace Elements in Fe-Oxides in deducing the fractionation history of a silicate magma: A LA-ICP-MS study. Goldschmidt Conference. 2101

  • McGoldrick P J, Large R R. 1992. Geologic and geochemical controls on gold-rich stringer mineralization in the Que River deposit, Tasmania. Econ Geol, 87: 667–685

    Article  Google Scholar 

  • Morton R L, Franklin J M. 1987. Two-fold classification of Archean volcanic-associated massive sulfide deposits. Econ Geol, 82: 1057–1063

    Article  Google Scholar 

  • Muramoto J A, Honjo S, Fry B, Hay B J, Howarth R W, Cisne J L. 1991. Sulfur, iron and organic carbon fluxes in the Black Sea: Sulfur isotopic evidence for origin of sulfur fluxes. Deep Sea Res Part A Oceanographic Res Papers, 38: S1151–S1187

    Article  Google Scholar 

  • Nadoll P, Mauk J L, Hayes T S, Koenig A E, Box S E. 2012. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Econ Geol, 107: 1275–1292

    Article  Google Scholar 

  • Nadoll P, Angerer T, Mauk J L, French D, Walshe J. 2014. The chemistry of hydrothermal magnetite: A review. Ore Geol Rev, 61: 1–32

    Article  Google Scholar 

  • Ohfuji H, Rickard D. 2005. Experimental syntheses of framboids—A review. Earth-Sci Rev, 71: 147–170

    Article  Google Scholar 

  • Ohmoto H. 1986. Stable isotope geochemistry of ore deposits. Rev Miner, 16: 491–560

    Google Scholar 

  • Ohmoto H. 1996. Formation of volcanogenic massive sulfide deposits: The Kuroko perspective. Ore Geol Rev, 10: 135–177

    Article  Google Scholar 

  • Ohmoto H, Rye R O. 1979. Isotopes of sulfur and carbon. In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits. 2nd ed. New York: John Wiley & Sons. 509–567

    Google Scholar 

  • Ohmoto H, Goldhaber M B. 1997. Sulfur and carbon isotope. Geochemistry of Hydrothermal Ore Deposits, 517–612

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom, 26: 2508–2518

    Article  Google Scholar 

  • Peter J M, Scott S D. 1988. Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California. Can Mineral, 26: 567–587

    Google Scholar 

  • Petersen S, Herzig P M, Hannington M D. 2000. Third dimension of a presently forming VMS deposit: TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N. Miner Depos, 35: 233–259

    Article  Google Scholar 

  • Pirajno F. 2009. Hydrothermal Processes and Mineral Systems. Berlin: Springer. 1–1272

    Book  Google Scholar 

  • Pirajno F, Seltmann R, Yang Y Q. 2011. A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China. Geosci Front, 2: 157–185

    Article  Google Scholar 

  • Qin K Z, Su B X, Sakyi P A, Tang D M, Li X H, Sun H, Xiao Q H, Liu P P. 2011. SIMS zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a ca. 280 Ma mantle plume. Am J Sci, 311: 237–260

    Article  Google Scholar 

  • Ray G E, Webster I C L. 2007. Geology and chemistry of the low Ti magnetite-bearing Heff Cu-Au skarn and its associated plutonic rocks, Heffley Lake, South-Central British Columbia. Explor Min Geol, 16: 159–186

    Article  Google Scholar 

  • Reich M, Deditius A, Chryssoulis S, Li J W, Ma C Q, Parada M A, Barra F, Mittermayr F. 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim Cosmochim Acta, 104: 42–62

    Article  Google Scholar 

  • Revan M K, Genç Y, Maslennikov V V, Maslennikova S P, Large R R, Danyushevsky L V. 2014. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt (NE Turkey). Ore Geol Rev, 63: 129–149

    Article  Google Scholar 

  • Rui Z Y, Wang L S, Wang Y T, Liu Y L. 2002. Discussion on metallogenic epoch of Tuwu and Yandong porphyry copper deposits in eastern Tianshan Mountains, Xinjiang(in Chinese with English abstract). Miner Depos, 21: 16–21

    Google Scholar 

  • Sakai H, Marais D J D, Ueda A, Moore J G. 1984. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim Cosmochim Acta, 48: 2433–2441

    Article  Google Scholar 

  • Sawlowicz Z. 1993. Pyrite framboids and their development: A new conceptual mechanism. Geol Rundsch, 82: 148–156

    Article  Google Scholar 

  • Schauble E A. 2004. Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem, 55: 65–111

    Article  Google Scholar 

  • Scott R J, Meffre S, Woodhead J, Gilbert S E, Berry R F, Emsbo P. 2009. Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration. Econ Geol, 104: 1143–1168

    Article  Google Scholar 

  • Seal R R. 2006. Sulfur isotope geochemistry of sulfide minerals. Rev Mineral Geochem, 61: 633–677

    Article  Google Scholar 

  • Şengör A M C, Natal’in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299–307

    Article  Google Scholar 

  • Solomon M, Eastoe C J, Walshe J L, Green G R. 1988. Mineral deposits and sulfur isotope abundances in the Mount Read Volcanics between Que River and Mount Darwin, Tasmania. Econ Geol, 83: 1307–1328

    Article  Google Scholar 

  • Sun Y, Wang J B, Li Y C, Wang Y W, Yu M J, Long L L, Chen L. 2018. Recognition of Late Ordovician Yudai porphyry Cu (Au, Mo) mineralization in the Kalatag district, Eastern Tianshan terrane, NW China: Constraints from geology, geochronology, and petrology. Ore Geol Rev, 100: 220–236

    Article  Google Scholar 

  • Sun Y, Wang J B, Wang Y W, Long L L, Mao Q G, Yu M J. 2019. Ages and origins of granitoids from the Kalatag Cu cluster in Eastern Tianshan, NW China: Constraints on Ordovician-Devonian arc evolution and porphyry Cu fertility in the southern Central Asian Orogenic Belt. Lithos, 330–331: 55–73

    Article  Google Scholar 

  • Tanner D, Henley R W, Mavrogenes J A, Holden P. 2016. Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au-Cu-Ag deposit, Chile. Contrib Mineral Petrol, 171: 1–7

    Article  Google Scholar 

  • Taylor B E, Beaudoin G. 2000. Sulphur stratigraphy of the Sullivan Pb-Zn-Ag deposit, B C: Evidence for hydrothermal Sulphur, and bacterial and thermochemical sulphate reduction. In: Lydon J W, Hoy T, Slack J F, Knapp M, eds. The Sullivan Deposit and Its Geological Environment St John’s, Newfoundland. Mineral Deposits Division of the Geological Association of Canada, 1: 696–719

    Google Scholar 

  • Thomas H V, Large R R, Bull S W, Maslennikov V, Berry R F, Fraser R, Froud S, Moye R. 2011. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and Reefs at Bendigo gold mine, Australia: Insights for ore genesis. Econ Geol, 106: 1–31

    Article  Google Scholar 

  • Ulrich T, Long D G F, Kamber B S, Whitehouse M J. 2011. In situ trace element and sulfur isotope analysis of pyrite in a Paleoproterozoic gold placer deposit, Pardo and Clement Townships, Ontario, Canada. Econ Geol, 106: 667–686

    Article  Google Scholar 

  • Velasco F, Sánchez-España J, Boyce A J, Fallick A E, Sáez R, Almodóvar G R. 1998. A new sulphur isotopic study of some Iberian pyrite belt deposits: Evidence of a textural control on sulphur isotope composition. Miner Depos, 34: 4–18

    Article  Google Scholar 

  • Wang J B, Wang Y W, He Z J. 2006. Ore deposits as a guide to the tectonic evolution in the East Tianshan Mountains, NW China (in Chinese with English abstract). Geol China, 33: 461–469

    Google Scholar 

  • Wilkin R T, Barnes H L, Brantley S L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim Cosmochim Acta, 60: 3897–3912

    Article  Google Scholar 

  • Wilson S A, Ridley W I, Koenig A E. 2002. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J Anal At Spectrom, 17: 406–409

    Article  Google Scholar 

  • Winderbaum L, Ciobanu C L, Cook N J, Paul M, Metcalfe A, Gilbert S. 2012. Multivariate analysis of an LA-ICP-MS trace element dataset for pyrite. Math Geosci, 44: 823–842

    Article  Google Scholar 

  • Windley B F, Alexeiev D, Xiao W, Kroner A, Badarch G. 2007. Tectonic models for accretion of the Central Asian orogenic belt. J Geol Soc, 164: 31–47

    Article  Google Scholar 

  • Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, Vorster C. 2015. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochim Cosmochim Acta, 159: 16–41

    Article  Google Scholar 

  • Wu Y F, Evans K, Li J W, Fougerouse D, Large R R, Guagliardo P. 2019. Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit. Geochim Cosmochim Acta, 245: 98–117

    Article  Google Scholar 

  • Xiao B, Chen H Y. 2020. Elemental behavior during chlorite alteration: New insights from a combined EMPA and LA-ICPMS study in porphyry Cu systems. Chem Geol, 543: 119604

    Article  Google Scholar 

  • Xiao W J, Windley B F, Allen M B, Han C M. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res, 23: 1316–1341

    Article  Google Scholar 

  • Yang L Y. 2017. Research on Metallogenic of the Kalatage Copper Polymetallic Deposit in Eastern Tianshan, NW China (in Chinese). Post-Doctoral Research Report. 1–135

  • Yang C D, Chai F M, Yang F Q, Santosh M, Xu Q F, Wang W. 2018. Genesis of the Huangtupo Cu-Zn deposit, Eastern Tianshan, NW China: Constraints from geology, Rb-Sr and Re-Os geochronology, fluid inclusions, and H-O-S-Pb isotopes. Ore Geol Rev, 101: 725–739

    Article  Google Scholar 

  • Yang M Z, Li J W, Zhao X F, Xu H J, Zhou Y Y. 2019. Electron back-scattered diffraction and LA-ICP-MS analysis of pyrite from the Dahu lodegold deposit, southern North China craton: Insights into geochemistry and distribution of trace element connection to microstructure of pyrite. Ore Geol Rev, 115: 103164

    Article  Google Scholar 

  • Yıldırım N, Dönmez C, Kang J, Lee I, Pirajno F, Yıldırım E, Günay K, Seo J H, Farquhar J, Chang S W. 2016. A magnetite-rich Cyprus-type VMS deposit in Ortaklar: A unique VMS style in the Tethyan metallogenic belt, Gaziantep, Turkey. Ore Geol Rev, 79: 425–442

    Article  Google Scholar 

  • Yu M J, Wang Y W, Wang J B, Mao Q G, Deng X H, Sun Y, Zhang R. 2019. The mineralization of the Kalatage arc, Eastern Tianshan, NW China: Insights from the geochronology of the Meiling Cu-Zn(-Au) deposit. Ore Geol Rev, 107: 72–86

    Article  Google Scholar 

  • Zheng Y, Zhang L, Chen Y J, Hollings P, Chen H Y. 2013. Metamorphosed Pb-Zn-(Ag) ores of the Keketale VMS deposit, NW China: Evidence from ore textures, fluid inclusions, geochronology and pyrite compositions. Ore Geol Rev, 54: 167–180

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fengfeng WANG for his cooperation that made the fieldwork possible during the active operation of the Honghai deposit. We also thank Yang WANG and Yan ZHANG, who guided us safely and enthusiastically through the mine. We acknowledge Zhihui DAI and Xue ZHANG for their help during laser ablation ICP-MS analyses. Special thanks to Abulimiti AIBAI for his assistance during the experiment. Most importantly, we thank the responsible editor and reviewers for their careful reviews and critical and thorough comments. This research was supported by the National Key R&D Program of China (Grant No. 2018YFC0604006), the National Natural Science Foundation of China (Grant No. 41572077), and the Geological Survey Project of China (Grant No. 1212011140056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Deng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Deng, X. & Pirajno, F. Textures, trace element compositions, and sulfur isotopes of pyrite from the Honghai volcanogenic massive sulfide deposit: Implications for ore genesis and mineral exploration. Sci. China Earth Sci. 66, 738–764 (2023). https://doi.org/10.1007/s11430-021-1017-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-1017-8

Keywords

Navigation