Skip to main content
Log in

Magnesium Potassium Phosphate Compound for Radioactive Waste Immobilization: Phase Composition, Structure, and Physicochemical and Hydrolytic Durability

  • Published:
Radiochemistry Aims and scope

Abstract

Low-temperature mineral-like magnesium potassium phosphate (MPP) compounds were synthesized in the course of immobilization of nitric acid solutions containing cesium, strontium, sodium, ammonium, lanthanum, and iron as simulated radioactive waste (RW). The phase composition and structure of the compounds and the distribution of the RW components were studied. The mechanical strength (15 ± 3 MPa), heat resistance (up to 450°С), and radiation resistance (absorbed dose 1 MGy) of the compounds were evaluated in accordance with the existing regulations. The MPP compound exhibits high hydrolytic durability: The differential leach rate of 239Pu and 152Eu on the 28th day, measured in accordance with GOST (State Standard) R 52 126–2003, is 2.1 × 10–6 and 1.4 × 10–4 g cm–2 day–1, respectively. Introduction of wollastonite into the compound decreases the radionuclide leach rate by a factor of up to 5. The MPP compound shows promise for industrial solidification of liquid RW, including high-level highly saline multicomponent actinidecontaining waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radioactive Waste Forms for the Future, Lutze, W. and Ewing, R.C., Eds., Amsterdam: Elsevier, 1988.

  2. Stefanovsky, S.V., Yudintsev, S.V., Vinokurov, S.E., and Myasoedov, B.F., Geochem. Int., 2016, vol. 54, no. 13, pp. 1136–1156.

    Article  CAS  Google Scholar 

  3. NP-019-15: Federal regulations and rules in the field of using atomic energy. Collection, processing, storage, and conditioning of liquid radioactive waste. Safety requirements.

  4. Kozlov, P.V. and Gorbunova, O.A., Tsementirovanie kak metod immobilizatsii radioaktivnykh otkhodov (Cementation as a Method for Radioactive Waste Immobilization), Ozersk: Mayak, 2011.

    Google Scholar 

  5. Sobolev, I.A., Ozhovan, M.I., Shcherbatova, T.D., and Batyukhnova, O.G., Stekla dlya radioaktivnykh otkhodov (Glasses for Radioactive Waste), Moscow: Energoatomizdat, 1999.

    Google Scholar 

  6. Stefanovsky, S.V., Stefanovskaya, O.I., Vinokurov, S.E., et al., Radiochemistry, 2015, vol. 57, no. 4, pp. 348–355.

    Article  CAS  Google Scholar 

  7. Glagolenko, Yu.V., Drozhko, E.G., and Rovnyi, S.I., Vopr. Radiats. Bezopasn., 2006, no. 1, pp. 23–34.

    Google Scholar 

  8. Ringwood, A.E., Kesson, S.E., Reeve, K.D., et al., Radioactive Waste Forms for the Future, Lutze, W. and Ewing, R.C., Eds., Amsterdam: Elsevier, 1988, pp. 233–334.

  9. Laverov, N.P., Sobolev, I.A., Stefanovsky, S.V., et al., Dokl. Ross. Akad. Nauk, 1998, vol. 362, pp. 670–672.

    CAS  Google Scholar 

  10. Vinokurov, S.E., Kulyako, Yu.M., Perevalov, S.A., and Myasoedov, B.F., C. R. Chim., 2007, vol. 10, nos. 10–11, pp. 1128–1130.

    Article  CAS  Google Scholar 

  11. Petrov, Yu.B., Induktsionnaya plavka okislov (Induction Melting of Oxides), Moscow: Nauka, 1983.

    Google Scholar 

  12. Merzhanov, A.G., Russ. Chem. Rev., 2003, vol. 72, no. 4, pp. 289–310.

    Article  CAS  Google Scholar 

  13. Kurkumeli, A.A., Molokhov, M.N., Sadkovskaya, O.D., et al., At. Energ., 1992, vol. 73, pp. 210–215.

    Article  CAS  Google Scholar 

  14. Wagh, A.S., Chemically Bonded Phosphate Ceramics. Twenty-First Century Materials with Diverse Applications, Elsevier, 2004.

    Google Scholar 

  15. Roy, D.M., Science, 1987, vol. 235, no. 4789, pp. 651–658.

    Article  CAS  Google Scholar 

  16. Aloy, A.S., Kovarskaya, E.N., Kol’tsova, T.I., et al., RF Patent 2 137 229, Priority of Nov. 20, 1997.

    Google Scholar 

  17. Choi, J., Um, W., and Choung, S., J. Nucl. Mater., 2014, vol. 452, pp. 16–23.

    Article  CAS  Google Scholar 

  18. Filippov, Ya.Yu., Larionov, D.S., Putlyaev, V.I., et al., Glass Ceram., 2013, vol. 70, nos. 7–8, pp. 306–310.

    Article  CAS  Google Scholar 

  19. Graeser, S., Postl, W., Bojar, H.-P., et al., Eur. J. Mineral., 2008, vol. 20, no. 4, pp. 629–633.

    Article  CAS  Google Scholar 

  20. Sharygin, L.M., Fosfatnye tsementy v atomnoi energetike (Phosphate Cements in Atomic Power Engineering), Yekaterinburg: Ural’skoe Otdel. Ross. Akad. Nauk, 2015.

    Google Scholar 

  21. Wagh, A.S., Sayenko, S.Yu., Dovbnya, A.N., et al., J. Nucl. Mater., 2015, vol. 462, pp. 165–172.

    Article  CAS  Google Scholar 

  22. Borzunov, A.I., D’yakov, S.V., and Poluektov, P.P., At. Energy, 2004, vol. 96, no. 2, pp. 123–126.

    Article  CAS  Google Scholar 

  23. Sukhonosov, V.Ya., Nikolaev, A.N., Nikolaev, S.A., et al., Ross. Khim. Zh., 2010, vol. LIV, no. 3, pp. 89–93.

    Google Scholar 

  24. Myasoedov, B.F., Kalmykov, S.N., Kulyako, Yu.M., and Vinokurov, S.E., Geochem. Int., 2016, vol. 54, no. 13, pp. 1157–1168.

    Article  Google Scholar 

  25. Vinokurov, S.E., Kulyako, Yu.M., Slyunchev, O.M., et al., Radiochemistry, 2009, vol. 51, no. 1, pp. 65–72.

    Article  CAS  Google Scholar 

  26. Vinokurov, S.E., Kulyako, Yu.M., and Myasoedov, B.F., Ross. Khim. Zh., 2010, vol. LIV, no. 3, pp. 81–88.

    Google Scholar 

  27. Vinokurov, S.E., Kulyako, Yu.M., Slyuntchev, O.M., et al., J. Nucl. Mater., 2009, vol. 385, pp. 189–192.

    Article  CAS  Google Scholar 

  28. Vinokurov, S.E., Kulyako, Yu.M., and Myasoedov, B.F., RF Patent 2 381 580, Priority of Oct. 13, 2008.

    Google Scholar 

  29. FR.1.28.2014.18 803, MI-171-13: Procedure for measuring the ultimate strength of cement compounds incorporating radioactive waste using a Testing Sybertronic testing machine.

  30. MPI-04-12: Determination of the frost resistance of cement compounds incorporating RW in an MK-53 climatic chamber.

  31. GOST (State Standard) R 52126–2003: Radioactive waste. Determination of the chemical durability of solidified high-level waste by prolonged leaching, Moscow: Gosstandart Rossii, 2003.

  32. De Groot, G.J. and van der Sloot, H.A., Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes: ASTMSTP 1123, Gilliam, T.M. and Wiles, G., Eds., Philadelphia: ASTM, 1992. vol. 2, pp. 149–170.

    Article  Google Scholar 

  33. Al-Abed, S.R., Hageman, P.L., Jegadeesan, G., et al., Sci. Total Environ., 2006, vol. 364, pp. 14–23.

    Article  CAS  Google Scholar 

  34. Moon, D.H. and Dermatas, D., Eng. Geol., 2006, vol. 85, pp. 67–74.

    Article  Google Scholar 

  35. Torras, J., Buj, I., Rovira, M., and de Pablo, J., J. Hazard. Mater., 2011, vol. 186, pp. 1954–1960.

    Article  CAS  Google Scholar 

  36. Xue, Q., Wang, P., Li, J.-S., et al., Chemosphere, 2017, vol. 166, pp. 1–7.

    Article  CAS  Google Scholar 

  37. Wagh, A.S., Sayenko, S.Y., Shkuropatenko, V.A., et al., J. Hazard. Mater., 2016, vol. 302, pp. 241–249.

    Article  CAS  Google Scholar 

  38. Ershov, B.G., Yurik, T.K., Bykov, G.L., et al., Vopr. Radiats. Bezopasn., 2008, no. 1, pp. 3–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Vinokurov.

Additional information

Original Russian Text © S.E. Vinokurov, S.A. Kulikova, V.V. Krupskaya, B.F. Myasoedov, 2018, published in Radiokhimiya, 2018, Vol. 60, No. 1, pp. 66–73.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinokurov, S.E., Kulikova, S.A., Krupskaya, V.V. et al. Magnesium Potassium Phosphate Compound for Radioactive Waste Immobilization: Phase Composition, Structure, and Physicochemical and Hydrolytic Durability. Radiochemistry 60, 70–78 (2018). https://doi.org/10.1134/S1066362218010125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362218010125

Keywords

Navigation