Skip to main content
Log in

DNA metabarcoding of airborne pollen: new protocols for improved taxonomic identification of environmental samples

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Metabarcoding is a promising DNA-based method for identifying airborne pollen from environmental samples with advantages over microscopic methods. Sample preparation and DNA extraction are of fundamental importance for obtaining an optimal DNA yield. Currently, there is no standard procedure for these steps, especially for gravimetric pollen samplers. Therefore, the aim of this study was to develop protocols for processing environmental samples for pollen DNA extraction and for metabarcoding analysis and to assess the efficacy of these protocols for the taxonomic assignment of airborne pollen collected by gravimetric (Tauber trap) and volumetric (Hirst-type trap) samplers. Protocols were tested across an increasing complexity of samples, from pure single-species pollen to environmental multi-species samples. A short fragment (about 150 base pairs) of the chloroplast trnL gene was amplified using universal primers for plants. After PCR amplification, amplicons were Sanger-sequenced and taxonomic assignment was accomplished by comparison with a custom-made reference database including chloroplast DNA sequences from most of the anemophilous taxa occurring in the study area (Trentino, northern Italy), representing 46 plant families. Using the classical morphological pollen analysis as a benchmark, we show that DNA metabarcoding is efficient and applicable even in complex samples, provided that protocols for sample preparation, DNA extraction, and metabarcoding analysis are carefully optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bell, K. L., Vere, N. De, Keller, A., Richardson, R. T., Gous, A., Burgess, K. S., et al. (2016). Pollen DNA barcoding: Current applications and future. Genome, 59(9), 1–12. doi:10.1139/gen-2015-0200.

    Article  Google Scholar 

  • Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10, 421. doi:10.1186/1471-2105-10-421.

    Article  Google Scholar 

  • Charalampopoulos, A., Damialis, A., Tsiripidis, I., Mavrommatis, T., Halley, J., & Vokou, D. (2013). Pollen production and circulation patterns along an elevation gradient in Mt Olympos (Greece) National Park. Aerobiologia, 29(4), 455–472. doi:10.1007/s10453-013-9296-0.

    Article  Google Scholar 

  • Cristofori, A., Cristofolini, F., & Gottardini, E. (2010). Twenty years of aerobiological monitoring in Trentino (Italy): Assessment and evaluation of airborne pollen variability. Aerobiologia, 26(3), 253–261. doi:10.1007/s10453-010-9161-3.

    Article  Google Scholar 

  • Dalla Fior, G. (1985). La Nostra Flora, Guida alla conoscenza della flora della regione Trentino-Alto Adige (3rd ed.). Trento: Casa Editrice G.D. Monauni.

    Google Scholar 

  • Damialis, A., Halley, J. M., Gioulekas, D., & Vokou, D. (2007). Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece. Atmospheric Environment, 41(33), 7011–7021. doi:10.1016/j.atmosenv.2007.05.009.

    Article  CAS  Google Scholar 

  • De La Torre, A. R., Birol, I., Bousquet, J., Ingvarsson, P. K., Jansson, S., Jones, S. J. M., et al. (2014). Insights into conifer giga-genomes. Plant Physiology, 166, 1724–1732. doi:10.1104/pp.114.248708.

    Article  Google Scholar 

  • Dell’Anna, R., Cristofori, A., Gottardini, E., & Monti, F. (2010). A critical presentation of innovative techniques for automated pollen identification in aerobiological monitoring networks. In B. J. Kaiser (Ed.), Pollen: Structure, types and effects (pp. 273–288). New York: Nova Science.

    Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. doi:10.1093/nar/gkh340.

    Article  CAS  Google Scholar 

  • Faegri, K., & Iversen, J. (1989). Textbook of pollen analysis. London: Wiley.

    Google Scholar 

  • Hirst, J. M. (1952). An autonamted volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.

    Article  Google Scholar 

  • Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314. doi:10.2307/1390807.

    Google Scholar 

  • Jochner, S., Ziello, C., Bock, A., Estrella, N., Buters, J., Weichenmeier, I., et al. (2012). Spatio-temporal investigation of flowering dates and pollen counts in the topographically complex Zugspitze area on the German–Austrian border. Aerobiologia, 28(4), 541–556. doi:10.1007/s10453-012-9255-1.

    Article  Google Scholar 

  • Keller, A., Danner, N., Grimmer, G., Ankenbrand, M., Von Der Ohe, K., & Von Der Ohe, W. (2015). Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biology, 17(2), 558–566. doi:10.1111/plb.12251.

    Article  CAS  Google Scholar 

  • Kraaijeveld, K., de Weger, L. A., Ventayol García, M., Buermans, H., Frank, J., Hiemstra, P. S., et al. (2015). Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Molecular Ecology Resources, 15(1), 8–16. doi:10.1111/1755-0998.12288.

    Article  CAS  Google Scholar 

  • Levetin, E. (2004). Methods for aeroallergen sampling. Current Allergy and Asthma Reports, 4(5), 376–383. doi:10.1007/s11882-004-0088-z.

    Article  Google Scholar 

  • Longhi, S., Cristofori, A., Gatto, P., Cristofolini, F., Grando, M. S., & Gottardini, E. (2009). Biomolecular identification of allergenic pollen: A new perspective for aerobiological monitoring? Annals of Allergy, Asthma & Immunology, 103(6), 508–514. doi:10.1016/S1081-1206(10)60268-2.

    Article  CAS  Google Scholar 

  • Oteros, J., Pulsch, G., Weichenmeier, I., Heimann, U., Möller, R., Röseler, S., et al. (2015). Automatic and online pollen monitoring. International Archives of Allergy and Immunology, 167(3), 158–166. doi:10.1159/000436968.

    Article  Google Scholar 

  • Parducci, L., Matetovici, I., Fontana, S. L., Bennett, K. D., Suyama, Y., Haile, J., et al. (2013). Molecular- and pollen-based vegetation analysis in lake sediments from central Scandinavia. Molecular Ecology, 22(13), 3511–3524. doi:10.1111/mec.12298.

    Article  Google Scholar 

  • Parducci, L., Suyama, Y., Lascoux, M., & Bennett, D. (2005). Ancient DNA from pollen: A genetic record of population history in Scots pine. Molecular Ecology, 14(9), 2873–2882. doi:10.1111/j.1365-294X.2005.02644.x.

    Article  CAS  Google Scholar 

  • Richardson, R. T., Lin, C., Quijia, J. O., Riusech, N. S., Goodell, K., & Johnson, R. M. (2015). Rank-based characterization of pollen assemblages collected by honey bees using a multi-locus metabarcoding approach. Applications in Plant Sciences, 3(11), 1500043. doi:10.3732/apps.1500043.

    Article  Google Scholar 

  • Taberlet, P., Coissac, E., Pompanon, F., Gielly, L., Miquel, C., Valentini, A., et al. (2007). Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 35(3), e14–e14.

    Article  Google Scholar 

  • Tauber, H. (1974). A static non-overload pollen collector. New Phytologist, 73(2), 359–369.

    Article  Google Scholar 

  • Winter, D. (2016). Rentrez: Entrez in R. R package version 1.0.2. https://CRAN.R-project.org/package=rentrez.

Download references

Acknowledgements

This project is supported by FIRS >T (FEM International Research School). We thank Maria Cristina Viola for microscopic analyses and for helping with the taxonomic identification of plants. We thank Heidi Christine Hauffe for comments that greatly improved the manuscript and other members of the Conservation Genetics group of FEM Research and Innovation Centre (Matteo Girardi, Barbara Crestanello, Andrea Gandolfi, Alice Fietta) for providing support in the molecular techniques. Finally, we thank members of the Zooplant Lab group of Milano Bicocca University (Maurizio Casiraghi, Antonella Bruno, and Anna Sandionigi) and other colleagues (Camilla Capelli, Athanasios Charalampopoulos, and Duccio Rocchini) for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Cristofori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leontidou, K., Vernesi, C., De Groeve, J. et al. DNA metabarcoding of airborne pollen: new protocols for improved taxonomic identification of environmental samples. Aerobiologia 34, 63–74 (2018). https://doi.org/10.1007/s10453-017-9497-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-017-9497-z

Keywords

Navigation