Skip to main content
Log in

Symbiosis in Late Devonian-Mississippian corals: a review

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

There are four symbiotic associations involving corals known from the Late Devonian. Corals formed at least six symbiotic associations in the Mississippian, most of which involved crinoids. There was an escalation in the abundance and complexity of coral symbiosis from the Ordovician into the Devonian, and no decline in the Carboniferous. Coral symbiosis after the Kellwasser biotic crises was impoverished and presumably did not recover to Middle Devonian levels in the early Carboniferous. Recovery of symbiotic associations after the Hangenberg Event was due to the re-establishment of associations known from earlier Palaeozoic times and appearance of new symbiotic associations. The lack of various worm bioclaustrations and endobiotic tentaculitoid tubeworms in Carboniferous corals is the main difference from the Ordovician, Silurian, and Devonian coral symbiosis. Late Devonian symbiotic associations involving corals are different from early Carboniferous associations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez, F., & Taylor, P. D. (1987). Epizoan ecology and interactions in the Devonian of Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 61, 17–31.

    Article  Google Scholar 

  • Aretz, M. (2010). Habitats of colonial rugose corals: the Mississippian of western Europeas example for a general classification. Lethaia, 43, 558–572.

    Article  Google Scholar 

  • Aretz, M., & Chevalier, E. (2007). After the collapse of stromatoporid sponge-coral reefs - The Famennian and Diantian reefs of Belgium: Much more than Waulsortian Mounds. In J.-J. Álvaro, M. Aretz, F. Boulvain, A. Munnecke, D. Vachard, & E. Vennin (Eds.), Palaeozoic Reefs and Bioaccumulations: Climatic and Evolutionary Controls, Special Publications Geological Society London (Vol. 275, pp. 163–188).

    Google Scholar 

  • Aretz, M., & Herbig, H.-G. (2003). Coral-rich bioconstructions in the Viséan (Late Mississippian) of Southern Wales (Gower Peninsula, UK). Facies, 49, 221–242.

    Google Scholar 

  • Aretz, M., & Herbig, H.-G. (2008). Microbial-sponge and microbialmetazoan buildups in the Late Viséan basin-fill sequence of the Jerada Massif (Carboniferous, NE Morocco). Geological Journal, 43, 307–336.

    Article  Google Scholar 

  • Berkowski, B., & Klug, C. (2012). Lucky rugose corals on crinoid stems: unusual examples of subepidermal epizoans from the Devonian of Morocco. Lethaia, 45, 24–33.

    Article  Google Scholar 

  • Berkowski, B., & Zapalski, M. K. (2014). Unusual tabulate–crinoid biocoenosis from the Lower Devonian of Morocco. Lethaia, 47, 176–186.

    Article  Google Scholar 

  • Bohatý, J., Nyhuis, C., Ausich, W. I., Nardin, E., & Schröder, S. (2012). Coral-crinoid biocoenosis and resulting trace fossils from the Middle Devonian of the Eifel Synclines (Rhenish Massif, Germany). Journal of Paleontology, 86, 282–301.

    Article  Google Scholar 

  • Brett, C. E., & Eckert, J. D. (1982). Palaeoecology of a well-preserved crinoid colony from the Silurian Rochester Shale in Ontario. Royal Ontario Museum Life Sciences Museum, 131, 1–20.

    Google Scholar 

  • Brice, D., & Mistiaen, B. (1992). Épizoaires des brachiopodes Frasniens de Ferques (Boulonnais, Nord de la France). Geobios, 14, 45–58.

    Article  Google Scholar 

  • Coronado, I., & Rodríguez, S. (2014). Carboniferous auloporids from the Iberian Peninsula: palaeocology, diversity, and spatio-temporal distribution. Journal of Iberian Geology, 40, 61–85.

    Article  Google Scholar 

  • Coronado, I., Fernández-Martínez, E., Rodríguez, S., & Tourneur, F. (2015). Reconstructing a Carboniferous inferred coral–alcyonarian association using a biomineralogical approach. Geobiology, 13, 340–356.

    Article  Google Scholar 

  • Da Silva, A.-C., Kershaw, S., & Boulvain, F. (2011). Sedimentology and stromatoporoid palaeoecology of Frasnian (Upper Devonian) carbonate mounds in southern Belgium. Lethaia, 44, 255–274.

    Article  Google Scholar 

  • Donovan, S. K., & Lewis, D. N. (1999). An epibiont and the functional morphology of the column of a platycrinitid crinoid. Proceedings of the Yorkshire Geological Society, 52, 321–323.

    Article  Google Scholar 

  • Donovan, S. K., Lewis, D. N., & Kabrna, P. (2005). An unusual crinoid- coral association from the Lower Carboniferous of Clitheroe, Lancashire. Proceedings of the Yorkshire Geological Society, 55, 301–304.

    Article  Google Scholar 

  • Kammer, T. W. (1985). Basinal and prodeltaic communities of the early Carboniferous Borden Formation in northern Kentucky and southern Indiana (U.S.A.) Palaeogeography, Palaeoclimatology, Palaeoecology, 49, 79–121.

    Article  Google Scholar 

  • Kershaw, S. (1987). Stromatoporoid–coral intergrowths in a Silurian biostrome. Lethaia, 20, 371–380.

    Article  Google Scholar 

  • Lane, N. G. (1973). Paleontology and paleoecology of the Crawfordsville fossil site (Upper Osagian: Indiana). University of California Publications in Geological Sciences, 99, 1–141.

    Google Scholar 

  • Liddell, W. D., & Brett, C. E. (1982). Skeletal overgrowth among epizoans from the Silurian (Wenlockian) Waldron Shale. Paleobiology, 8, 67–78.

    Article  Google Scholar 

  • May, A. (1999). Kommensalische Syringopora-Arten (Anthozoa; Tabulata) aus dem Devon von Zentral-Böhmen. Münstersche forschungen zur Geologie und Paläontologie, 86, 135–146.

    Google Scholar 

  • May, A. (2005). Die Stromatoporen des Devons und Silurs von Zentral-Böhmen (Tschechische Republik) und ihre Kommensalen. Zitteliana, B25, 117–250.

    Google Scholar 

  • Meyer, D. L., & Ausich, W. I. (1983). Biotic interactions among recent and among fossil crinoids. In M. J. S. Tevesz & P. L. McCall (Eds.), Biotic Interactions in Recent and Fossil Benthic Communities (pp. 377–427). New York: Plenum Publishing Corp.

    Chapter  Google Scholar 

  • Mistiaen, B. (1984). Comments on the caunopore tubes: stratigraphic distribution and microstructure. Palaeontographica Americana, 54, 501–508.

    Google Scholar 

  • Mistiaen, B., Brice, D., Zapalski, M. K., & Loones, C. (2012). Brachiopods and their auloporid epibionts in the Devonian of Boulonnais (France): comparison with other associations globally. In J. A. Talent (Ed.), Earth and Life, International Year of Planet Earth (pp. 159–188). Dordrecht: Springer Science+Business Media B.V.

    Google Scholar 

  • Mõtus, M.-A., & Vinn, O. (2009). The worm endosymbionts in tabulate corals from the Silurian of Podolia, Ukraine. Estonian Journal of Earth Sciences, 58, 185–192.

    Article  Google Scholar 

  • Palmer, T. J., & Wilson, M. A. (1988). Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology, 31, 939–949.

    Google Scholar 

  • Pickett, J. W. (2016). Settlement strategy in Symplectophyllum (Cnidaria, Rugosa). Geologica Belgica, 19, 43–56.

    Article  Google Scholar 

  • Poty, E. (1999). Famennian and Tournaisian recoveries of shallow water Rugosa following late Frasnian and late Strunian major crises, southern Belgium and surrounding areas, Hunan (South China) and the Omolon region (NE Siberia). Palaeogeography,Palaeoclimatology, Palaeoecology, 154, 11–26.

    Article  Google Scholar 

  • Rodríguez, S. (2004). Taphonomic alterations in upper Viséan dissepimented rugose corals from the Sierra del Castillo unit (Carboniferous, Cordoba, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 214, 135–153.

    Article  Google Scholar 

  • Schneider, C. L. (2013). Epibiosis across the Late Devonian biotic crisis: a review. Proceedings of the Geologists’ Association, 124, 893–909.

    Article  Google Scholar 

  • Scrutton, C. T. (1997). The Palaeozoic corals, I: origins and relationships. Proceedings of the Yorkshire Geological Society, 51, 177–208.

    Article  Google Scholar 

  • Scrutton, C. T. (1998). The Palaeozoic corals, II: structure, variation and palaeoecology. Proceedings of the Yorkshire Geological Society, 52, 1–57.

    Article  Google Scholar 

  • Tapanila, L. (2004). The earliest Helicosalpinx from Canada and the global expansion of commensalism in Late Ordovician sarcinulid corals (Tabulata). Palaeogeography, Palaeoclimatology, Palaeoecology, 215, 99–110.

    Article  Google Scholar 

  • Tapanila, L. (2005). Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates: trace fossil evidence. Lethaia, 38, 89–99.

    Article  Google Scholar 

  • Taylor, P. D., & Wilson, M. A. (2003). Palaeoecology and evolution of marine hard substrate communities. Earth Science Reviews, 62, 1–103.

    Article  Google Scholar 

  • Vinn, O. (2010). Adaptive strategies in the evolution of encrusting tentaculitoid tubeworms. Palaeogeography, Palaeoclimatology, Palaeoecology, 292, 211–221.

    Article  Google Scholar 

  • Vinn, O. (2016). Symbiotic endobionts in Paleozoic stromatoporoids. Palaeogeography, Palaeoclimatology, Palaeoecology, 453, 146–153.

    Article  Google Scholar 

  • Vinn, O. (2017). Symbiotic interactions in the Silurian of North America. Historical Biology, 29, 341–347.

    Article  Google Scholar 

  • Vinn, O., & Wilson, M. A. (2015). Symbiotic interactions in the Ordovician of Baltica. Palaeogeography, Palaeoclimatology, Palaeoecology, 436, 58–63.

    Article  Google Scholar 

  • Vinn, O., & Wilson, M. A. (2016). Symbiotic interactions in the Silurian of Baltica. Lethaia, 49, 413–420.

    Article  Google Scholar 

  • Webb, G. E. (2002). Latest Devonian and Early Carboniferous reefs: depressed reef building after the Middle Paleozoic collapse. In W. Kiessling, E. Flügel, & J. Golonka (Eds.), Phanerozoic Reef Patterns, SEPM Special publication (Vol. 72, pp. 239–269).

    Chapter  Google Scholar 

  • Zapalski, M. K. (2005). Paleoecology of Auloporida: an example from the Holy Cross Mountains, Poland. Géobios, 38, 677–683.

    Article  Google Scholar 

  • Zapalski, M. K. (2007). Parasitism versus commensalism –the case of tabulate endobionts. Palaeontology, 50, 1375–1380.

    Article  Google Scholar 

  • Zapalski, M. K. (2009). Parasites in Emsian–Eifelian Favosites (Anthozoa, Tabulata) from the Holy Cross Mountains (Poland): changes of distribution within colony. In P. Königshof (Ed.), Devonian Change: Case Studies in Palaeogeography and Palaeoecology, The Geological Society, London, Special Publications (Vol. 314, pp. 125–129).

    Google Scholar 

  • Zapalski, M. K. (2011). Is absence of proof a proof of absence? Comments on commensalism: Palaeogeography, Palaeoclimatology, Palaeoecology, 302, 484–488.

    Google Scholar 

  • Zapalski, M. K., Pinte, E., & Mistiaen, B. (2008). Late Famennian ?Chaetosalpinx in Yavorskia (Tabulata): the youngest record of tabulate endobionts. Acta Geologica Polonica, 58, 321–324.

    Google Scholar 

  • Zatoń, M., Borszcz, T., Berkowski, B., Rakociński, M., Zapalski, M. K., & Zhuravlev, A. V. (2015). Paleoecology and sedimentary environment of the Late Devonian coral biostrome from the Central Devonian Field, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology, 424, 61–75.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by a Palaeontological Association Research Grant and Estonian Research Council projects ETF9064 and IUT20-34. I am grateful to Sergio Rodríguez, Julien Denayer, and Victor Ogar for the comments on coral symbiosis in the Carboniferous. I am grateful to Markus Aretz and Mark A. Wilson for the constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olev Vinn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinn, O. Symbiosis in Late Devonian-Mississippian corals: a review. Palaeobio Palaeoenv 97, 723–729 (2017). https://doi.org/10.1007/s12549-017-0284-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-017-0284-1

Keywords

Navigation