Skip to main content
Log in

Epigenetische Regulation in der Sepsis

Aktueller Wissensstand

Epigenetic regulation in sepsis

Current state of knowledge

  • Intensivmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die Sepsis ist das Krankheitsbild, das aus einer schweren systemischen Immunreaktion des Körpers auf eine Infektion unterschiedlicher Ursache resultiert. Initial reagiert das Immunsystem mit einer überschießenden Aktivierung von Entzündungszellen und der Ausschüttung proinflammatorischer Zytokine. Gleichzeitig wirken körpereigene Mechanismen durch antiinflammatorische Mediatoren und Immunzellen dieser generalisierten Entzündungsreaktion als Gegenregulation entgegen. Auch diese kompensatorische antiinflammatorische Immunantwort kann entsprechend der proinflammatorischen Reaktion übersteigert sein und resultiert dann in einer prolongierten sepsisinduzierten Immunsuppression. Die Gründe für eine solche persistierende antiinflammatorische Reaktion und die daraus folgende Vulnerabilität sind unklar. Allerdings gibt es Hinweise, dass ein septisches Ereignis die Grundeigenschaften der Immunzellen durch epigenetische Modifikation verändert. Veränderungen von Histonmodifikationen und Änderungen der Aktivierungsmechanismen von Transkriptionsfaktoren scheinen dabei in vielen Zellen des Immunsystems, wie Makrophagen, wichtige Rollen zu spielen sowie dadurch die Genregulation und Transkriptionsmechanismen der Zelle zu beeinflussen. Dieser Beitrag gibt einen Überblick über den aktuellen Stand der epigenetischen Sepsisforschung und über bisherige Erkenntnisse zu den langfristigen Auswirkungen der Sepsis auf das Immunsystem.

Abstract

Sepsis is known to be a severe systemic immune reaction based on an infection of various origins. The initial immune response is accompanied by excess activation of immune cells and release of proinflammatory cytokines. Simultaneously initiated compensatory mechanisms lead to high levels of anti-inflammatory mediators to counterbalance the generalized inflammatory reaction; however, the compensatory immunoreaction itself equally overreacts and results in a prolonged sepsis-induced immunosuppression. The underlying mechanisms for these exaggerated immune responses and the resulting global immunosuppression that increase the risk for secondary infection are still unknown. Recent findings indicate that epigenetic mechanisms change basic properties of important immune cells by mechanisms leading to changes in gene expression. Dynamic exchanges of histone modifications result in a variation of transcription and seem to play a key role in cell function of macrophages and other immune cells. This article provides a current overview of epigenetic sepsis research and the sepsis-induced effects on the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Hotchkiss RS, Monneret G, Payen D (2013) Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 13(3):260–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Torgersen C et al (2009) Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis. Anesth Analg 108(6):1841–1847

    Article  PubMed  Google Scholar 

  3. Rivers E et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345(19):1368–1377

    Article  CAS  PubMed  Google Scholar 

  4. Sandiumenge A et al (2003) Therapy of ventilator-associated pneumonia. A patient-based approach based on the ten rules of „The Tarragona Strategy“. Intensive Care Med 29(6):876–883

    PubMed  Google Scholar 

  5. Otto GP et al (2011) The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit Care 15(4):R183

    Article  PubMed Central  PubMed  Google Scholar 

  6. Hotchkiss RS et al (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27(7):1230–1251

    Article  CAS  PubMed  Google Scholar 

  7. Kethireddy S, Kumar A (2012) Mortality due to septic shock following early, appropriate antibiotic therapy: can we do better? Crit Care Med 40(7):2228–2229

    Article  PubMed  Google Scholar 

  8. Wiersinga WJ (2011) Current insights in sepsis: from pathogenesis to new treatment targets. Curr Opin Crit Care 17(5):480–486

    Article  PubMed  Google Scholar 

  9. Weber GF, Swirski FK (2013) Immunopathogenesis of abdominal sepsis. Langenbecks Arch Surg 399(1):1–9

    Article  Google Scholar 

  10. Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10(12):826–837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Vogl T et al (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13(9):1042–1049

    Article  CAS  PubMed  Google Scholar 

  12. Lamkanfi M (2011) Emerging inflammasome effector mechanisms. Nat Rev Immunol 11(3):213–220

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Q et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hagar JA et al (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341(6151):1250–1253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rauch PJ et al (2012) Innate response activator B cells protect against microbial sepsis. Science 335(6068):597–601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yousefi S et al (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14(9):949–953

    Article  CAS  PubMed  Google Scholar 

  17. Linch SN et al (2012) Interleukin 5 is protective during sepsis in an eosinophil-independent manner. Am J Respir Crit Care Med 186(3):246–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Borovikova LV et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785):458–462

    Article  CAS  PubMed  Google Scholar 

  19. Monneret G et al (2003) Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med 31(7):2068–2071

    Article  PubMed  Google Scholar 

  20. Vincent JL et al (2013) Sepsis definitions: time for change. Lancet 381(9868):774–775

    Article  PubMed  Google Scholar 

  21. Kumpf O, Schumann RR (2010) Genetic variation in innate immunity pathways and their potential contribution to the SIRS/CARS debate: evidence from human studies and animal models. J Innate Immun 2(5):381–394

    Article  CAS  PubMed  Google Scholar 

  22. Boomer JS et al (2011) Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306(23):2594–2605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hoetzenecker W et al (2012) ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat Med 18(1):128–134

    Article  CAS  Google Scholar 

  24. Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Inoue S et al (2013) Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly. Crit Care Med 41(3):810–819

    Article  PubMed  Google Scholar 

  26. Boomer JS et al (2012) A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. Crit Care 16(3):R112

    Article  PubMed Central  PubMed  Google Scholar 

  27. Pachot A et al (2008) Decreased expression of the fractalkine receptor CX3CR1 on circulating monocytes as new feature of sepsis-induced immunosuppression. J Immunol 180(9):6421–6429

    Article  CAS  PubMed  Google Scholar 

  28. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  29. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  CAS  PubMed  Google Scholar 

  30. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  CAS  PubMed  Google Scholar 

  31. Li Z et al (2014) DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric Cancer. DOI 10.1007/s10120-014-0340-8

  32. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719

    Article  CAS  PubMed  Google Scholar 

  33. Delcuve GP, Rastegar M, Davie JR (2009) Epigenetic control. J Cell Physiol 219(2):243–250

    Article  CAS  PubMed  Google Scholar 

  34. Probst AV, Dunleavy E, Almouzni G (2009) Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10(3):192–206

    Article  CAS  PubMed  Google Scholar 

  35. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    Article  CAS  PubMed  Google Scholar 

  36. Grabiec AM et al (2010) Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. J Immunol 184(5):2718–2728

    Article  CAS  PubMed  Google Scholar 

  37. Maciejewska-Rodrigues H et al (2010) Epigenetics and rheumatoid arthritis: the role of SENP1 in the regulation of MMP-1 expression. J Autoimmun 35(1):15–22

    Article  CAS  PubMed  Google Scholar 

  38. Cavaillon JM, Adib-Conquy M (2006) Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit Care 10(5):233

    Article  PubMed Central  PubMed  Google Scholar 

  39. El Gazzar M et al (2008) G9a and HP1 couple histone and DNA methylation to TNFalpha transcription silencing during endotoxin tolerance. J Biol Chem 283(47):32198–32208

    Article  Google Scholar 

  40. Liu TF et al (2011) NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance. J Biol Chem 286(11):9856–9864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Asavarut P et al (2013) The role of HMGB1 in inflammation-mediated organ injury. Acta Anaesthesiol Taiwan 51(1):28–33

    Article  PubMed  Google Scholar 

  42. McCall CE, Yoza BK (2007) Gene silencing in severe systemic inflammation. Am J Respir Crit Care Med 175(8):763–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. El Gazzar M et al (2009) Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol Cell Biol 29(7):1959–1971

    Article  Google Scholar 

  44. Chan C et al (2005) Endotoxin tolerance disrupts chromatin remodeling and NF-kappaB transactivation at the IL-1beta promoter. J Immunol 175(1):461–468

    Article  CAS  PubMed  Google Scholar 

  45. Lyn-Kew K et al (2010) IRAK-M regulates chromatin remodeling in lung macrophages during experimental sepsis. PLoS One 5(6):e11145

    Article  PubMed Central  PubMed  Google Scholar 

  46. Chen X et al (2012) Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc Natl Acad Sci U S A 109(42):E2865–E2874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Tsaprouni LG et al (2007) Suppression of lipopolysaccharide- and tumour necrosis factor-alpha-induced interleukin (IL)-8 expression by glucocorticoids involves changes in IL-8 promoter acetylation. Clin Exp Immunol 150(1):151–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Aung HT et al (2006) LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression. FASEB J 20(9):1315–1327

    Article  CAS  PubMed  Google Scholar 

  49. De Santa F et al (2009) Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J 28(21):3341–3352

    Article  Google Scholar 

  50. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Ishii M et al (2009) Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 114(15):3244–3254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Satoh T et al (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11(10):936–944

    Article  CAS  PubMed  Google Scholar 

  53. Bozza FA et al (2007) Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care 11(2):R49

    Article  PubMed Central  PubMed  Google Scholar 

  54. Wu HP et al (2008) The interleukin-4 expression in patients with severe sepsis. J Crit Care 23(4):519–524

    Article  CAS  PubMed  Google Scholar 

  55. Ghisletti S et al (2010) Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32(3):317–328

    Article  CAS  PubMed  Google Scholar 

  56. Gross TJ et al (2014) Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. J Immunol 192(5):2326–2338

    Article  CAS  PubMed  Google Scholar 

  57. Seok J et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110(9):3507–3512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Natoli G (2009) Control of NF-kappaB-dependent transcriptional responses by chromatin organization. Cold Spring Harb Perspect Biol 1(4):a000224

    Article  PubMed Central  PubMed  Google Scholar 

  59. Natoli G (2010) Maintaining cell identity through global control of genomic organization. Immunity 33(1):12–24

    Article  CAS  PubMed  Google Scholar 

  60. Ostuni R et al (2013) Latent enhancers activated by stimulation in differentiated cells. Cell 152(1–2):157–171

  61. Natoli G, Ghisletti S, Barozzi I (2011) The genomic landscapes of inflammation. Genes Dev 25(2):101–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Guisset O et al (2007) Decrease in circulating dendritic cells predicts fatal outcome in septic shock. Intensive Care Med 33(1):148–152

    Article  PubMed  Google Scholar 

  63. Efron PA et al (2004) Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. J Immunol 173(5):3035–3043

    Article  CAS  PubMed  Google Scholar 

  64. Tinsley KW et al (2003) Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. J Immunol 171(2):909–914

    Article  CAS  PubMed  Google Scholar 

  65. Faivre V et al (2007) Accelerated in vitro differentiation of blood monocytes into dendritic cells in human sepsis. Clin Exp Immunol 147(3):426–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Wen H et al (2008) Epigenetic regulation of dendritic cell-derived interleukin-12 facilitates immunosuppression after a severe innate immune response. Blood 111(4):1797–1804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Baguet A, Bix M (2004) Chromatin landscape dynamics of the Il4-Il13 locus during T helper 1 and 2 development. Proc Natl Acad Sci U S A 101(31):11410–11415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Avni O et al (2002) T(H) cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat Immunol 3(7):643–651

    CAS  PubMed  Google Scholar 

  69. Carson WF 4th et al (2010) Impaired CD4+ T-cell proliferation and effector function correlates with repressive histone methylation events in a mouse model of severe sepsis. Eur J Immunol 40(4):998–1010

    Article  PubMed Central  PubMed  Google Scholar 

  70. Hall MW et al (2011) Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Intensive Care Med 37(3):525–532

    Article  CAS  PubMed  Google Scholar 

  71. Meisel C et al (2009) Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med 180(7):640–648

    Article  CAS  PubMed  Google Scholar 

  72. Hershman MJ et al (1989) Interferon-gamma treatment increases HLA-DR expression on monocytes in severely injured patients. Clin Exp Immunol 77(1):67–70

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Unsinger J et al (2010) IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol 184(7):3768–3779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Levy Y et al (2012) Effects of recombinant human interleukin 7 on T-cell recovery and thymic output in HIV-infected patients receiving antiretroviral therapy: results of a phase I/IIa randomized, placebo-controlled, multicenter study. Clin Infect Dis 55(2):291–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Pellegrini M et al (2011) IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 144(4):601–613

    Article  CAS  PubMed  Google Scholar 

  76. Ciarlo E, Savva A, Roger T (2013) Epigenetics in sepsis: targeting histone deacetylases. Int J Antimicrob Agents 42(Suppl):S8–S12

    Article  CAS  PubMed  Google Scholar 

  77. Vigushin DM et al (2001) Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res 7(4):971–976

    CAS  PubMed  Google Scholar 

  78. Chang J et al (2012) Differential response of cancer cells to HDAC inhibitors trichostatin A and depsipeptide. Br J Cancer 106(1):116–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Leoni F et al (2005) The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med 11(1–12):1–15

  80. Leoni F et al (2002) The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci U S A 99(5):2995–3000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Mombelli M et al (2011) Histone deacetylase inhibitors impair antibacterial defenses of macrophages. J Infect Dis 204(9):1367–1374

    Article  CAS  PubMed  Google Scholar 

  82. LeRoy G, Rickards B, Flint SJ (2008) The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol Cell 30(1):51–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Yang Z et al (2005) Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 19(4):535–545

    Article  CAS  PubMed  Google Scholar 

  84. Nicodeme E et al (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468(7327):1119–1123

    Article  CAS  PubMed  Google Scholar 

  85. Dellinger RP et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41(2):580–637

    Article  PubMed  Google Scholar 

  86. Gentile LF et al (2012) Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 72(6):1491–1501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Ward NS, Casserly B, Ayala A (2008) The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med 29(4):617–625, viii

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. S. Weiterer, F. Uhle, B.H. Siegler, C. Lichtenstern, M. Bartkuhn, M.A. Weigand geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Weiterer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiterer, S., Uhle, F., Siegler, B. et al. Epigenetische Regulation in der Sepsis. Anaesthesist 64, 42–55 (2015). https://doi.org/10.1007/s00101-014-2402-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-014-2402-z

Schlüsselwörter

Keywords

Navigation