Skip to main content
Log in

Finite difference method for a fractional porous medium equation

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

We formulate a numerical method to solve the porous medium type equation with fractional diffusion

$$\begin{aligned} \frac{\partial u}{\partial t}+(-\Delta )^{1/2} (u^m)=0. \end{aligned}$$

The problem is posed in \(x\in {\mathbb {R}}^N\), \(m\ge 1\) and with nonnegative initial data. The fractional Laplacian is implemented via the so-called Caffarelli–Silvestre extension. We prove existence and uniqueness of the solution of this method and also the convergence to the theoretical solution of the equation. We run numerical experiments on typical initial data as well as a section that summarizes and concludes the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. De Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A fractional porous medium equation. Adv. Math. 226(2), 1378–1409 (2011)

    Google Scholar 

  2. De Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A general fractional porous medium equation. Comm. Pure Appl. Math. arXiv:1104.0306v1 (2013)

    Google Scholar 

  3. De Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: Classical solutions for a logarithmic fractional diffusion equation. J. de. Math. Pures. Appl. http://arxiv.org/pdf/1205.2223.pdf (to appear)

  4. Valdinoci, E.: From the long junp random walk to the fractional laplacian. Bol. Soc. Esp. Mat. Apl. SéMA (49), 33–44 (2009)

  5. Cifani, S., Jakobsen, E.R., Karlsen, K.H.: The discontinuous Galerkin method for fractional degenerate convection-diffusion equations. BIT 51(4), 809–844 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cifani, S., Jakobsen, E.R.: On the spectral vanishing viscosity method for periodic fractional conservation laws. Math. Comp. (2013), http://arxiv.org/abs/1201.6079

  7. Cifani, S., Jakobsen, E.R.: On numerical methods and error estimates for degenerate fractional convection-diffusion equations (2012), http://arxiv.org/abs/1201.6079

  8. Caffarelli, L.A., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Vázquez, J.L.: Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Euro. Math. Soc. (2013). http://arxiv.org/pdf/1205.6332v2.pdf

  10. Landkof, N.S.: Foundations of modern potential theory, vol. 180. Springer, New York, (Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band) (1972)

  11. De Pablo, A., Quirós, F., Rodríguez, A., Vázquez, A.L. In preparation. (2013)

  12. Nochetto, R.H., Otàrola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. http://arxiv.org/pdf/1302.0698.pdf

Download references

Acknowledgments

The author partially supported by the Spanish Project MTM2011-24696 and by a FPU grant from Ministerio de Educación, Ciencia y Deporte, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix del Teso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Teso, F. Finite difference method for a fractional porous medium equation. Calcolo 51, 615–638 (2014). https://doi.org/10.1007/s10092-013-0103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-013-0103-7

Keywords

Mathematics Subject Classification

Navigation