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Prey rarely, if ever, give up their lives willingly to their preda-
tors. Predators overcome their prey’s resistance by being, on 
average, larger than their prey, yielding a systematic pattern in 

communities where the non-cannibalistic average ratio of preda-
tor-to-prey body mass (hereafter, body-mass ratio) is higher than 
unity1,2. Notable exceptions to this include when animals cooperate 
to overcome larger prey (for example, pack hunters) and where con-
sumers are parasites or parasitoids. Variation in body-mass ratios 
within food webs typically spans several orders of magnitude and 
includes some predators that are smaller than their prey3, but is 
dominated by situations of the larger feeding on the smaller. The 
varying body-mass ratios limit which trophic interactions are real-
ized in a community4–6, and the strength of these interactions7–9. 
Predators typically exert the strongest feeding pressure on prey 
that are 1–2 orders of magnitude smaller1, while weaker interaction 
strengths are realized with prey that are smaller or larger than this 
size10,11. Specifically, interactions of predators with small prey are 
characterized by high body-mass ratios that yield weak interactions 
with slow dynamics, which play a central role in maintaining food-
web stability12–16 and ecosystem functioning10,17,18. Moreover, they 

also buffer natural communities against perturbations from global 
warming19, eutrophication20 and secondary extinction waves21. 
Therefore, identifying these unique interactions is paramount to 
determining the stability of natural food webs to perturbations and 
functioning. However, applications of this concept to natural com-
munities have been hampered by the difficulty of describing the 
myriads of interactions present in natural food webs. Using traits 
of predator species as proxies of body-mass ratios and the result-
ing interaction strengths that they govern could provide the means 
to understand which species are the drivers of community stabil-
ity and functioning without having to perform the often logistically 
and economically impossible task of quantifying entire interaction 
networks. This approach could ultimately help predict how extinc-
tions, invasions and other anthropogenic environmental changes 
affect community stability and functioning through shifts in com-
munity trait structure.

Despite the importance of understanding how species traits 
affect body-mass ratios, there is much uncertainty about these rela-
tionships. A pioneering study22 showed that vertebrate predators 
exhibit systematically higher body-mass ratios than invertebrates 
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and this has been supported by subsequent analyses also document-
ing higher body-mass ratios in aquatic versus terrestrial communi-
ties1. These studies also found that predator–prey body-mass scaling 
is superlinear with slopes higher than unity, meaning that body-
mass ratios increase with body mass (see Supplementary Fig. 1, red 
line). However, other studies have proposed that the scaling rela-
tionship is either sublinear (decreasing body-mass ratios with body 
mass; Supplementary Fig.  1, yellow line)2,22,23 or superlinear1,2,23,24, 
depending on the ecosystem type2,23, predator metabolic group23–25 
or resource supply26. Additionally, besides body mass and meta-
bolic type, little is known about how body-mass ratios vary with 
other species traits and across different ecosystem types. Predator 
and prey movement types and feeding behaviour are likely to influ-
ence scaling relationships by limiting maximum achievable attack 
speeds24,27. Interaction dimensionality, which describes whether 
predators forage in three dimensions (for example, the water col-
umn of lakes and oceans) or on two-dimensional (2D) surfaces 
(for example, epigeal terrestrial or benthic aquatic predators), also 
influences predator–prey attack rates24,28. Since these variables affect 
the likelihood and strength of predator attack rates and scale with 
individual body mass, we expected that they should also modify the 
scaling relationship between predator and prey body masses.

Here, we provide a comprehensive assessment of how species 
traits modulate predator–prey body-mass scaling relationships and 
body-mass ratios in natural, complex food webs across an unprec-
edented range of ecosystems. To do so, we collated the most exten-
sive global food-web database to date (GlobAl daTabasE of traits 
and food Web Architecture (GATEWAy) v.1.0), comprising 290 
food webs (with 222,151 feeding links between 5,736 species; see 
Supplementary Table 1) distributed across the globe (Fig. 1), includ-

ing information on four different species traits and five ecosystem 
types (see Supplementary Table 2). First, we analysed the scaling of 
predator and prey body masses over 17 orders of magnitude (fresh 
masses ranging from the no. 2 10−9 g protozoan Bodo saltans, to 
the no. 275 106 g sperm whale Physeter microcephalus). Some prior 
studies advocated the use of major axis regressions to account for 
the bidirectional causality between predator and prey body mass1, 
whereas others used mixed-effects models to include the random 
effects of the study2. Since these two types of analyses are mutu-
ally exclusive in traditional statistics, we used Bayesian modelling 
to implement a combination of major axis regressions with mixed 
effects. Second, we tested for the importance of cofactors in this 
scaling relationship (ecosystem type, predator and prey metabolic 
types, interaction dimensionality, predator and prey movement 
types). These analyses address relationships between species traits 
and food-web architecture across ecosystems. Third, we developed 
predictions of average body-mass ratios of predators by their traits, 
which identifies ecological attributes that broadly predict ecological 
perturbation stability and functioning in natural communities with-
out requiring detailed knowledge of complex food-web structure.

Results
In our first analysis, we addressed the scaling of predator and prey 
body masses. Ordinary least-squares (OLS) regressions relating 
these two variables generate different slopes depending on which 
variable is chosen as the independent variable (Fig. 2, magenta and 
blue lines). This discrepancy arises because there is no unidirectional 
causal relationship between the two variables and because both have 
measurement errors of the same magnitude, which renders major 
axis regression the appropriate tool for analysing these data31. Thus, 
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Fig. 1 | Global distribution of food webs. The global distribution of food webs in the GATEWAy database (v.1.0; see Supplementary information).
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we used Bayesian modelling to fit a major axis regression, which 
makes no assumptions about a causal relationship between the 
variables. The major axis regression showed that the overall allome-
tric scaling relationship between predator and prey body mass was 
superlinear, exhibiting a slope higher than unity (Fig. 2, black solid 
line; Bayesian major axis regression, slope = 1.315, 95% confidence 
interval: 1.307–1.323). This suggests that the body-mass ratios 
between predators and their prey increase with the masses of prey 
and predators (that is, the distance between the regression line and 
the dashed diagonal indicating equally sized predator–prey pairs). 
On average, interactions between relatively large predator and prey 
species are characterized by higher body-mass ratios than interac-
tions between smaller species. The Bayesian approach also allowed 
us to fit mixed-effects models to the data, particularly the random 
effects on the intercept of the different studies (database variable, 
link.citation; see Supplementary Table GATEWAy metadata). This 
yielded a very similar scaling relationship as the non-mixed major 
axis regression (Fig.  2, green line). Based on the similarity of the 
results and statistical arguments (see Methods), we have based 
the following analyses on Bayesian major axis regressions, while 
the results of the analyses with Bayesian mixed-effects major axis 
regressions are shown in the Supplement.

In our second analysis, we used major axis regressions to fit six 
models of predator–prey body mass scaling that each contained 
one co-variable (ecosystem type, predator or prey metabolic type, 
predator or prey movement type, interaction dimensionality; see 
Supplementary Table  2 for variable description). Model compari-
sons demonstrated that adding any of these co-variables improves 
the fit substantially over the simple scaling model (Table 1, lower 
Watanabe–Akaike Information Criterion (WAIC) scores indicate 
higher model adequacy). According to these WAIC ranks, the best-
performing models included predator metabolic type (rank 1) or 
predator movement type (rank 2) as co-variables, whereas models 
including the same trait variables of the prey led to lower ranks 
(Table 1, ranks 4 and 6). Hence, WAIC values suggested that preda-
tor traits were more important for determining body-mass scaling 
than prey traits.

While the overall relationship was superlinear (Fig.  3, black 
solid lines), the relationships for ectotherm and endotherm verte-
brate predators exhibited strong sublinear scaling, implying that the 

body-mass ratios of vertebrate predators decrease with their body 
mass (Fig. 3a). As vertebrate prey often have vertebrate predators, a 
similar pattern might be expected for the scaling relationship within 
the prey metabolic groups. Surprisingly, we found superlinear scal-
ing for all vertebrate prey groups (Fig. 3b). Together, these results 
suggest that sublinear scaling characterizes vertebrate predators irre-
spective of whether their prey are vertebrate or invertebrate species.

The second most important co-variable in our analyses was 
predator movement type. Interestingly, we found that swimming, 
flying and sessile predators exhibit superlinear scaling relationships 
that are similar to the overall model, whereas walking predators 
exhibit sublinear scaling (Fig. 3c). Although many walking preda-
tors feed on walking prey, our analyses of the prey movement type 
show superlinear scaling across groups (Fig. 3d). Similar to the met-
abolic groups, this implies that changes in predator–prey body-mass 
ratios are mainly driven by predator movement type, irrespective of 
prey movement type. Together, our analyses of species’ traits sug-
gest that the traits of predators have stronger implications for scal-
ing relationships and body-mass ratios than the traits of their prey.

Comparing the two environmental characteristics showed that 
ecosystem type (WAIC rank 3) improved the model substantially 
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Table 1 | Comparison of six predator–prey body-mass scaling 
models with one co-variable; bayesian major axis models as 
in Figs. 3 and 4 and mixed Bayesian major axis models as in 
Supplementary Figs. 2–7

Bayesian major  
axis model

Bayesian mixed 
major axis model

Co-variable WAIC Rank WAIC Rank

Predator metabolic group 2.414 × 105 1 2.229 × 105 1

Predator movement type 2.720 × 105 2 2.520 × 105 2

Ecosystem type 2.722 × 105 3 2.566 × 105 4

Prey metabolic group 2.807 × 105 4 2.563 × 105 3

Interaction dimensionality 2.818 × 105 5 2.616 × 105 6

Prey movement type 2.830 × 105 6 2.605 × 105 5

None 2.859 × 105 7 2.657 × 105 7
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more than interaction dimensionality (2D versus three dimensional 
(3D); rank 5, Table 1). Among ecosystem types, marine, stream and 
terrestrial above-ground ecosystems follow superlinear scaling sim-
ilar to the overall relationship (although streams followed steeper 
scaling relationships), whereas lake and terrestrial below-ground 
ecosystems exhibit sublinear scaling, parallel to each other (Fig. 4a). 
Both 2D and 3D interaction dimensionalities demonstrate super-
linear scaling with a slope similar to the overall pattern. However, 
3D interactions tend to involve predator–prey pairs with greater 
body-mass ratios compared to 2D interactions (Fig. 4b). Although 
many marine or lake interactions occur in the pelagic 3D part of the 
ecosystem, ecosystem type does not completely overlap with inter-
action dimensionality since these aquatic ecosystems also include 
benthic 2D interactions.

Finally, we addressed how well we can predict which predators 
in a food web have the highest average body-mass ratios compared 
with their prey in the absence of information on food-web structure 
and traits of the prey species. Thus, the statistical models included 
the predator traits (body mass, metabolic and movement type) and 
ecosystem type as independent variables (‘predator-trait model’; see 
Methods for details and Supplementary Table  4 for parameters). 

The overall predator-trait model fitted the data well (Fig. 5a). We 
found that predictive accuracy varied across ecosystem types and 
with the fraction of target predators (Fig. 5b). We anticipated that 
typically a low fraction of predators will be chosen for applied popu-
lation management and used a fraction of target predators of 25% 
as an arbitrary example to illustrate our results (Fig. 5b, grey area; 
note that qualitatively similar results could be obtained for any frac-
tion of 30% or lower). At this fraction of target predators, the accu-
racy of the predator-trait model predictions is almost always higher 
than the prediction accuracy when the same fraction of predators is 
chosen at random (Fig. 5b, diagonal line). An exception to this pat-
tern were the terrestrial below-ground systems (Fig. 5b), potentially 
as a consequence of the substantially higher degree of omnivory in 
soil communities29 or the widespread use of poison by soil preda-
tors32. In contrast, the predator-trait model had high accuracy in 
streams (89%), marine (61%), terrestrial above-ground (64%) and 
lake ecosystems (61%), exceeding the 25% accuracy of random pre-
dictions (Fig. 5b, diagonal line in the grey area). This implies that 
for these ecosystems the predator-trait model improves the predic-
tions by a factor between 2.44 (marine and lake ecosystems) and 
3.56 (streams), which is close to the maximum improvement factor 
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of 4 (occurring with 100% prediction accuracy relative to the 25% 
random prediction accuracy at a fraction of target predators of 25%; 
grey shaded area in Fig. 5b).

Discussion
Using a global database of 290 food webs, we show that (1) the 
overall allometric scaling relationship between predator and prey 
body mass is superlinear, implying that the largest species have the 
highest body-mass ratios and that (2) predator traits (metabolic 
and movement type) are more important than prey traits in deter-
mining these scaling relationships. Subsequently, we developed a 
predator-trait model that successfully predicted the predators with 

the highest average body-mass ratio. Food-web theory has shown 
that these high body-mass ratios yield weak interactions with slow 
dynamics that are critically important for buffering communities 
against external perturbations and maintaining ecosystem func-
tioning10,12–15,17,18. Historically, these theoretical results have had 
little real-world application because they require the logistically 
challenging task of assessing all or at least a large fraction of the 
food-web links. By focusing on predator traits and ecosystem type 
while discarding prey traits and the specific links of the food webs, 
our predator-trait model provides a generalizable and feasible solu-
tion that can bridge the gap between food-web theory and applied 
ecosystem conservation. For instance, our results suggest that 
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population protection of small vertebrates (for example, mustelids) 
and large swimming (for example, sharks) or flying predators (for 
example, birds of prey) might be most effective at buffering natu-
ral communities against external perturbations such as extinctions, 
invasions, pollution, eutrophication and warming. This trait-based 
approach enables the management of perturbation vulnerability in 
natural communities without detailed knowledge of the food-web 
structure.

Within the debate over the allometric scaling relationships of 
predator and prey body masses in natural food webs, the superlin-
ear relationship presented in this study is consistent with some prior 
studies1,2,23, while deviating from others that demonstrate sublinear 
scaling2,22,23. Our comparison of regression methods suggests that 
this discrepancy could be partially attributed to the alternative use 
of major axis regressions1 (consistently yielding superlinear scaling) 
or OLS regressions2,22,23 (suggesting superlinear or sublinear scaling 
depending on which is the independent variable). Our compari-
son of the two OLS regressions with either predator or prey mass 
as the independent variable reveals substantial uncertainty since 
they make opposite predictions on how body-mass ratios scale 
with predator and prey mass, and there is no a  priori argument 
over which OLS regression should be preferred. Hence, major axis 
regressions are the most appropriate statistical method because (1) 
there is no a  priori expectation for a causal relationship between 
predator and prey mass and (2) both body masses are quantified 
with the same measurement error31. Our results show that major 
axis regression is not only statistically more appropriate but also 
that the choice of statistical approach has important implications for 
the biological interpretation of the allometric scaling relationship. 
This approach, combined with our newly compiled food-web data-
base, has allowed us to refine our understanding of how the scal-
ing relationship between predator and prey body mass varies across 
ecosystems and between predator–prey combinations of different 
movement type and metabolic group.

Despite the overall superlinear relationship between predator 
and prey body mass, our analyses identified several species’ traits 
and ecosystem characteristics that are associated with a sublinear 
scaling relationship. Most notably, both ectotherm and endotherm 
vertebrate predators demonstrate strong sublinear scaling, mak-
ing predator metabolic type the most important factor among 
those we considered for predicting predator–prey body-mass scal-
ing relationships. Consistent with previous research1,22,23, we found 
that large vertebrate predators tend, on average, to feed on prey 
that are more equally sized (for example, orcas feeding on minke 
whales), whereas small vertebrate predators consume relatively 
smaller prey (for example, arctic foxes preying on lemmings). This 
result suggests that large and small vertebrate predators may be 
constrained by different factors, such as the limitations of maxi-
mum attack speed which are only experienced by the largest spe-
cies27. Interestingly, some (often large) vertebrate predators hunt in 
groups to attack larger prey to improve their attacking success and 
overcome the body mass and speed constraints. Indeed, the next 
most important factor in our analysis was predator movement type, 
which separates species categories of different speeds (for example, 
flying predators are faster than walking predators). In our analysis, 
walking predators demonstrate sublinear scaling in contrast to all 
other movement types. The highest body-mass ratios were observed 
for the largest swimming and flying predators. Further investiga-
tions of the physiological constraints related to predator movement 
type, metabolic type and relative predator–prey body masses on 
predator feeding rates would help illuminate the processes behind 
these observed patterns.

Generally, our model selection results suggest that predator 
metabolic and movement traits had much stronger effects on the 
scaling relationship than the equivalent prey traits. This is partially 
supported by the greater similarity between the major axis regres-

sion (accounting for bidirectional causalities) and the OLS regres-
sion with prey body mass as the dependent variable. Therefore, we 
conclude that top-down prey selection by predators has a stronger 
effect on prey mass than does the bottom-up influence of prey mass 
on predator mass. It is likely that both top-down and bottom-up 
influences are important, but our results indicate the dominance of 
the former, which stimulated the development of the predator-trait 
models of our third analyses predicting which predators have the 
highest average body-mass ratios across food webs.

Our results also identify ecosystem type as an important cofac-
tor of the predator–prey body-mass scaling relationship, which 
is generally consistent with prior studies23,24,33. We expected this 
effect to be partially explained by the habitat dimensionality of the 
interaction (2D or 3D), which has important consequences for the 
strength of predator attack rates24,28. Although we found an effect 
of interaction dimensionality with overall higher body-mass ratios 
in 3D than in 2D habitats, surprisingly it did not explain the dif-
ferent scaling relationships between different ecosystem types. This 
may be explained by the fact that the ecosystem type varies across 
food webs, whereas variance in interaction dimensionality plays 
an important role across the different predator–prey pairs within 
food webs. The superior explanatory power of the model includ-
ing ecosystem type compared to that including interaction habitat 
dimensionality suggests that there are ecosystem characteristics not 
related to dimensionality, such as laminar viscosity, that may have 
a stronger effect on predator–prey interactions. We found relatively 
high body-mass ratios and a very steep body-mass scaling relation-
ship in stream ecosystems. Streams exhibit several differences to 
the other ecosystem types of our database: (1) the higher physical 
drag force of the water; (2) the higher dependence on allochtho-
nous resources; (3) the dendritic environmental structure; and (4) 
the relatively narrower range of body masses included in our data. 
While each of these points could be responsible for the difference 
in scaling relationships, the last point calls for additional data on 
stream interactions between larger species such as fish to see if the 
steep increase in the scaling relationship holds. While terrestrial 
above-ground and marine interactions exhibited superlinear scaling 
relationships as the overall relationship, those of lake and terrestrial 
below-ground systems were sublinear. Furthermore, the lack of ver-
tebrate predators with high body masses and high body-mass ratios 
may at least partially explain this for soil communities; however, this 
surprising result requires more mechanistic investigation of the so 
far untested similarity between lake and below-ground interactions.

Our approach to characterize predator–prey body-mass ratios in 
natural food webs has some limitations. First, to encompass a wide 
range of body masses, taxonomy and ecosystem types, we assumed 
that interacting individuals have population-averaged body 
masses34. As in prior studies1,22,23,33, we relied on population-aver-
aged body masses, since we rarely have measurements for the actual 
body masses of the interacting individuals. Thus, for many predator 
species, particularly those with ontogenetic diet shifts, actual body-
mass ratios are likely to have a lower variation than body-mass 
ratios calculated from population averages. Unfortunately, the lack 
of individual data for entire food webs across ecosystems hampers 
any alternative approach. As prior comparisons of individual-based 
versus population-based food webs have shown34,35, our popula-
tion-based approach probably underestimates the intercepts of the 
scaling relationships. Second, the study sampling design, environ-
mental factors such as temperature and species’ phylogeny may 
also affect the scaling relationship25,36–38, and these would ideally be 
included as co-variables in the analyses. Since these data were not 
systematically available for the data sets included, we accounted for 
them by random effects in mixed models2, which leaves the need 
for more detailed analyses for future studies. As major axis regres-
sions with random effects are not generally available, we addressed 
this issue by using Bayesian models throughout the study, which 
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allowed comparisons with hierarchical models including random 
effects (that is, mixed-effects models). Although the mixed-effects 
model results do not change our findings substantially (see the 
Supplementary information for a comparison between mixed and 
non-mixed Bayesian models) and, due to potentially confounding 
clustering effects (see Methods), we have focused our analysis on the 
model without mixed effects. Third, our analyses were restricted to 
predator–prey interactions, whereas interactions of other consumer 
types such as parasites, parasitoids or herbivores were excluded. 
Since these interaction types are typically characterized by differ-
ent body-mass ratios1,39,40, future studies should address their scal-
ing relationships in our GATEWAy database. Fourth, we employed 
simple scaling relationships with up to one single co-variable to gain 
an in-depth mechanistic understanding, whereas models with inter-
actions between multiple co-variables were omitted from our analy-
ses of the predator–prey body-mass scaling. However, these more 
complex relationships with higher-order interactive effects could 
be addressed using black box approaches such as machine learn-
ing algorithms, which could provide accurate predictions of food-
web structures32. Fifth, our study illustrates systematic differences in 
body-mass ratios across ecosystem types and species’ traits, whereas 
explanations for these differences remain to be revealed by studies 
integrating mechanistic models with our data.

Our analyses provide insights into how predator and prey body 
masses scale with each other in natural food webs. The discovery 
that predator traits are more important than prey traits in predicting 
body-mass scaling and that ecosystem type has a greater effect than 
interaction dimensionality offers new possibilities for understand-
ing and predicting differences in food-web structure, community 
stability and ecosystem functioning across community and ecosys-
tem types. Specifically, our results highlight that critically impor-
tant high body-mass ratios occur in interactions with predators that 
are (1) small vertebrates or (2) large swimming or flying species. 
With only three species traits (body mass, metabolic and movement 
type), our models could predict which 25% of the predators pos-
sess the highest average body-mass ratios with surprisingly high 
accuracy in most ecosystem types (58–89%). We anticipate that this 
accuracy will be increased by additional species traits (for example, 
predation strategy, use of poison, sub-habitat association) that com-
pose the multiple dimensions of natural food webs6,32. Our trait-
based food-web analyses enable generalizations of food-web theory 
from the food webs studied to the vast majority of communities for 
which only species and trait information is available. Updated with 
additional traits, this approach has great potential for managing 
ecosystem functioning and stability against external perturbations 
such as pollution, eutrophication and warming without full knowl-
edge of food-web structure. Therefore, the trait-based body-mass 
ratio approach presents an important integration of food-web the-
ory with applied ecosystem management that provides a theoretical 
foundation for the community-level conservation of the most com-
plex natural ecosystems.

Methods
We compiled a global database of traits and food-web architecture (GATEWAy 
v.1.0; see Supplement), where each link is characterized by the taxonomy and trait 
variables of both the consumer and the resource (see Supplementary Metadata 
for the variables). We included food webs with: (1) a sufficient quality in terms of 
taxonomic resolution, which prevents nodes aggregating species with very different 
trophic interactions; (2) a reasonable completeness integrating all trophic levels and 
community compartments; (3) trait information for the trophic species including 
at least their population-averaged body mass, their metabolic type and their 
movement type (see Supplementary Metadata for definitions); (4) information for 
each trophic link such as the type (for example, predatory), the dimensionality (2D 
and 3D) and the classification (individual-based and non-individual-based) (see 
Supplementary Metadata for definitions); (5) descriptors for the ecosystems such as 
ecosystem type and geographic location.

In our analyses, we focused on predatory (variable, interaction.type) and 
individual-based (variable, interaction.classification) interactions. The former 

excludes interactions of other types (for example, herbivorous, detritivorous, 
parasitic, parasitoid), whereas the latter discards interactions of consumers 
attacking groups, swarms or films of resources (for example, filter feeding, 
grazing). Some of the studies included in our database sampled the same ecosystem 
at different locations, resulting in replicated predator–prey species pairs29. To avoid 
pseudoreplication, each unique combination of taxonomy, life stage and individual 
body mass for predator and prey species was included only once. After exclusion 
of interactions with missing variables, the resulting data included 88,197 unique 
predator–prey interactions among the original 222,151 feeding links.

First, we analysed the reduced data for the relationship between the log10 of 
predator and prey body masses (gram fresh mass). We compared the fit of two 
OLS regressions (either predator mass or prey mass as the dependent variable) to 
that of a major axis regression and a mixed-effects major axis regression including 
random effects on the intercept of the different studies (variable, link.citation). 
Traditional methods only allow to fit either major axis regressions or mixed models 
with random effects. Hence, our aim of comparing major axis regressions with and 
without random effects (that is, random intercepts for each study) could only be 
achieved by realizing models that were fitted by Bayesian methods using the RStan 
package30 (see Supplementary Statistical Methods for details). Consistent with 
traditional major axis regressions, we minimized the sum of squared orthogonal 
distances of the observations (x,y) to the regression line31 instead of the vertical 
distance (y) as in OLS (model I) regressions.

Second, we used Bayesian major axis models to compare the fit of the simple 
scaling model to six models, whereby each included one co-variable: ecosystem 
type; predator or prey metabolic type; predator or prey movement type; or 
interaction dimensionality (see Supplementary Table 2 for variables). Overall, 
the results were mostly consistent between the mixed-effects and non-mixed 
models. The mixed-effects models fitted the relationships separately for each 
study. As the body-mass ranges within studies do not cover the entire body-mass 
gradient and the number of data points within studies is much lower than in the 
entire database, some of the fitted scaling relationships can become arbitrary 
as single points can strongly affect the slope. Averaging across all slopes and all 
intercepts using hierarchical approaches can lead to clusters of such arbitrary 
slopes, which can exert substantial leverage on the average relationship across all 
studies. In our data, the clustering remained even when using random intercepts 
and a fixed slope across all studies. Therefore, mixed-effects modelling of our 
data suffered from two limitations: (1) it loses information about the overall trend 
across the whole database (that is, none of the study-specific scaling relationships 
spans the entire body-mass gradient); and (2) the joint mean slope and intercept 
are affected by partially arbitrary slopes (data sets with few points). Since both 
regressions also yielded qualitatively similar results, we report the results of the 
non-mixed major axis regressions in the article (Figs. 3 and 4) with comparisons 
to the fits of the mixed major axis regressions in the Supplementary information 
(Supplementary Figs. 2–7). Model comparison (based on their WAIC values) of 
these seven models (the simple model without co-variable and the six models with 
one co-variable each) provided a ranking of their performance; we used the model 
parameters to gain an understanding of how they modify the relationship. In the 
analysis of predator–prey body-mass scaling, we refrained from analysing more 
complex models with interactions between these co-variables for three reasons: 
(1) they imply impossible combinations (for example, swimming predators in 
terrestrial ecosystems); (2) their higher-order interactions hamper the mechanistic 
understanding of individual effects; and (3) their strong collinearity causes 
interference between factors.

Third, we analysed our database for the dependence of the predators’ average 
predator–prey body-mass ratios on predator traits (body mass, metabolic and 
movement type) and ecosystem type. To avoid circularity in the statistical model 
(predator body mass in both the dependent and independent variables), we 
fitted Bayesian major axis regressions with log10 prey mass as the dependent and 
log10 predator mass as the independent variables with the co-variables predator 
metabolic type, predator movement type and ecosystem type. We restructured the 
resulting predator-trait model equation to calculate the effect of the independent 
and co-variables on predator–prey body-mass ratios. By discarding prey species 
traits, these analyses allow prediction of which predators in a community have the 
highest average body-mass ratios without knowledge of the predator–prey links.

The accuracy of this approach was determined in a five-step cross-validation 
process. First, we chose one of the food webs (‘test data’) and ranked its predators 
according to their empirical average body-mass ratios. Second, we ran the 
predator-trait regression model described earlier in the remaining database 
containing the other 289 food webs (‘training data’) to predict the predators’ 
average body-mass ratios depending on their traits. Third, we calculated the 
proportion of predators that were correctly predicted by this predator-trait model 
(hereafter: accuracy) for a fraction x of the highest ranked predators of the test 
data food web (hereafter: fraction of target predators). For example, a fraction of 
target predators of 0.1 implies that the 10% highest ranked predators (that is, those 
with the highest average body-mass ratios) of the empirical test data are compared 
to the 10% highest ranked predators as predicted by the predator-trait model of 
the training data. An exemplary accuracy of 0.8 would indicate an 80% overlap 
between the two species lists. Fourth, this assessment of prediction accuracy was 
systematically replicated across a gradient in the fraction of target predators x 
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between 5 and 95% (steps of 5%). Finally, these four steps were repeated for each 
of the 290 food webs independently to calculate the average accuracy across food 
webs depending on the fraction of target predators.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study (GATEWAy 1.0) are available at the 
iDiv data repository41.

Code availability
The R code of the statistical analyses is available as a Supplement.
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