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Chapter 1

General Introduction

Shubha Sathyendranath, Heidi M. Sosik, Jim Aiken, Séverine Alvain,
Ray Barlow, Lesley Clementson, Cyril Moulin, Nick Hardman-Mountford,
Takafumi Hirata, Jesus Morales, Anitha Nair, Colleen Mouw and
Venetia Stuart

1.1 Background

Satellite-based remote sensing of ocean colour provides unique observational capa-

bility to biological oceanographers and other Earth observation scientists interested

in processes that involve phytoplankton. No other observational strategy can pro-

vide synoptic views of upper ocean optical properties with such high spatial and

temporal resolution (∼1 km or better, daily or better) as well as high spatial and

temporal extent (global scales, for years to decades).

Since the proof-of-concept Coastal Zone Color Scanner (CZCS) mission, the

principal focus of ocean-colour research has been on retrieval of information about

the content of chlorophyll-a, the major phytoplankton pigment in the upper ocean

(e.g., Gordon et al., 1983). Whereas this focus continues to the present (Morel and

Antoine 2000; O’Reilly et al., 1998; 2000) with chlorophyll concentration being

by far the most utilised product from ocean-colour satellites, an evolving interest

in retrieving other properties, including information on the composition of the

phytoplankton community, has emerged in recent years. Note that the community

may be described on the basis of their size structure, their taxonomic composition,

or their functions.

This interest has paralleled the incorporation of the concept of phytoplankton

functional types (PFTs) into studies of a range of ecological and biogeochemical

problems, especially into modelling studies (Le Quéré et al., 2005; Hood et al.,

2006). In this concept, each PFT represents a group of species aggregated according

to distinct functional characteristics. Such approaches are receiving increasing

attention because of the realization that capturing the role of phytoplankton in

the global cycles of major and minor elements in the ocean (e.g., carbon, nitrogen,

sulphur, iron) requires improved representation of their complex functionalities.

The concurrent emergence of more complex property retrievals from ocean-colour

data and of PFT-resolving conceptual and numerical models motivates this report.

1



2 • Phytoplankton Functional Types from Space

Therefore, we have the following goals:

v to provide an overview of PFT concepts;

v to review current approaches for PFT retrieval from space;

v to present prospects for the future, including likely limitations; and

v to provide recommendations regarding mission characteristics, development

of algorithms and validation studies.

In this chapter, we describe relevant terms and concepts, examine the relevance

of the topic, discuss the contributions from remote sensing to the problem and

highlight the need for complementary approaches to obtain the full picture.

1.2 What Do We Mean by a Functional Type?

The emerging use of the term “functional types” in biogeochemical models repre-

sents only a particular use of the term, which focuses specifically on the character-

istic roles of organisms in biologically-mediated biogeochemical transformations.

In a more general ecological context, a functional type or group represents an ag-

gregation of organisms according to some well-defined property that sets a role

or “function” for them in a system. This definition clearly lacks specificity, so

there is no unique or universal interpretation (Reynolds et al. 2002): the choice

of functions for consideration will depend on the question or problem of interest.

For instance, in Nitrogen-Phytoplankton-Zooplankton (NPZ) models, P and Z can be

taken to represent functional types, i.e., producers and consumers. This aggregation

is acceptable for some applications, but may be too coarse or even inappropriate

for others. Reynolds et al. (2002) propose that species in a functional group share

“specialist adaptations and requirements” that differentiate them from other species.

Which adaptations receive our attention would depend on the habitat or conditions

under consideration, and on the particular problem being investigated.

These views echo earlier contributions in ecological studies, such as the definition

of niches (Hutchinson, 1957) and the classic work of Root (1967) on ecological guilds.

Root (1967) defined a guild as “a group of species that exploit the same class of

environmental resources in a similar way”, which is conceptually similar to the

modern use of functional types. Various terms related to the concept of functional

types are summarized in Box 1.1.

In keeping with these ideas and in the context of the global biogeochemical

models mentioned above, a PFT or a phytoplankton biogeochemical class is often

defined as a group of organisms (irrespective of taxonomic affiliation) that carry out

a particular chemical process such as calcification, silicification, nitrogen fixation, or

dimethyl sulfide production; these are also sometimes referred to as “biogeochemical

guilds”. Box 1.2 shows some important phytoplankton functional types from a

biogeochemical perspective. Note that other functions may be used to describe the

roles of non-phytoplankton groups, for example, denitrification and remineralization
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(e.g., Hood et al., 2006).

Box 1.1: Functional Types and Related Terms

Functional Type:

The term emerges primarily from biogeochemical studies. A functional type is

defined as a group of organisms that share common biogeochemical functions,

but do not necessarily share a common phylogeny.

A Guild:

This term refers to a group of organisms that exploit a given environmental

resource in a similar fashion (Root, 1967). The term, initially used in ecological

studies dealing with competition, has in more recent years been used in the

context of phytoplankton functions and ocean biogeochemistry (Hood et al.,

2006).

A Trait:

A trait is a well-defined, measurable property of organisms, usually measured at

the individual level, and used comparatively across species (McGill et al., 2006).

Thus, a trait can be used to identify a functional type.

Functional Diversity:

This term represents responses of organisms to environmental change, at

different time and space scales. The response may be to each other, or to the

environment (Steele, 1991).

Ecological Niche:

According to Odum (1959), “The ecological niche of an organism depends not

only on where it lives but also on what it does. By analogy, it may be said that the

habitat is the organism’s “address”, and the niche is its “profession”, biologically

speaking.” Hutchinson (1957) defined a niche as a region (n-dimensional hyper

volume) in a multi-dimensional space of environmental factors that affect the

welfare of a species. Note that Odum’s definition of a niche emphasizes the

organism’s function, whereas the definition of Hutchinson emphasizes the

habitats that a particular organism would tend to occupy.
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Trichodesmium colony ∼2
mm in diameter (Photo
by Abby Heithoff ©WHOI,
USA).

Box 1.2: Some Important Phytoplankton Functional

Types

Nitrogen Fixers:
All phytoplankton require nitrogen for growth. Typically, phytoplank-
ton are equipped to take up nitrogen in the form of nitrate, nitrite
or ammonia. In the illuminated upper layer of the sea, these forms
are often present at growth-limiting concentrations. A subset of phy-
toplankton, known as diazotrophs or nitrogen fixers, can overcome
this limitation because they are able to utilize (“fix”) nitrogen gas
dissolved in seawater. They belong to the class of cyanobacteria or
blue-green algae, and the most notable of these in open-ocean waters
is the bloom-forming Trichodesmium. However other cyanobacteria,
either independently, or in symbiotic relationships with other types
of phytoplankton, are also known to contribute to nitrogen fixation at sea (see brief review in
Nair et al., 2008). When nitrogen fixation is high, the oceanic primary production may change
from nitrogen-limited to phosphorus-limited, thus affecting the phosphorus cycle as well.

Emiliania huxleyi cells.
Credit: Jeremy R. Young,
University College London.

Calcifiers:
Calcifying phytoplankton produce calcium carbonate shells or coccol-
iths and are collectively referred to as coccolithophores. They belong
to the class Prymnesiophyceae (Division Haptophyta, but note that
not all Haptophytes are calcifiers). The chemical process involved in
the formation of coccoliths (Ca + 2HCO3 —> CaCO3 + H2O + CO2) re-
moves dissolved bi-carbonate ion from the seawater, but increases dis-
solved CO2 and thus decreases alkalinity. Globally, marine organisms
(coccolithophores, foraminifera and other calcifiers) are estimated
to produce between 0.6 and 1.2 GT calcite carbon per year. Some
species (e.g., Emiliania huxleyi) can produce dense suspensions of
coccoliths, that markedly change the reflectivity of the water, causing
an impact on the underwater light regime and heat budget. See the Emiliania huxleyi webpage
(www.soes.soton.ac.uk/staff/tt/) for details about the various properties and functions of
coccolithophores.

Diatom Chaetoceros teres
(from planktonnet.awi.
de, image author Alexan-
dra).

Silicifiers:
A class of phytoplankton (Bacillariophyceae), commonly known as
diatoms, have silica frustules that surround and protect the cells.
Their requirement for silica sets them apart from other phytoplankton.
Diatoms are typically large-celled and this, combined with the pres-
ence of the silica frustules, makes them slightly negatively buoyant.
They therefore tend to sink rapidly out of the surface layer of the
ocean contributing to the transport of carbon, nitrogen and silica to
deeper waters. Though diatoms are the major silicifiers in the ocean,
some phytoplankton belonging to chrysophytes, silicoflagellates, and
xanthophytes are also known to be silicifiers (Brownlee and Taylor,
2002).

Box 1.2 continued on next page

www.soes.soton.ac.uk/staff/tt/
planktonnet.awi.de
planktonnet.awi.de
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Box 1.2 Continued

Size Classes:
Phytoplankton represent a continuum of sizes from ∼0.6 µm to species generating aggregates
greater than 200 µm. This continuum of sizes has been broken down into broad size classes:
pico- (0.2 - 2 µm), nano- (2 - 20 µm) and microphytoplankton (20 - 200 µm) (Sieburth et al.,
1978). (Note: some authors use the term nanoplankton for the 5 to 20 µm size range and
ultraphytoplankton for the 2 to 5 µm size range). These broad size classes occupy different
physical and chemical niches based on their nutrient-uptake ability, light-harvesting efficiency,
and sinking rate through the euphotic zone.

Neoceratium pentagonum
(from planktonnet.awi.
de, image author Fatima
Santos).

DMSP producers:
Many phytoplankton produce dimethyl sulfoniopropionate (DMSP),
a precursor to dimethyl sulphide (DMS), which is a volatile organic
compound. Various processes related to cell decay and grazing are
implicated in the transformation of DMSP within the cell to DMS in
the water. Some DMS escapes into the atmosphere and is responsi-
ble for the characteristic smell one often associates with seawater.
Some phytoplankton belonging to the classes dinophyceae, hapto-
phyceae (including coccolithophores), chrysophyceae, pelagophyceae
and prasinophyceae are known to be DMS producers, with the intra-
cellular concentration of the precursor DMSP reportedly highest in
dinoflagellates and haptophytes (Sunda et al., 2002).

.

.

.

For applications other than global biogeochemistry, different approaches to

identifying functional types may be more appropriate. Various attempts have been

made historically to characterize the structure of phytoplankton communities in the

ocean (Margalef, 1967; Raymond, 1980; Smayda, 1980). The number of organisms,

the relative abundance of species, their biological traits and functional roles have

been used to describe phytoplankton community structure (Reynolds, 2006).

If we consider modification of the under-water light field as a phytoplankton

function, then the relevant traits are the specific absorption and scattering properties

of phytoplankton, and phytoplankton may be classified according to their optical

characteristics. In fact, it has been recognised that optical properties of the upper

ocean are affected by phytoplankton cell size (Yentsch and Phinney, 1989) because of

the role particle size exerts on light scattering and absorption (e.g., Morel and Bricaud

1981; Stramski and Mobley, 1997; Ciotti et al., 1999; Loisel et al. 2006; Devred et

al. 2006). Cell size has also been considered an important trait of plankton from

ecological and biogeochemical perspectives (Sieburth et al., 1978) and ecological

models have been developed to represent function according to cell size (Moloney

and Field, 1991; Armstrong, 1999; Lima et al., 2002; Lima and Doney, 2004; Moore

et al., 2004; Irwin et al., 2006). Even models that rely principally on biogeochemical

roles as the basis for defining PFTs typically also have more generic size-based PFTs

such as “picophytoplankton” (e.g., Lima and Doney, 2004; Le Quéré et al., 2005;

Veldhuis and De Baar, 2005). From a purely ecological perspective, Reynolds et al.

planktonnet.awi.de
planktonnet.awi.de
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(2002) emphasize characteristics such as nutrient-uptake affinity, light-harvesting

efficiency, and motility as important for delineating functional groups of freshwater

phytoplankton. Interestingly, some aspects of these characteristics can also be

linked to cell size. Table 1.1 (from Nair et al. 2008) shows how traits of various

functional types are related to their size.

Trait Pico- Nitrogen- Calcifiers Silicifiers DMS-

autotrophs fixers producers

Cell size (µm) 0.7-2.0 Variable 5-10 20-200 5

Light High High Low Low High-Low

Nutrient required N2 gas Calcium Silica

Iron Low High High High High

Loss Grazing Viral lysis Sinking Sinking Lysis, grazing

Bio-optical properties High a∗B a∗B high in UV, High b∗bB Low, flat a∗B ?

High b∗bB

Remote sensing Yes Yes Yes Yes No

Table 1.1 Summary of the properties and requirements for growth (optical
conditions and nutrient requirements) of different phytoplankton functional
groups. Adapted from Nair et al. (2008), where a∗B and b∗bB represent the spe-
cific absorption and backscattering coefficients of phytoplankton, respectively.
Nominal size ranges for different functional types are taken from Le Quéré et
al. (2005).

It is not always straightforward to relate functionality with taxonomic affiliation.

On the one hand, plankton belonging to various classes, over a wide range of cell

sizes and pigment composition, may share a common function, such as production

of DMSP. On the other hand, a single species may belong to more than one functional

type. For example, the species Emiliania huxleyi may be classified as both a DMSP

producer and a calcifier.

Functional groups, although often defined in ecological terms as a group of

organisms that participate in similar biochemical processes (e.g., silicification or

calcification), have been more traditionally defined as a group of organisms exhibit-

ing similar physiological responses (light and nutrient utilization, for example) to

the environment in which they exist. Margalef (1978) first introduced the concept

of phytoplankton survival and seasonal succession being regulated by the physical

forces experienced in temperate regions. In recent years, Margalef’s framework has

been refined (Cullen et al., 2002) to reflect new knowledge about the open ocean

and picoplankton species such as Prochlorococcus spp., now widely accepted as the

most abundant phytoplankton in oligotrophic waters (Chisholm et al., 1988), and

about processes such as iron limitation in certain environments (Figure 1.1).

As noted above, the use of the PFT concept varies according to the scientific

questions being considered and the observational capabilities available or required

to address them. The range of approaches spans from categories related to phys-
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Figure 1.1 Conceptual continuum of physical and chemical forces on phyto-
plankton distribution. Reproduced from Cullen et al. (2002), after the concep-
tual framework of Margalef (1978).

iological adaptations for dealing with environmental factors of relevance to all

phytoplankton (e.g., light, nutrients, turbulence) to practical categories that can be

quantified with a particular analytical technique (e.g., pigment types), to specialized

adaptations relevant to narrowly defined phenomena (e.g., toxin-producing blooms).

Thus, when adopting the concept of phytoplankton functional types, it is important

to choose functional types that are clearly defined and selected to suit the problem

at hand.

1.3 Distribution of Some Common Phytoplankton Groups

The pelagic environment, whether in coastal or open-ocean waters, is rarely com-

prised of a single algal class. Different algal groups adapt to environmental condi-

tions such as high or low light, nutrient availability, temperature, and turbulence

level (Aiken et al., 2008). For example, small-celled phytoplankton such as Prochloro-
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coccus spp. (< 1 µm) are adapted to the high-light, oligotrophic, warm waters of the

tropical and subtropical regions of the world’s oceans, and are often most abundant

in the deeper layers (100 – 200 m) of the water column, and generally are not found

north or south of 40◦ latitude (Partensky et al., 1999; Post, 2006). Prochlorococcus

is the only phytoplankton that has the divinyl derivatives of chlorophylls-a and -b,

allowing for a greater capacity to utilize the blue light available deep in the euphotic

zone (e.g., Sathyendranath and Platt, 2007). Studies have shown that the abundance

of Prochlorococcus has been found to be negatively correlated with nutrient avail-

ability, suggesting that Prochlorococcus is unable to utilize NO−3 in the same way

as other phytoplankton (Moore et al., 1995; Cavender-Bares et al., 2001; McCarthy,

2002), perhaps explaining, at least partially, their geographic distribution being

restricted to warmer waters. Prochlorococcus generally coexists with the picoplank-

ton Synechococcus (1 – 2 µm), although the two occupy different niches within the

water column (Zwirglmaier et al., 2007; 2008), often with Synechococcus occupying

the surface and upper waters of the euphotic zone and Prochlorococcus the deeper

waters (Partensky et al., 1999; Agustí, 2004).

In contrast to Prochlorococcus, large-celled diatoms, as an algal class, are found

throughout the world’s oceans and, due to their physiological traits, generally

dominate in well mixed, high-nutrient waters such as found in the coastal regions

off Peru and California (Bruland et al., 2001; 2005). Many species of diatoms, when

in a nutrient-replete environment, continue to take up macronutrients (NO−3 , PO3−
4 ,

and/or SiO4) and some micronutrients (e.g., biologically-available Fe) beyond what

is needed for immediate growth, often prolonging growth or blooms beyond the

time when the euphotic zone is depleted of nutrients. This so-called “luxury uptake”

strategy (Goldman et al., 1979), combined with high intrinsic growth rates, makes

diatoms effective competitors in environments with episodic injection of nutrients.

If the water column becomes more stable and stratifies, then the diatoms, once they

have depleted their nutrient resources, will sink through the water column to the

seabed.

Under stable conditions, common during the months of late spring and summer,

the autotrophic flagellated phytoplankton (mainly dinoflagellates) tend to thrive.

Dinoflagellates are motile algae and, in low energy environments, are able to regulate

their position in the water column, occupying well-lit layers during the day to photo-

synthesize, and then descending at night to deeper waters to access higher nutrient

concentrations (Eppley et al., 1968; Cullen, 1985; Lieberman et al., 1994; Smayda,

1997). While the water column remains stable, the dinoflagellates can out-compete

other non-motile species by virtue of this migratory behaviour and sometimes form

a near-monospecific phytoplankton community, sometimes resulting in harmful

algal blooms or red tides.

Diazotrophic phytoplankton in the marine environment all belong to the cyanobac-

terial algal group, of which the most well-known and researched species is Tri-

chodesmium. These phytoplankton thrive in the warm, high-light and nutrient-poor
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conditions of oligotrophic waters in the tropical and subtropical regions of the

world’s oceans, often outcompeting other species by fixing nitrogen from the at-

mosphere. Trichodesmium can be found as individual filaments or in colonies,

and under conditions of low wind stress and water-column stability, the colonies

can form surface slicks covering many kilometres visible in ocean-colour images

(Dupouy et al., 1988; 2000). The density of these surface slicks can modify light

penetration to the euphotic zone. Gas vesicles within the Trichodesmium cells allow

regulation of buoyancy such that the colonies can use vertical migration to maintain

themselves in an optimum light field, often in a thin surface layer. Trichodesmium is

not alone in contributing to nitrogen fixation, and recent work has emphasized the

importance of unicellular cyanobacteria (Zehr et al., 2001; Moisander et al., 2010).

More recently, some diazotrophic cyanobacteria (i.e., Richelia intracellularis)

have been observed in association with diatoms such as Rhizosolenia and Hemiaulus

(Zehr et al., 2001). Another species of cyanobacteria, Calothrix rhizosoleniae, has

been found to have a symbiotic relationship with Chaetoceros and Bacteriastrum

spp. (Foster and Zehr, 2006), but more research is needed before generalizations

about the distributions of such associations can be made.

Our understanding of distributions of different phytoplankton functional type

and their evolution has to be linked to changes in the physical environment. For in-

stance, in the Southern Ocean, the distribution of DMS producers such as Phaeocystis

or silicifiers such as diatoms is related to the thickness of the mixed layer. Diatoms

are found preferentially in shallow mixed layers that allow bloom development

(Weber and El-Sayed, 1987; Jochem et al., 1995), whereas Phaeocytsis usually prevails

in regions of deep mixed layers (Arrigo et al., 1999; Goffart et al, 2000; Mangoni et

al., 2004).

A key question in the context of climate variability is how the distribution of

these functional types of phytoplankton might change, in response to modifications

to the environmental conditions.

1.4 Why Study Phytoplankton Functional Types?

In the last few decades, our interest in phytoplankton processes found added

impetus with the realization of their role in the global carbon cycle. Collectively,

phytoplankton are responsible for fixing some 50 GT carbon into organic material by

photosynthesis, also known as primary production (Longhurst et al., 1995; Antoine

et al., 1996; Field et al., 1998; Behrenfeld et al., 2001). The magnitude of this process

is comparable to net production by terrestrial plants at the global scale (Longhurst

et al., 1995), and is several times greater than the anthropogenic carbon emission

on an annual scale, which is estimated to be about 7 GT per annum (Sabine et

al., 2004). Thus, phytoplankton play an important role in the global carbon cycle.

In the context of climate change, there is increasing recognition that we need to
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understand how phytoplankton may respond to changes, since variations in primary

production could have major implications for the global carbon cycle (Sarmiento

and Hughes, 1999). At the same time, we recognize that distinct phytoplankton

groups affect the carbon cycle differently (Maier-Reimer, 1996; Bopp et al., 2005).

Several studies have shown that total particulate carbon at the surface of the ocean

and in the euphotic zone can be estimated from satellite data (Stamski et al., 1999;

Loisel et al. 2002; Gardner et al., 2006; Stamski et al., 2008; Duforêt-Gaurier et

al., 2010). Furthermore, Loisel et al. (2002) and Duforêt-Gaurier et al. (2010)

showed that the ratio of particulate organic carbon to chlorophyll concentration

varies with region and season. To the extent that these variations may be linked

to phytoplankton community structure, it may be argued that we need to learn

more about phytoplankton functional types, to understand variations in particulate

organic carbon.

The fate of the carbon fixed by photosynthesis depends to some extent on the

type of phytoplankton present. For example, small phytoplankton tend to have

lower sinking rates, and hence may remain for a longer period in the surface mixed

layer of the ocean. When they respire, or die, or are eaten by other organisms, they

release carbon dioxide back into the mixed layer, which is in direct contact with the

atmosphere. In contrast, larger cells have a higher chance of sinking out of the mixed

layer and of even reaching the sea floor before they decompose, and the carbon

associated with those cells may not come again in contact with the atmosphere

for decades or centuries. Thus, to quantify the role of phytoplankton in the global

carbon cycle, we need to understand not only the process of photosynthesis, but

also the fate of the organic material produced. This simple example illustrates the

importance of cell size in the carbon cycle. Other phytoplankton traits that link

cell size to their ability to fix carbon include the chlorophyll-normalised production

rates at saturating light levels (Bouman et al., 2005; Kameda and Ishizaka, 2005;

Uitz et al., 2008; Brewin et al., 2010b), quantum efficiency (Aiken et al., 2008; Hirata

et al., 2009) and growth rate (Marañón et al., 2013).

In addition to participating in primary production, some phytoplankton, notably

the coccolithophores, form calcium carbonate plates known as coccoliths that

surround their cells. The effect of this process is to change seawater alkalinity, and

hence solubility of carbon dioxide in seawater, which in turn impacts the carbon

cycle (Figure 1.2).

If the magnitude and variability in this process is to be understood, we need

to know not only the amount of phytoplankton present in the water, but also the

amount of coccolithophores present, and whether they are producing coccoliths.

One of the major threats now facing marine life is ocean acidification (Raven,

2005; Henderson, 2006; Doney et al., 2009). As anthropogenic carbon dioxide in

the atmosphere increases, a significant fraction of it (25 – 30 %, Sabine et al., 2004;

Canadell et al., 2007) finds its way into the ocean, since differences in the partial

pressure of carbon dioxide across the air-sea interface typically favour a net transfer
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Figure 1.2 Production of organic and inorganic particulates by phytoplankton.
Adapted from Rost and Riebesell (2004)

of carbon dioxide into the ocean. The oceans thus play a buffering role, decreasing

the rate of accumulation of anthropogenic carbon dioxide in the atmosphere, and

hence slowing the green-house effect. But this service provided by the oceans

comes at a cost: as more and more carbon dioxide dissolves in the oceanic waters, it

changes the pH of the water, making it more acidic (or more accurately, less alkaline).

Many marine organisms have calcium carbonate components (such as skeletons,

shells, corals, or coccoliths), and it has been shown under laboratory conditions that

calcite formation by some marine phytoplankton may be reduced under high CO2

conditions (e.g., Riebesell et al., 2000). When the pH of seawater moves away from a

preferred value, it may threaten the ability of these organisms to complete their life

cycle in a normal fashion, unless they are able to adapt to the changes. However,

there is still much to be learned about species responses to a high-carbon-dioxide

environment. Though it may be difficult to imagine an Earth without coral reefs, we

now recognize that some corals may not be able to adapt to the rapid increase in

ocean acidity. The fate of corals may be the most striking example of the threat to

ocean life from ocean acidification, but the impact of acidification on microscopic

life in the oceans may have a more profound effect on our lives through alteration

of the carbon cycle. As noted above, coccolithophores have a role in the ocean as

calcifiers, forming calcium carbonate liths, which on geological time scales have been

important in carbon storage in deep-sea sediments. How would such organisms

fare in a less alkaline ocean? To study the role of phytoplankton in the context of

ocean acidification, and to appreciate their response to it, we can no longer treat

all phytoplankton as a collective unit. Instead, we need to look at the calcifying
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phytoplankton separately from the rest, again invoking the need to study functional

types.

Phytoplankton are active not only in the cycling of carbon, but also of other ele-

ments, such as nitrogen and silica (Figure 1.2). In the process of primary production,

phytoplankton take up not only carbon, but also nitrogen and other elements. All

phytoplankton are able to take up nitrogen in one or more of the most biologically-

utilisable forms: nitrate, nitrite and ammonia, with varying preferences for these

different forms. But only some phytoplankton, notably certain species of cyanobac-

teria or blue-green algae, are able to take up nitrogen gas dissolved in seawater.

Thus, to study the nitrogen cycle, we need to distinguish between nitrogen-fixing

phytoplankton and the rest. On the other hand, diatoms form frustules made of

silica, and are thus important players in the cycle of silica in the ocean, highlighting

the need to distinguish silicifying phytoplankton from the rest in studies of the

silica cycle.

Cooling

Clouds reflect sunlight
back into space

Cool temperature favours
low phytoplankton growth

More CCN

Decreased
CCN

Fewer clouds - more sunlight 
reaches the Earth

Warming

Warm temperature favours 
high phytoplankton growth

CLAW Hypothesis: Negative feedback to increasing temperature

More DMS

Less DMS

Figure 1.3 CLAW Hypothesis after Charleson et al. (1987): Negative feedback
to increasing temperature. Figure adapted from Lucinda Spokes, Environmental
Sciences, University of East Anglia, U.K.

The role of phytoplankton as an important natural source of reduced sulphur

in the atmosphere also deserves our attention. Marine DMS emission from phyto-

plankton is estimated to contribute some 15 x 1012 to 35 x 1012 g S per year to

the atmosphere (Kettle and Andreae, 2000; Simó, 2001; Lana et al. 2010). DMS

influences the Earth’s climate through the formation of sulphate aerosols. These

aerosols serve as cloud-condensation nuclei, and the resultant clouds can reduce

the sunlight reaching the sea surface, and also be a source of acid rain (Liss et al.,
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1997). Krüger and Graßl (2011) reported that in the Southern Ocean, phytoplankton

increase cloud albedo due to an increase of fine particles arising from DMS and pos-

sibly isoprene associated with phytoplankton, and decrease precipitation, because of

delayed homogenous freezing by water particles. Charleson et al. (1987) posed the

CLAW hypothesis (where the acronym CLAW is formed of the initials of the names

of the four authors), which postulates that the DMS cycle may be a mechanism

by which the temperature of the Earth is regulated (Figure 1.3). According to the

hypothesis, increasing temperature would favour more primary production, and

more phytoplankton would produce more DMS, hence contributing to increased

cloud cover, which in turn would lead to a higher reflection of sunlight back into

space, leading to a cooling effect. Under cooling conditions, the process would be

reversed. More recently, Lovelock (2007) has proposed the Anti-CLAW hypothesis: in-

creased temperature would increase stratification, thereby diminishing the supply of

nutrients to the surface waters and hence primary production and DMS production

(Figure 1.4). This would decrease cloud condensation nuclei, and hence cloud cover,

and lead to further increase of temperature. In a recent review, Quinn and Bates

(2011) have suggested that the relationship between biota and cloud-condensation

nuclei is more complex than envisaged in the CLAW hypothesis. In the face of

such opposing points of view, further research is needed to understand how the

Earth functions as an interconnected system and the role of various phytoplankton

functional types in the system, especially in the context of climate change.

Further
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Figure 1.4 Anti-CLAW Hypothesis after Lovelock (2007): increased tempera-
ture increases stratification, diminishing the supply of nutrients to the surface
waters and hence primary production and DMS production.

Humans rely on the oceans for food, especially high-protein food through fish-
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eries and aquaculture. The fish in the oceans, on the other hand, depend ultimately

on phytoplankton for their own food supply. Whereas it has long been recognized

that availability of food is a limiting factor for growth of fish and shellfish in the

oceans, there is now growing awareness that the type of phytoplankton available

in the ocean may be an important factor that determines the energetics of differ-

ent food webs and the type of fish that thrive in a given environment (Beaugrand,

2003; Beaugrand and Reid, 2003). For example, Cury et al. (2008) have suggested

that, in the Benguela ecosystem, flagellates favour the growth of sardines, whereas

diatoms favour the growth of anchovy. Thus, phytoplankton types are also relevant

in studies of fish ecology, and hence are an important ingredient in efforts towards

an ecosystem-based strategy for sustainable management of fisheries.

Certain types of phytoplankton, especially if they occur in very high concentra-

tions, can have a negative impact on the environment, causing hypoxia (low-oxygen

conditions), or producing toxins. Various dinoflagellates and diatoms have been im-

plicated in such harmful algal blooms. For example, a diatom species Pseudonitzchia

multiseries is known to produce the neurotoxin domoic acid. Shell fish filtering the

phytoplankton concentrate the toxin many fold and human consumption of the

contaminated shellfish can lead to serious health problems, or even fatalities (Lelong

et al, 2012). Changing environmental conditions can result in increased prevalence

and range of harmful algal blooms in coastal zones (Hallegraeff, 1993; Anderson,

2007), with implications for local and regional fisheries and potential feedback to

climate systems.

From a more general ecosystem perspective, recognition of the intimate links

between ecosystem function and diversity has led to renewed interest in under-

standing various aspects of marine biodiversity. Studying marine diversity at the

species level at large scales remains an intractable problem for microscopic life

in the oceans, because the thousands of species that exist in the ocean are not so

readily analysed at large scales (though emerging genetic approaches provide some

tantalizing glimpses of what might be possible in the future). Given the impracti-

calities of studying microscopic life at the species level in a dynamic environment

that is vast and inaccessible, the approach of partitioning the phytoplankton into

functional types provides an attractive, practical compromise in studies of marine

diversity, where we probe diversity at the functional level instead of at the species

level.

Thus, many reasons can be cited for our growing interest in studying phyto-

plankton functional types. The challenges inherent in developing and interpreting

remotely-sensed PFT information may be outweighed by the imperative for better

understanding of a range of ecological and biogeochemical processes with local-

to global-scale relevance. Continued warming of the oceans, for example, has the

potential to extend the geographic ranges of certain PFTs such as nitrogen fixers

(e.g., Trichodesmium) and picoplankton (e.g., Prochlorococcus and Synechococcus),

whereas increases in ocean acidity (associated with increases in atmospheric CO2)
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may impact calcifiers (e.g., Emiliania huxleyi) and their role in the carbon cycle

(Doney, 2006; Orr et al., 2005). Implications and consequences of these kinds

of changes cannot be adequately explored without PFT-resolving conceptual and

numerical models.

As we see in the next section, recent developments in remote sensing provide a

unique opportunity to study at least some phytoplankton functional types through

analysis of ocean-colour data.

1.5 Why Study Phytoplankton Functional Types From Space?

Traditional approaches to interpretation of ocean-colour data are geared towards

retrieval of the concentration of chlorophyll-a as an index of phytoplankton biomass.

Standard chlorophyll algorithms (Morel and Antoine, 2000; O’Reilly et al., 2000)

rely mostly on empirical relationships that use spectral band ratios of water-leaving

radiance or radiance reflectance, typically in the blue-to-green portion of the spec-

trum. These algorithms are relatively simple to apply and are robust to a series of

challenges including difficulties of implementing spectrally-resolved atmospheric

correction or obtaining absolute calibration of space-based radiometers that is sus-

tained over time. Inversion algorithms designed for routine retrieval of inherent

optical properties (e.g., backscattering coefficients, absorption coefficients), in ad-

dition to chlorophyll concentration, are a noteworthy step away from empirical

band ratio algorithms (e.g., Maritorena et al., 2002; Smyth et al., 2006), but are

still designed to yield measures of total phytoplankton concentration. Most re-

cently, there has been an expansion of research focused on retrieval of properties

of the phytoplankton community, such as the dominant type, size structure, or

simultaneous detection of multiple functional types.

Moving beyond chlorophyll retrieval to detecting phytoplankton types more

directly from satellite data requires more complex interpretation and analysis of

ocean-colour signals. Fortunately, it has been emerging over the years that some

phytoplankton types are amenable to remote sensing. Many of these efforts have

focused on specialized algorithms to detect a single taxon with distinctive optical

characteristics known to affect water-leaving radiance signals detectable from space.

Whereas validation of these approaches remains challenging, examples applied with

some success include quantification from space of coccolithophorid blooms (Brown

and Yoder, 1994; Iglesias-Rodríguez et al., 2002), near-surface Trichodesmium

blooms (Subramaniam and Carpenter, 1994; Subramaniam et al., 2002; Westberry et

al., 2005), cyanobacteria blooms (Hu et al., 2010b), diatom blooms (Sathyendranath

et al., 2004b) and floating Sargassum (Gower and King, 2011). Some algorithms have

also targeted a variety of phytoplankton (Alvain et al., 2005; Uitz et al. 2006; Aiken

et al., 2007; Bracher et al., 2009). Interestingly, many taxa or types that are amenable

to remote sensing are also “functional” types. For example, coccolithophorids are
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calcifiers, Trichodesmium is an important bloom-forming cyanobacteria that belongs

to the functional class of nitrogen-fixers, and diatoms are silicifiers.

In addition to phytoplankton biogeochemical classes, phytoplankton size classes

have also been retrieved from satellite imagery. Some of these studies have used an

estimate of phytoplankton abundance, such as chlorophyll concentration (Uitz et al.,

2006; Brewin et al., 2010a; Hirata et al., 2011; Devred et al., 2011) or phytoplankton

absorption (Hirata et al., 2008a), and their relationships with phytoplankton size.

Other methods discriminate between phytoplankton types on the basis of their

spectral optical signatures. These methods have focussed on either absorption

(Ciotti and Bricaud, 2006; Devred et al., 2006; Uitz et al., 2008; Mouw and Yoder,

2010; Brewin et al., 2011a) or scattering characteristics (Loisel et al., 2006; Hirata

et al., 2008a; Kostadinov et al., 2009). The scattering approaches are based on

the total particle size distribution not differentiating phytoplankton from the total

particle load. However, these scattering approaches employ a broad assumption

that scattering particles in the open ocean are most likely phytoplankton. Alvain

et al. (2008) and Bricaud et al. (2012) have studied PFTs over large expanses of the

ocean during the SeaWiFS mission and explored biogeochemical implications of cell

size.

Oceanographers today are familiar with routine accessibility of remotely-sensed

chlorophyll images from sensors such as SeaWiFS, MODIS and MERIS, which can

cover the globe on 1 – 2 day time scales. While the remote-sensing field has been

progressing, the increasing capabilities of computers and conceptual developments

have led to three-dimensional global circulation models being coupled with in-

creasingly complex biogeochemical models. In some cases, these models extend

well beyond three-box Nutrient–Phytoplankton–Zooplankton (NPZ) models, moving

towards the class of models collectively known as Dynamic Green Ocean Models

(DGOM, Le Quéré et al., 2005; Kishi et al., 2007) that strive towards more realistic

representation of planktonic types and their functionalities (Gregg et al., 2003; Black-

ford et al., 2004; Le Quéré et al., 2005; Veldhuis and De Baar, 2005; Hood et al., 2006;

Jin et al., 2006). More complex ecosystem models are justified by the need to resolve

important ocean biogeochemical processes, many of which are mediated by special-

ized types of organisms (e.g., calcifiers, silicifiers, nitrogen fixers, see Figure 1.5).

Spatially- and temporally-resolved information on relative abundance of these types

of organisms is of great value for development and validation of these models, and

satellite observations are used extensively for this purpose (e.g., Iglesias-Rodríguez

et al., 2002; Gregg et al., 2003; Allen et al., 2010). Other observational strategies

(e.g., ships, moorings) cannot approach the coverage and resolution of space-based

sensors, so the motivation for retrieving PFT information is strong, even if it is

established that remotely-sensed PFTs have coarse resolution and relatively large

uncertainties. But of course, the usefulness of satellite-derived information would

only increase if there is a quantitative understanding of the uncertainties associated

with the products.
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Remotely-sensed information can bring unique and essential information on

the response of phytoplankton functional types to regional climatic events such

as El Niño. For example, it is generally admitted that diatoms are not important

contributors to phytoplankton biomass in the Equatorial Pacific region (Kobayashi

and Takahashi, 2002; Dandonneau et al., 2004), but exceptional blooms have been

reported in this area from in situ observations (Archer et al., 1997; Chavez et al.,

1999) and their large spatial coverage has been recently observed using remote

sensing (Alvain et al., 2008). Diatom blooms may occur when equatorial upwelling is

intense and not limited to the coastal region, corresponding to a La Niña event, and

give rise to massive exports of organic carbon to the bottom (Greene et al., 1991;

Cavender-Bares et al., 1999).

Dynamic Green-Ocean Model 

CaCO3 particulate Si DOM 

Mesozooplankton Microzooplankton 

PO4 Si NO3 

Silicifiers Calcifiers 
Picophyto- 
 
plankton 

DMS Producers Diazotrophs 

N2 Fe 

Figure 1.5 Dynamic Green Ocean Model (adapted from Aumont et al., 2003).
Microzooplankton and mesozooplankton in the figure refer to two size classes
of zooplankton in the model.

1.6 The Need for Complementary Approaches

A fundamental challenge in exploiting the PFT concept is that critical aspects of

group function or characteristics associated with functional type affiliation cannot

be observed directly at many important spatial and temporal scales. Laboratory-

or field-based characterization of functional properties, combined with environ-

mental characterization and taxon-specific identification in natural communities

is a traditional approach (e.g., Root 1967; Reynolds et al., 2002), but one that is

severely constrained by the labour-intensive nature of the methods and cost of

access to study sites (e.g., ship time). For phytoplankton, microscopic analysis
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and experimental incubations (e.g., C14 uptake, N15 transformation, etc.) remain

the long-established standards for assessing composition and function. These ap-

proaches offer observational quality, accuracy, and functional resolution at the

expense of space and time resolution (i.e., a few discrete samples), complementing

remote-sensing approaches.

Some of the space and time limitations of these traditional methods can be

offset with a variety of newer sampling and analysis strategies, each of which

has different advantages and limitations. In almost all cases, a trade-off must

be made between biological detail and spatio-temporal resolution of observations

required to quantify PFT distributions in the ocean. Because many questions in

biological oceanography depend at least as much on information regarding spatial

and temporal variability as they do on biological detail, there are strong motivations

to study PFT distributions derived from satellites, in spite of the limited scope

for biological detail in these observations. Remote sensing approaches must be

considered as part of this continuum of trade-offs between the quality and detail

available from in situ observations and the extensive space and time scales accessible

to remote sensing.

1.7 Concluding Remarks

The concept of phytoplankton functional types has emerged as a useful approach to

classifying phytoplankton. It finds many applications in addressing some serious

contemporary issues facing science and society. Its use is not without challenges,

however. As noted earlier, there is no universally-accepted set of functional types,

and the types used have to be carefully selected to suit the particular problem being

addressed. It is important that the sum total of all functional types matches all

phytoplankton under consideration. For example, if in a biogeochemical study,

we classify phytoplankton as silicifiers, calcifiers, DMS-producers and nitrogen fix-

ers, then there is danger that the study may neglect phytoplankton that do not

contribute in any significant way to those functions, but may nevertheless be a

significant contributor to, say primary production. Such considerations often lead

to the adoption of a category of “other phytoplankton” in models, with no clear

defining traits assigned them, but that are nevertheless necessary to close budgets

on phytoplankton processes. Since this group is a collection of all phytoplankton

that defy classification according to a set of traits, it is difficult to model their physi-

ological processes. Our understanding of the diverse functions of phytoplankton is

still growing, and as we recognize more functions, there will be a need to balance the

desire to incorporate the increasing number of functional types in models against

observational challenges of identifying and mapping them adequately. Modelling

approaches to dealing with increasing functional diversity have been proposed,

for example, using the complex adaptive systems theory and system of infinite
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diversity, as in the work of Bruggemann and Kooijman (2007). But it is unlikely that

remote-sensing approaches might be able to deal with anything but a few prominent

functional types. As long as these challenges are explicitly addressed, the functional-

type concept should continue to fill a real need to capture, in an economic fashion,

the diversity in phytoplankton, and remote sensing should continue to be a useful

tool to map them.

Remote sensing of phytoplankton functional types is an emerging field, whose

potential is not fully realised, nor its limitations clearly established. In this report,

we provide an overview of progress to date, examine the advantages and limitations

of various methods, and outline suggestions for further development. The overview

provided in this chapter is intended to set the stage for detailed considerations of

remote-sensing applications in later chapters.

In the next chapter, we examine various in situ methods that exist for observing

phytoplankton functional types, and how they relate to remote-sensing techniques.

In the subsequent chapters, we review the theoretical and empirical bases for the

existing and emerging remote-sensing approaches; assess knowledge about the

limitations, assumptions, and likely accuracy or predictive skill of the approaches;

provide some preliminary comparative analyses; and look towards future prospects

with respect to algorithm development, validation studies, and new satellite mis-

sions.
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Chapter 2

In situ Methods of Measuring Phytoplankton
Functional Types

Heidi M. Sosik, Shubha Sathyendranath, Julia Uitz, Heather Bouman and
Anitha Nair

2.1 Introduction

Methods for identifying and characterizing phytoplankton in the field have pro-

gressed greatly, from the early approaches based on the light microscope, to the

present use of satellite remote sensing. Many new tools have emerged to study

phytoplankton in the sea in ways that complement microscopy. Advances include

use of High Performance Liquid Chromatography (HPLC) to characterize pigments as

chemical markers for phytoplankton groups, use of flow cytometry to characterize

cells according to autofluorescence and light scattering properties, development

of automated cell imaging techniques, and exploitation of molecular methods and

gene sequencing approaches to characterize diversity. Optical properties of phyto-

plankton, such as absorption, scattering, and fluorescence excitation and emission

spectra, have also been developed as tools for broadly classifying phytoplankton

into different types. Furthermore, size classes of phytoplankton can be estimated

in the field with successive filtration. In this chapter, various in situ methods for

assessing phytoplankton types are summarized, along with their advantages and

limitations. Some material in this chapter expands on that presented in Nair et

al. (2008). We also examine how in situ data collected by the various methods can

be related to satellite-based approaches, including prospects for developing and

evaluating satellite algorithms.

2.2 Microscopy

Light microscopy is the traditional method for identifying phytoplankton, while the

advent of epifluorescence and electron microscopy has significantly extended the

capabilities for microscopic identification (e.g., Booth 1993; MacIsaac and Stockner,

1993). The microscope remains an essential tool for identifying many phytoplankton

to the species level according to morphological features (Tomas, 1997). In some

21
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methods, phytoplankton are collected on filters or mesh before identification and

counting of cells. The inverted microscope or the Utermöhl method (Utermöhl,

1931) involves use of settling chambers to concentrate samples before microscopic

analysis, an approach which is effective for many types of microphytoplankton (i.e.,

cell size >20 µm).

Despite the importance of microscopy, the method does have some general

limitations. Most notably, it is time consuming and depends heavily on the expertise

of the observer to discriminate taxa. Taxonomic identification is based on morpho-

logical characteristics, so it can be difficult even for experts to identify cells, if they

have been damaged by handling. Pico- and nanophytoplankton (i.e., cell size < 2

µm and within the range 2-20 µm, respectively) are difficult to identify with light

microscopy because of their small size and lack of distinctive morphological fea-

tures. Epifluorescence microscopy, enabling discrimination of cells by fluorescence

properties, is especially important for some characterization of picophytoplankton

(e.g., Prochlorococcus versus Synechococcus versus picoeukaryotes), but still lacks

sufficient resolution for many identification problems. This gap is filled by various

types of electron microscopy (transmission and scanning), which are essential for

discerning morphological differences among many pico- and nanophytoplankton, as

well as fine details in larger cells such as species-specific frustule characteristics in

diatoms. With these advanced methods, limitations are generally greater in terms of

time, required expertise, and cost, such that relatively few samples can be analyzed

and quantitative assessments of spatial and temporal variations in the ocean are

prohibitive.

A further complication associated with microscopy is that samples are typically

preserved for later analysis and the method of preservation used may not work

equally well for all taxa, such that the results of enumeration may be biased. Though

common microscopic methods tend to be effective for the identification and enu-

meration of large cells, an additional caveat is that even large cells may be easily

missed, if they are rare in the sample.

For those who have never done it, it may be difficult to fully appreciate the

magnitude of the task of identifying, counting, and measuring phytoplankton under

a microscope. But some numbers, provided by Margalef (1994), drive home the point

very tellingly. He reports that over a thirty-year period (1960 – 1991), he collected

1388 samples for phytoplankton analysis from the northwest Mediterranean. The

total volume analysed with an inverted microscope at the end of the study was

5.1 litres of seawater. The total number of cells counted and measured for size

was 194,983 and the total number of species identified was 353 (a high number,

considering Sournia et al. (1991) report that only about 4,400 species of marine

phytoplankton have been described globally). Of these, the most abundant species,

Chaetoceros curvisetus, accounted for 11% of all counts. Notably, some 51 species

were so rare they were each only encountered once during the entire study period.

These figures demonstrate how impossibly difficult it would be to rely only on
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microscopic analysis as a routine method for identifying phytoplankton types

systematically at the global scale.

These challenges notwithstanding, there are notable efforts underway. For

instance, phytoplankton species are counted routinely in samples collected with the

Continuous Plankton Recorder (CPR). CPR sampling is done on surveys organised by

the Sir Alistair Hardy Foundation for Marine Sciences and its sister organisations

around the world (Reid et al., 2003b). It is important to note that the 270-µm mesh

size used in the CPR and the microscopic method employed do bias these survey

results towards larger phytoplankton (Richardson et al., 2006); though some cells

much smaller than the mesh size can be trapped by the silk fibres of the CPR mesh

and may be enumerated. Despite this limitation, CPR results have already provided

means to evaluate aspects of some remote sensing algorithms for phytoplankton

types (Brewin et al., 2011b).

When considering the goal of comparing microscopic estimates of phytoplankton

types with satellite observations, some additional challenges emerge. Besides diffi-

culties with identification and counting, it can be complicated to estimate biomass

or biovolume from microscopic counts alone. Since many remote-sensing algo-

rithms provide estimates of different phytoplankton types as absolute or relative

contribution to pigment biomass, it is not straightforward to use microscope counts

to evaluate algorithms; some assumptions must be made regarding chlorophyll

content per cell or other conversion factors (see Brotas et al., 2013). Lastly, satellite

observations provide information resolved to surface areas of hundreds of square

meters, whereas microscopic counts are carried out on extremely small volumes (a

few ml). This incompatibility of space scales makes it difficult to compare satellite

observations and microscope counts directly, though the mismatch of space scales

is not unique to microscopy and plagues all comparisons of in situ observations

with satellite estimates.

2.3 Flow Cytometry

In contrast to manual microscopic methods, flow cytometers are renowned for the

speed at which they are able to characterize phytoplankton in a water sample. For

some three decades now, this method, adapted from medical tools designed for

counting blood cells, has proven to be invaluable for the study of phytoplankton

and even bacteria and viruses in the ocean (e.g., Yentsch and Horan, 1989; Olson and

Chisholm, 1990; Reckermann and Colijn, 2000; Sosik et al., 2010). In flow cytometry,

phytoplankton cells in a sample of seawater are forced individually through a small

aperture into a light field. As a cell passes through the field, its optical properties

such as fluorescence and scattering are measured (Figure 2.1a). A large number of

cells are enumerated in this fashion in a short time (>105 cells per second) from

water samples collected at sea.
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Figure 2.1 (a) Schematic representation of conventional flow cytometric anal-
ysis of individual phytoplankton cells in a seawater sample. As cells flow
single file through a focused laser beam, the light they scatter or fluoresce
is measured. Depending on the flow cytometer configuration, multiple scat-
tering angles and fluorescence wavelength ranges may be measured. Typical
flow cytometers are appropriate for enumerating and characterizing pico- and
small nanophytoplankton. (b) High throughput customized flow cytometers
enable characterization of microplankton, which are not only larger but also
typically rarer, with the most detailed discrimination possible in systems that
incorporate cell imaging (e.g., Olson and Sosik, 2007). An exposure flash and
associated capture of a CCD camera frame are triggered by signals generated
when the cell first passes through a laser beam. Only cells with signals above a
threshold (represented here by those coloured red) trigger image capture, such
that the abundant small cells (too small to identify with light microscopy) are
not typically imaged.

Biomedical uses of flow cytometry usually involve treatment of cells with flu-

orescent dyes or probes prior to analysis, but the most common oceanographic

applications entail measurement of untreated phytoplankton cells that naturally

exhibit fluorescence associated with their photosynthetic pigments. Presence of

chlorophyll fluorescence makes it possible to discriminate phytoplankton from

other particles, and flow cytometric analysis permits enumeration, quantification of

cell properties such as size and pigmentation, and some level of taxonomic, optical

and/or sized-based discrimination (e.g., Prochlorococcus, Synechococcus, picoeukary-

otes, pennate diatoms, coccolithophorids) (Olson et al., 1989; 1990b; Collier, 2000;

Dubelaar and Jonker, 2000).

There are some important limitations of conventional flow cytometry. The ap-

proach provides much faster analysis of cells than microscopy, but the sample

volumes are still small (from tens of µl to a few ml) and relatively few discrete

samples can be processed compared with the space and time scales of change in the

natural environment. Moreover, commercial instruments are typically optimized so
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that analysis of small (pico- and nano-sized) phytoplankton is effective, but relatively

rare and larger microplankton are missed or poorly characterized. At the same

time, it is the case that many commercial flow cytometers lack sufficient sensitivity

to detect the smallest, least fluorescent picophytoplankton typically encountered

in open-ocean surface waters. So, there can be detection issues on both the small

and the large ends of the phytoplankton size spectrum. Finally, the types of phy-

toplankton that can be discriminated on the basis of flow cytometric fluorescence

and light scattering can be limited. Genera such as Prochlorococcus and Synechococ-

cus can usually be unambiguously classified, but common analysis methods only

permit other phytoplankton types to be characterized by size (estimated from light

scattering).

Some of these limitations have been eased by recent advances. For instance,

custom flow cytometers have been configured to increase sample volume throughput

and dynamic range of signals so that larger, more rare cells can be characterized

better (e.g., Dubelaar et al., 1989; Cavender-Bares et al., 1998; Green et al., 2003;

Zubkov and Burkhill, 2006; Olson and Sosik, 2007). Others have been modified to

increase sensitivity (e.g., Frankel et al., 1990; Olson et al., 1990a). Additional efforts

have been focused on enhancing the ability to discriminate among cells types. An

example is the use of fluorescence and light scattering pulse shapes to reveal aspects

of cell (or chain) size and shape (Cunningham, 1990; Dubelaar and Gerritzen, 2000).

Flow cytometry has also been combined with molecular probes for more refined

analysis of taxonomic composition in phytoplankton (Biegala et al., 2003); however,

this approach remains technically challenging and difficult to apply in a systematic

manner for characterization of many phytoplankton types in diverse samples.

Important advances in flow cytometry have led to submersible instruments that

can be programmed to sample automatically (Dubelaar and Gerritzen, 2000; Olson

et al., 2003; Olson and Sosik, 2007), leading to long time series observations at a

single point, and thus providing valuable information on phytoplankton dynamics

(e.g., Sosik et al., 2003; Thyssen et al., 2008). These automated technologies can also

be used for surveying during underway ship-based sampling to characterize spatial

variability (e.g., Thyssen et al., 2009; Laney and Sosik, 2014).

The advent of imaging-in-flow cytometers is arguably the most important de-

velopment for extending the level of taxonomic discrimination possible (Sieracki

et al., 1998; Olson and Sosik, 2007). This method incorporates video imaging and

effectively combines the speed and automation of flow cytometry with the strengths

of light microscopy (Figure 2.1b). In current instruments, image resolution and

quality is such that many microphytoplankton can be identified to genus or even

species (Sosik and Olson, 2007; Poulton and Martin, 2010; Sosik et al., 2011), thus

effectively overcoming the bias against detecting and discriminating large cells that

limits conventional flow cytometry.

The combination of imaging-in-flow with automated cytometry introduces a new

challenge because hundreds of thousands of cell images can be readily acquired and
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must be analyzed and identified to provide new knowledge about spatial and tempo-

ral variability in phytoplankton types. While this type of automated measurement

and analysis is a significant advance, it is important to note that the design and

interpretation of automated image classifiers relies critically on the same human

expertise in taxonomic identification that is inherent with manual microscopy. For-

tunately, effective automated image analysis and taxonomic classification (machine

learning) algorithms have been demonstrated (Sosik and Olson, 2007; Campbell

et al., 2013). An additional advantage of automated image analysis is that it can

provide quantitative estimates of biovolume on a cell-by-cell basis, so that varia-

tions in size and shape can be fully considered in natural assemblages (Sieracki et

al., 1989; Moberg and Sosik, 2012). When coupled with automated classification,

this approach can be used to produce taxon-specific biomass estimates (e.g., Laney

and Sosik, 2014) that could be systematically compared with results from satellite

algorithms.

2.4 HPLC Methods

Chromatographic analysis of pigments is probably the most common non-microscopic

approach to phytoplankton community characterization (Jeffrey et al., 1997; Roy et

al., 2011). High Performance Liquid Chromatography (HPLC), coupled with knowl-

edge of taxon-specific pigment composition, can provide information on various

phytoplankton classes that make up natural communities (e.g., Mackey et al., 1996)

with less labour than microscopy. Phytoplankton pigments can be classified into

three major groups: chlorophylls (a, b, and c), carotenoids (carotenes and their

oxygenated derivatives, known as xanthophylls), and biliproteins (phycoerythrin,

phycocyanin, and allophycocyanin). Chlorophyll-a, or more specifically, mono-vinyl

chlorophyll-a, is ubiquitous and present in all phototrophic organisms, except

Prochlorococcus which possesses the variant divinyl-chlorophyll-a. The distribution

of all other pigments varies among taxa. Several pigments are restricted to specific

taxa and, thus, can be used as marker pigments - also called diagnostic pigments, or

pigment fingerprints - for those taxa (Jeffrey et al., 1997).

HPLC enables the separation, identification, and quantification of 25-50 pig-

ments, depending on the method, in a single analysis (Figure 2.2). Briefly, pigment

mixtures from samples introduced into a column are separated on the basis of

their affinity to the chromatographic packing material contained in the column

and the solvent stream moving through the column. Once separated, the eluted

pigments pass through a detector for identification and quantification. HPLC offers

the unique benefit that it simultaneously provides a comprehensive description of

the phytoplankton community composition over the entire cell size spectrum, and

an accurate determination of the chlorophyll-a concentration, the most widely used

proxy for phytoplankton biomass. Although HPLC pigment determination provides
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limited taxonomic resolution (compared with detailed microscopy), it allows useful

interpretation at the class level. It also has the advantage of routine, relatively rapid

analysis, without need for high-level training in algal taxonomy, and with less labour

than microscopy.

 

Figure 2.2 Schematic of HPLC analysis approach for characterizing phyto-
plankton community structure on the basis of pigment composition. Mixed
species natural samples are filtered, then extracted and injected into the HPLC
system, where individual pigments are separated and quantified. Taxonomic
contributions to total chlorophyll-a can then be inferred from assumptions
about diagnostic pigments and pigment ratios (Mackey et al., 1996). Figure
credit: Alan Joyner and Hans Paerl (University of North Carolina-Chapel Hill,
Institute of Marine Sciences).

A few pigments can be unambiguously assigned to a single phytoplankton class.

For example, divinyl-chlorophyll-a and divinyl-chlorophyll-b are unique to Prochloro-

coccus, and alloxanthin to cryptophytes (see Table 2.1). However, interpretation of

pigment data is not always straightforward, and is subject to uncertainties linked

to biological and environmental sources of variability in pigment composition. In

particular, some marker pigments are shared between several phytoplankton taxa,

making the unambiguous identification of groups difficult (Table 2.2). Interpretation

of pigment data may also be complicated by the presence of endosymbionts in some
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Pigment Taxonomic significance Reference

Divinyl-chlorophyll-b Prochlorophytes Wright (2005)

Alloxanthin Cryptophytes Wright (2005)

Peridinin Type-1 Dinoflagellates Ornólfsdóttir et al.(2003)

Gyroxanthin diester Type-2 Dinoflagellates Ornólfsdóttir et al.(2003)

Prasinoxanthin Type-3 Prasinophytes Egeland et al. (1997)

Table 2.1 Unambiguous pigments and their associated phytoplankton group.
Reproduced from Nair et al. (2008).

phytoplankton, such as cyanobacteria in diatoms, which give a mixed pigment signa-

ture (Hallegraeff and Jeffrey, 1984). The method is also susceptible to uncertainties

linked to genetic and environmental sources of variability in pigment composition

within classes (e.g., Irigoien et al., 2004; Llewellyn et al., 2005). Pigment composition

within a particular group is influenced by numerous factors such as light (Goericke

and Montoya, 1998), nitrogen (Sosik and Mitchell, 1991; Henriksen et al., 2002), or

iron (Kosakowska et al., 2004), and varies with strains (Zapata et al., 2004). Nev-

ertheless, and acknowledging these limitations, pigment concentrations provide a

first-order estimate of total and group-specific phototrophic (chlorophyll-containing)

biomass. This makes HPLC pigment analysis unique compared with other in situ

techniques (e.g., microscopy, flow cytometry), which require conversion factors to

estimate pigment biomass from cell density.

Pigment Taxonomic significance

Fucoxanthin Diatoms, Prymnesiophytes, Chrysophytes, Dinoflagellates

Peridinin Dinoflagellates

19’-Hexanoyloxyfucoxanthin Prymnesiophytes, Chrysophytes, Dinoflagellates

19’-Butanoyloxyfucoxanthin Pelagophytes, Prymnesiophytes

Alloxanthin Cryptophytes

Chlorophyll-b Chlorophytes, Prasinophytes

Divinyl-chlorophyll-b Prochlorophytes

Zeaxanthin Cyanobacteria, Chlorophytes, Prasinophytes, Chrysophytes,

Euglenophytes

Table 2.2 Major marker pigments used for classification of phytoplankton
groups. The most commonly used pigment algal-class associations are in bold.

Various methods have been proposed to minimise these uncertainties and derive

quantitative information on phytoplankton types from pigment data. Typically,

selected marker pigments (Gieskes and Kraay, 1983; Letelier et al., 1993; Mackey et

al,. 1996), or pigment groupings (also called pigment indices; Claustre, 1994; Vidussi

et al., 2001), are used in conjunction with chlorophyll-a concentration to estimate the

relative contribution of major phytoplankton groups (e.g., diatoms, prymnesiophytes,
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cyanobacteria) or size classes (micro-, nano-, and picophytoplankton) (see Table

2.2). Although not definitive, such pigment approaches are recognized as valuable

tools, and are commonly used for large-scale investigations of the distribution of

dominant groups in the ocean (e.g., Barlow et al., 2004; Aiken et al., 2009; Ras et al.,

2008).

HPLC measurements are now recognized as the standard for calibrating and

validating satellite-derived chlorophyll-a concentration. Pigment analysis also has a

useful role to play in validating satellite algorithms for mapping functional types

of phytoplankton. Algorithms for distinguishing phytoplankton types from ocean-

colour measurements are very different in their approaches. They focus either on

taxonomy or size-based classification, and may yield either qualitative or quantitative

information. These conceptual divergences make validation and comparison of

algorithms difficult. In this regard, HPLC-derived pigment measurements are an

effective validation method, since interpretation of pigment data has the potential

to provide a range of information applicable to different algorithms. As described in

subsequent chapters of this report, new applications of satellite-based observations

(Uitz et al., 2006) are building on information contained in extensive HPLC-derived

pigment databases, combined with empirical knowledge of relationships between

pigment type and cell size (Vidussi et al., 2001), in an effort to expand accessible

spatial and temporal scales. Use of HPLC measurements for comparison with

satellite-derived products brings its own challenges, however. Such comparisons

require the availability of extensive sets of in situ data, collected from a wide

variety of oceanic regions and representative of long timescales. On the other hand,

protocols for HPLC analyses may be optimized for different applications, with the

consequence that data from different HPLC centers may not be fully comparable

with each other (Hooker et al., 2005). The HPLC system is a specialised piece of

equipment that requires highly-trained personnel to operate it, and the number of

professional centres equipped to carry out HPLC analyses remains small. HPLC-

based analysis is also limited to discrete samples that must be carefully stored and

sample analysis is quite expensive (∼US$50 to $150 per sample).

Many of these current drawbacks are minor and will certainly be addressed over

the next few years. With the rapid advent of ocean-colour based algorithms for

estimating biogeochemically-relevant products such as phytoplankton functional

types (see Nair et al., 2008; McClain, 2009), a general interest is growing towards the

merging of suitable databases, dedicated to calibration and validation activities. A

major on-going effort has been invested into establishing and improving measure-

ment protocols for HPLC pigment analysis (Bidigare et al., 2002), and conducting

round-robin experiments involving several HPLC centres (Hooker et al., 2005). These

exercises make it possible to quantify and understand propagation of methodologi-

cal uncertainties originating from different sources within a data set (Claustre et

al., 2004). They also enable important recommendations to be made as to how

this information can be exploited for the study of phytoplankton types. Notably,
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pigment indices (i.e., pigment sums or ratios), such as those proposed to derive

phytoplankton size classes, have proven to be useful in minimizing uncertainties in

large HPLC pigment databases derived from a diverse set of contributors (Claustre

et al., 2004; Hooker et al., 2005).

2.5 Molecular Methods

Although the ecology and diversity of large phytoplankton, such as diatoms and

dinoflagellates, have been relatively well studied with conventional light microscopy,

much less is known regarding smaller phytoplankton, in particular those less than a

few micrometers in diameter. Instead of identifying phytoplankton species from

morphological characteristics of cells (phenotype), molecular methods exploit their

genetic differences (genotype). The development of molecular tools to study the

picophytoplankton, which includes all autotrophic cells less than 2-3 µm in diameter

(Vaulot et al., 2008), has greatly enhanced our ability to identify rapidly not only

the taxonomic affiliation of these tiny cells, but also their functional roles in marine

ecosystems. Consistent with global pigment data, molecular datasets also show a

dominance of haptophyte microalgae in the global ocean (Liu et al., 2009b). There is

still a need, however, for a comparative study of size-fractionated HPLC pigment

and molecular markers as tools to assess picophytoplankton community structure

and abundance. Whereas molecular methods have been especially important in

advancing knowledge about these small cells, the approaches also provide novel

insight and expanded analysis capability for a wide range of phytoplankton groups

(Medlin et al., 2010; Caron, 2013), especially harmful algae (Rhodes et al., 1998;

Scholin et al., 2000; Bowers et al., 2006). Due to the cost and time required to

design molecular probes, most have been designed to target a limited number

of species, especially those which lack clear and reliable morphological features.

Although molecular techniques are an extremely powerful and sensitive way of

monitoring phytoplankton diversity in the marine environment, they all require

access to molecular equipment and expertise.

DNA microarray technology allows the rapid processing of a large number of

environmental samples with a range of molecular probes and hence is well suited

for monitoring marine phytoplankton species (Schena et al., 1995). A microarray

consists of DNA sequences that are attached to the surface of a silicon chip in an

ordered array. The target nucleic acid is labeled with a fluorescent probe and the

hybridization pattern is detected by the microarray scanner. Specific probes can be

used for the detection of phytoplankton classes (Metfies and Medlin, 2004; Medlin

et al., 2006) and harmful algal species (Ki and Han, 2006). Probe design requires the

analysis of publicly-accessible databases (e.g., GENBANK) and specialized computer

software. Although the number of sequences being deposited into these databases is

steadily increasing, hybridization of probes with a non-target group may occur and
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the specificity of probes should be routinely checked against sequence databases.

Although the design and testing of microarrays requires a considerable investment

(time and cost), it can be a powerful tool to monitor routinely the ecological dynamics

of natural phytoplankton populations.

Fluorescent in situ hybridization (FISH) is a common culture-independent molec-

ular technique for identification of a particular taxon or functional group in the

marine environment. An oligonucleotide probe is designed to recognize and hy-

bridize to complementary sequences that are unique to a specific phytoplankton

group. In FISH, a fluorescent dye is covalently attached to the probe, and the cell

fluorescence detected with epifluorescence microscopy. The advantage of FISH is

that it provides directly the abundances of targeted groups (Simon et al., 1995),

whereas most other molecular techniques are qualitative. The method also allows

for the simultaneous labelling of multiple target groups. FISH has been used in the

detection of algal classes (Simon et al., 1997; Eller et al., 2007) as well as harmful

algae (Anderson, 1995; Anderson et al., 2005). The technique requires a trained

individual to count cells with an epifluorescence microscope, though automated

counting systems are available to increase sample throughput (Töbe et al., 2006). As

is the case with the microarray method, once a probe is developed, its specificity to

the target organism must be rigorously tested. A potential difficulty in using the

method to assess the relative biomass of a particular functional group is that the

preparation of the sample can result in cell loss.

Quantitative real-time polymerase chain reaction (qPCR) is another culture-

independent approach used to detect and quantify the abundance of different

phytoplankton species. This approach has been used to target toxic dinoflagellates

in environmental samples (Bowers et al., 2000; Popels et al., 2003; Galluzzi et

al., 2004; Touzet et al., 2009), as well as for spatial and temporal mapping of

cyanobacterial (Johnson et al., 2006) and eukaryotic (Countway and Caron, 2006;

Marie et al., 2006) assemblages. Since qPCR amplifies the genetic material in an

environmental sample with a pair of oligonucleotide primers complementary to

specific regions of DNA, it is highly sensitive. Both the expense of primer and probe

design and the effort in testing them against sequences in large databases and local

strains, mean that primers and probes have been designed for only a limited number

of target organisms. Unlike FISH, only one species can be analyzed at a time using

this method.

In addition to taxonomic affiliation, molecular probes can also be used to de-

termine the biogeochemical function of particular cells. Since different ecotypes of

Prochlorococcus are known to require different forms of nitrogen, genetic variability

is readily linked to biogeochemical function (Moore et al., 2002; Rocap et al., 2003).

One functional group that has been specifically targeted with molecular probes is the

nitrogen fixers. Here, the gene responsible for nitrogen fixation (nifH) is targeted for

the detection of nitrogen fixers in natural samples. With these molecular approaches

microbiologists have found that the diversity of organisms carrying out nitrogen
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fixation is far more extensive than previously thought, and that unicellular cyanobac-

teria may play an important role in the open ocean (Zehr et al., 2001; Mazard et al.,

2004). But probes are not yet available for all functional groups.

Advances in environmental genomics and high-throughput sequencing tech-

niques also promise to provide characterization of phytoplankton community struc-

ture and functional types that may have utility for evaluation of satellite-based

approaches. These approaches can provide not only characterization of what taxa

are present in environmental samples, but also what functional capabilities are

associated with them (e.g., Coelho et al., 2013). Results from these approaches

present many challenges with respect to producing metrics such as biomass proxies,

but they provide unparalleled prospects to assess the biology, ecology, and physiol-

ogy of whole communities. Very little work has been done to date, linking genetic

information directly with satellite methods for detecting phytoplankton types.

2.6 Spectral Inherent Optical Properties of Phytoplankton

There is a long history of developing approaches to derive information about

phytoplankton and other seawater constituents from measurements of spectrally-

resolved inherent optical properties such as absorption and scattering (Sosik, 2008).

Use of fluorescence characteristics is also discussed in the next section.

Since phytoplankton are photosynthetic organisms evolved to produce pigments

that efficiently collect energy from sunlight for their survival, it may be expected

that their influence on light absorption in the sea can be exploited to detect and

characterize them. It is less obvious, but has nonetheless been known for a long

time, that the absorption coefficient of phytoplankton varies not only with their

pigmentation, but also with the size of their cells (Duysens, 1956; Kirk, 1975a,b;

Morel and Bricaud, 1981). This size impact is such that the absorption spectra

of large cells, when normalized to unit pigment concentration, appear low and

spectrally flat, compared with the corresponding spectra of small cells, an effect

often referred to as the flattening or pigment packaging effect (Figure 2.3a). Many

algorithms have been proposed that exploit these differences in absorption spectra

to infer information on phytoplankton size (Ciotti et al., 2002; Ciotti and Bricaud,

2006; Uitz et al., 2008; Brewin et al., 2010a; Devred et al., 2011; Organelli et al., 2013;

Roy et al., 2013).

The spectral absorption characteristics of phytoplankton are further modulated

by variations in their pigment composition (Sathyendranath et al., 1987; Hoepffner

and Sathyendranath, 1991), with different accessory pigments exhibiting distinct

absorption characteristics (Figure 2.3b) (Bidigare et al., 1990). Since the accessory

pigment complement is characteristic of the type of phytoplankton present, there

has been considerable interest in the use of absorption spectra to infer information

about the underlying pigments. Such methods can be confounded, however, by
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Figure 2.3 (a) Spectral absorption has a characteristic shape that is highly
peaked for picophytoplankton and more flattened for microphytoplankton. An
example phytoplankton community absorption spectrum from summertime
surface waters at the Martha’s Vineyard Coastal Observatory (“Measured”) can
be effectively represented by a linear mixture of 49% picophytoplankton and 51%
microphytoplankton (“Modelled”), providing a means to characterize the size
structure of the community on the basis of the influence on optical properties
(Ciotti et al., 2002). (b) Example pigment specific absorption spectra for major
categories of phytoplankton pigments, including chlorophylls-a, -b, and -c, plus
two categories of carotenoids: photosynthetic (PSC) and photoprotective (PPC).
These spectral differences can be exploited to infer pigment composition from
the phytoplankton absorption spectrum. Spectra reproduced from Bidigare et
al. (1990).

the flattening effect of cell size, such that absorption characteristics of the same

accessory pigment may be different in small compared with larger cells. Further-

more, the absorption characteristics of pigment-protein complexes in the cell may

differ from those of extracted pigments in isolation (Johnsen and Sakshaug, 2007).

In spite of these difficulties, several methods have been developed, with some

degree of success, to infer pigment complement from in vivo absorption spectra.

Decomposition of spectra into Gaussian bands (Hoepffner and Sathyendranath,

1993; Lohrenz et al., 2003), spectral reconstruction (Bidigare et al., 1990; Babin et

al., 1996; Allali et al., 1997), derivative analysis (Faust and Norris, 1985; Bidigare

et al., 1989), multiple linear regression (Sathyendranath et al., 2005) and neural

networks (Chazottes et al., 2006; Bricaud et al., 2007) have been used to estimate

several pigments quantitatively from absorption.

Similar to absorption, the spectral backscattering, total scattering, total attenua-

tion (sum of scattering and absorption), and pigment-specific backscattering are all

known to vary with the size structure of the particles in seawater. This means there

is potential to use these properties to infer particle size structure in the ocean (Boss

et al., 2001a,b; Boss et al., 2004; Loisel et al., 2006; Hirata et al., 2008b; Kostadinov

et al., 2009; 2010). But unlike absorption-based methods, scattering-based methods

deal with the size structure of all particles, and not just phytoplankton. To infer
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phytoplankton size structure from these estimates, one has to assume that either

phytoplankton dominate the particle assemblages within their size range, or there

is a prescribed relationship between phytoplankton and other particles.

As described in subsequent chapters, these distinctive optical properties also

form the basis of remote-sensing algorithms for distinguishing different phytoplank-

ton types from space.

2.7 Fluorescence Excitation and Emission Spectra of Phyto-
plankton

Absorption of photons by a substance leads to excitation of the material both

electronically and vibrationally. In some substances, the subsequent vibrational

relaxation of the electrons leads to emission of light, typically at a longer wavelength

with less energy than that of the excitation photon. This phenomenon is called fluo-

rescence. Spectrofluorometers are designed to measure fluorescence of a substance

at a fixed wavelength when the excitation wavelength is changed systematically over

a range of wavelengths (excitation spectrum), or to measure the emission over a

range of wavelengths when the excitation wavelength is held constant (emission

spectrum). These spectra are characteristic of the fluorescing substance, and hence

spectrofluorometry is used in many fields for identifying and quantifying various

substances.

In phytoplankton, chlorophyll-a and various biliproteins are known to fluoresce

in vivo. Since the pigment composition of phytoplankton varies among taxonomic

groups, their fluorescence properties also vary in ways that can be used to discrim-

inate taxa (Yentsch and Yentsch, 1979; MacIntyre et al., 2010). Major differences

in emission spectra make cryptophytes and cyanobacteria readily separable from

other types of phytoplankton, while more subtle differences in excitation spectra

can be used to separate chlorophytes and chromophytes (Figure 2.4)

Laboratory-based and in situ fluorometers of varying degrees of sophistication

are available for monitoring phytoplankton at sea. The simplest of these, the

Turner type of fluorometer, is the most common instrument for measuring total

chlorophyll concentration at sea and in the laboratory: chlorophyll is extracted from

phytoplankton using organic solvents, and the fluorescence emission by the sample

at a fixed wavelength is measured in the instrument when excited by light at another

fixed wavelength; and the results compared against a calibration curve established

with standard chlorophyll (Holm-Hansen et al., 1965). Similarly, in vivo fluorescence

meters are typical accessories now to CTD (conductivity, temperature and depth)

instruments for continuous measurement of vertical structure in phytoplankton, and

are becoming increasingly used on profiling floats, autonomous vehicles, moorings,

and automated underway sampling systems on ships.

Inferring community structure from fluorescence requires more sophistication,
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with multiple excitation and emission wavelengths being monitored. In fact, absorp-

tion and fluorescence properties of different phytoplankton pigments in vitro are

at the heart of the HPLC technique as well. But interpretation of in vivo fluores-

cence signals from phytoplankton pigments is not straightforward: algal physiology

(distribution of fluorescing pigments in photosystems I and II of phytoplankton),

acclimation responses (plasticity in pigment ratios), function (photosynthesis), and

ambient light conditions (quenching of fluorescence at high light levels) can affect

the relationship between fluorescence strength and pigment concentration (e.g.,

IOCCG, 1999; Lutz et al., 2001; Sathyendranath et al., 2004a; Babin, 2005; Huot and

Babin, 2010). Nonetheless, some success has been demonstrated in fluorescence-

based discrimination of major groups in natural samples with instrumentation

designed for use in situ or on shipboard (e.g., Beutler et al., 2002; Richardson et al.,

2010; Chekalyuk et al., 2012). The distinct fluorescence emission characteristics

associated with phycobiliproteins mean that discrimination of cryptophytes and

cyanobacteria has been most effective, while the difficulty in separating groups such

as diatoms and dinoflagellates from one another represents a major limitation of

these approaches (e.g., Figure 2.4). Some resolution of this limitation may come from

Figure 2.4 General characteristics of fluorescence excitation (Ex) and emission
(Em) spectra for various groups of phytoplankton. Phytoplankton taxa with phy-
cobiliproteins (cyanobacteria, cryptomonads) have distinctive emission peaks
compared to other groups. Excitation spectra exhibit more subtle variations
according to photosynthetic accessory pigment composition. Modified from
Yentsch and Phinney (1985).
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emerging approaches combining flow-through fluorescence analysis of individual

cells with optical elements precisely designed to mimic linear discriminant functions

that optimize fine separation between cell types (Pearl et al., 2013), though these

techniques remain to be evaluated under a range of field conditions.

2.8 Phytoplankton Size Structure through Successive Filtra-
tion

A classic method for measuring the size structure of a phytoplankton community

is by filtration of a sample of seawater through a selection of filters of known

pore size. By measuring the chlorophyll-a concentration retained on each filter, the

contribution from different size classes can be estimated. Though this is relatively

straightforward in principle, the method is not without drawbacks: clogging of filters

can retain cells of smaller size than the pores of the filter; flexible or elongated cells

and cell breakage during filtration can lead to cells larger than the pore of the filter

passing through. As with all approaches that rely on time-consuming manipulation

of discrete samples, this method suffers from challenges in comparing results to

the space scales relevant for satellite observations. Nonetheless, it is a valuable and

direct approach for comparison and evaluation of other methods, such as use of

marker pigments to infer information about phytoplankton size classes (e.g., Uitz et

al., 2009; Brewin et al., 2014).

2.9 Concluding Remarks

Optical sensing of one type or another underlies most of the methods described

above: microscopes rely on optical lenses and human eyes or cameras, HPLC tech-

niques rely on detectors for absorption and fluorescence signals of phytoplankton

pigments, flow cytometers incorporate photomultipliers or diodes to detect scatter-

ing and fluorescence properties of individual cells. Approaches that rely on optical

properties have the potential to be incorporated with in situ technologies that do

not require manipulation of samples in the laboratory, which ultimately can provide

improved space-time coverage in assessing phytoplankton types in the sea.

Each of these methods has its own advantages and limitations, leading to the

conclusion that use of any one method in isolation would result in characterization of

phytoplankton communities that may be neither complete nor entirely unambiguous.

Hence, approaches that combine information from various methodologies has

promise in leading to more accurate and complete assessments.

The field methods can be compared with satellite observations with varying

degrees of ease (Table 2.3). Methods that yield biomass estimates for phytoplankton

types rather than their number densities, those that sample the whole assemblage
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Table 2.3 Approaches for characterizing phytoplankton, with summaries of
advantages, limitations, and relevance to advancing remote sensing applica-
tions.

Method Advantages Limitations Relevance to Remote Sensing

Micros-
copy

- Only current method capable
of identifying nearly all phyto-
plankton
- Capital investment in equip-
ment is low (at least for light
microscopy)
- Equipment maintenance is
relatively straightforward

- Time consuming
- Identification dependent on expert knowledge
and subjective interpretation
- Experts in phytoplankton taxonomy are increas-
ingly rare
- Assumptions required to convert to biovolume
and biomass
- Enumeration of small cells (picoplankton) re-
quires the use of epifluorescence microscopy
- Identification of small cells (picoplankton) to
species level difficult
- Sensitive to methods used to collect and con-
centrate cells
- Preservation techniques do not work equally
well for all taxa

- Assumptions required to link cell
counts to estimates of pigment
biomass
- Small sample sizes lead to large
uncertainties in contribution of rare
cells, which can be large contributors
to biomass (due to large cell size)
- Cell counts have to be supplemented
with cell size information to estimate
phytoplankton size structure

Flow Cy-
tometry

- Automatic and fast
- Picoplankton are readily ob-
served
- Imaging in flow provides access
to microplankton
- Potential for optically esti-
mated cell size
- In situ tools available

- Specialized instruments required to assess
entire phytoplankton size range
- Identification is often possible only to the level
of certain phytoplankton groups
- Instrumentation is expensive and delicate;
requires expert user

- Assumptions required to link cell
counts to pigment biomass
- Cell abundance and cell size infor-
mation can be converted to group-
specific biovolume or carbon biomass

HPLC - Automatic and precise
- Basis of chemotaxonomy

- Few unambiguous marker pigments
- Sensitive to assumptions about pigment ratios
- Uncertainty caused by intra-group variability in
pigment ratios (e.g., with growth conditions)
- Expensive
- Few experts and facilities, globally
- Comparison between laboratories confounded
by differences in methodology (e.g., solvents,
column materials)
- No in situ tools

- Group-specific pigment biomass
directly computed
- Used extensively for development
and validation of algorithms

Molecular
Methods

- Taxa can be targeted with high
degree of specificity
- Particular functions can be
targeted directly
- In situ tools emerging

- Only a few probes now available
- Method development and testing time consum-
ing
- Relatively expensive and requires specialized
equipment
- Assumptions required to convert to biomass or
size structure

- Largely untested

Inherent
Optical
Properties

- Most methods are relatively
simple and inexpensive
- Many available tools, in situ and
laboratory

- Assumptions required to convert between
optical properties and biomass
- Uncertainty in some methods caused by intra-
and inter-group variability in optical properties
(e.g., due to growth condition, taxonomy, etc.)

- Measurements directly linked to
theoretical basis for remote sensing
of phytoplankton

Fluorescence
Excita-
tion and
Emission
Spectra

- Simple and inexpensive method
for extracted chlorophyll con-
centration
- In vivo excitation and emission
spectra useful for some group-
specific assessment
- Rapid and easy
- In situ tools available

- Interpretation of in vivo fluorescence signal
is complex and dependent on taxonomy and
physiology
- Assumptions required to convert in vivo signals
to biomass
- Uncertainty caused by intra-group variability in
pigments and associated fluorescence

- Basis of most total phytoplankton
biomass assessments
- Used in active-passive remote sens-
ing to detect phytoplankton types
from laser-based remote sensing
from aircraft
- Solar-induced chlorophyll fluores-
cence is amenable to remote sensing

Successive
Filtration

- Relatively simple - Cell breakage and filter clogging can lead to
inaccuracies
- Practical constraints impose limits on the num-
ber of size classes that can be measured
- Time consuming
- No taxonomic information

- Most direct assessment of size-based
biomass

rather than selected components, and those that make use of optical properties of

phytoplankton may be the best candidates for comparison with satellite estimates.

For remote sensing, in situ observation must be “the truth” against which any

algorithm is validated. Yet, as this review of available field and laboratory methods
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emphasizes, none may be considered perfect for detection and quantification of

phytoplankton types (Table 2.3). This presents a major challenge for developing

and evaluating remote sensing approaches. In addition to the limitations associated

with each of the methods, there is also the overarching challenge imposed by the

differences in temporal and spatial scales between current capabilities for sea-truth

and satellite-based measurements. Future prospects for expanded in situ sensors and

deployment modes - emphasizing high resolution time series sites and numerous

mobile platforms - will be welcome advances for addressing these problems.



Chapter 3

Detection of Dominant Algal Blooms by Remote
Sensing

Chuanmin Hu, Shubha Sathyendranath, Jamie D. Shutler, Christopher W.
Brown, Tim S. Moore, Susanne E. Craig, Inia Soto and Ajit Subramaniam

3.1 Introduction

The launch of the proof-of-concept Coastal Zone Color Scanner (CZCS) onboard

the Nimbus-7 satellite in 1978 provided unprecedented data to study the biology

of the oceans (Hovis et al., 1980). For the first time, chlorophyll-a concentrations

in the surface ocean could be estimated at synoptic scales (Gordon et al., 1980;

Smith and Baker, 1982), leading to improved understanding of the ocean’s primary

productivity and biogeochemistry (Mitchell, 1994). After about a 10-year gap, the

Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission continued ocean-colour

observations from 1997, followed by other sister missions such as the Moderate

Resolution Imaging Spectroradiometer (on MODIS-Terra 2000, and -Aqua, 2002) and

the Medium Resolution Imaging Spectrometer (MERIS, 2002 — 2012).

While the main goals of these missions were to determine the chlorophyll-a

content and primary productivity the global oceans, recent efforts showed that it was

also possible to map distributions of major phytoplankton functional types (PFTs)

in the global open ocean (for example, Subramaniam et al., 2002; Sathyendranath et

al., 2004b; Alvain et al., 2005; Ciotti and Bricaud, 2006; Cannizzaro et al., 2008; Nair

et al., 2008; Raitsos et al., 2008; Brewin et al., 2010c; Mouw and Yoder, 2010; Moisan

et al., 2012; 2013). Although most of these results are preliminary, they show great

potential for studying biodiversity and bloom dynamics in the ocean.

The principle of detecting PFTs from space relies on their spectral differences in

their contributions to remote sensing reflectance (Rrs, sr−1), which in turn is deter-

mined by the spectral absorption (a, m−1) and backscattering (bb, m−1) coefficients

of the ocean (pure water and various particulate and dissolved matters):

Rrs = Gbb/(a+ bb) = G(bbw + bbp)/(a+ bbw + bbp)

= G(bbw + bbp)/(aw + aB + ad + ag + bbw + bbp),
(3.1)

where a is the sum of the individual absorption coefficients of water (aw ), phy-

39
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toplankton pigments (aB), coloured dissolved organic matter (ag), and detrital

particles (ad). Here, G is a parameter related to the solar zenith angle and sensor

viewing geometry. For simplicity the dependence on wavelength (λ) is omitted in

the equation.

The algorithms to differentiate the PFTs make use of their different absorption

and backscattering properties either implicitly (e.g., through empirical regression)

or explicitly (e.g., through deriving the pigment-specific absorption). Whereas all

these approaches can be found in the published literature, this chapter presents a

brief summary and several examples on how to utilize the optical properties (Rrs ,
a, bb) derived from remote sensing measurements to differentiate phytoplankton

blooms. Some indirect methods that infer the distributions of PFTs from other

satellite products, such as chlorophyll-a concentration, are also described. The

objective is to demonstrate the current approaches of bloom differentiation and

discuss their advantages and disadvantages, in the hope that improved methods

may be developed from future satellite sensors equipped with more spectral bands

at higher ground resolution.

3.2 Detection of Diatom Blooms

3.2.1 Background

Diatoms, typically large-celled organisms, incorporate silica that is used to form

the characteristic frustules (a type of exoskeleton), which envelopes the diatom

cells. Their large size as well as the presence of silica endows diatoms with a high

sinking rate, facilitating the biological transport of organic material and silica to

deep waters, or to the sediments. Since there is often a size-dependent relationship

between prey and predators, the zooplankton that feed on diatoms tend to be

different from those that rely on smaller phytoplankton cells, and these differences

in the trophic structure can be transmitted all the way up the food chain. High

turbulence and associated vertical mixing can counteract the sinking to some extent,

and it is generally understood that diatom blooms are often associated with areas

of high turbulence, which in turn are often associated with high vertical fluxes of

nutrients. These properties set diatoms apart from other phytoplankton, and there

is considerable interest in their distinct functional roles, from a biogeochemical

perspective.

3.2.2 Distribution

Diatoms tend to dominate Spring blooms in temperate and high latitude areas, and

can also be an important constituent of Autumn phytoplankton blooms. They are

associated with upwelling areas, and in general with high-nutrient, high-turbulence,
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low-light waters. Along a trophic gradient, they tend to dominate in high-chlorophyll

waters (see also Chapter 1 of this report).

3.2.3 Optical traits

The absorption spectra of diatoms tend to be flat because of pigment packaging that

typically occurs in large phytoplankton cells. As a result, the ratio of the absorption

peak in the blue to that in the red is low for diatoms, compared with that of

smaller cells. Their specific absorption coefficient (absorption coefficient at a given

wavelength, normalized to the chlorophyll concentration in the sample) also tends to

be different, being smaller than corresponding values for smaller cells. The optical

traits of diatoms are further modulated by their pigment composition. Dierssen and

Smith (2000) have reported that the diatoms tend to show less backscattering than

other phytoplankton populations at similar concentrations.

3.2.4 Remote-sensing algorithms for identification and mapping of
diatoms

The algorithms that have been proposed so far fall into three categories:

v Abundance-based methods

v Optical-trait-based methods

v Ecological approaches

Most of these models are described in other chapters of this report in different

contexts, but they are mentioned here briefly for completeness. Algorithms types

that are not detailed in the other chapters are described here at greater length.

3.2.4.1 Abundance-based methods

The simplest approach to map diatom distribution from space exploits the common

occurrence and frequent dominance of diatoms in high-chlorophyll waters. In their

implementation of this approach, Hirata et al. (2011), used in situ data on HPLC

pigment composition of phytoplankton to estimate the fractional contribution of

diatoms to total chlorophyll-a in any given sample. Such information collected from

a large number of samples from diverse regions was used to plot the fraction of

chlorophyll associated with diatoms as a function of total chlorophyll-a concentra-

tion in the sample. An empirical function was then fitted to the data to compute

the diatom fraction as a function of chlorophyll-a concentration. According to their

Table 2, fractional chlorophyll-a concentration [0.0 – 1.0] associated with diatoms

(Fd) is computed from total chlorophyll-a (CT ) as:

Fd = [1.33+ exp(−3.98CT + 0.20)]−1, (3.2)

(where the model parameters are reported to two decimal points). Once this re-

lationship is established, diatom concentration (in units of chlorophyll-a) can be
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derived from satellite-based maps of chlorophyll-a. This method is also discussed in

Chapter 5 that deals with algorithms that are designed to identify many functional

types simultaneously.

Chapter 4 deals with algorithms designed to map size classes of phytoplankton.

Of the typical size classes that are studied, microplankton (with diameters greater

than 20 µm) have a close association with diatom algorithms, since microplankton

are often made up of dinoflagellates and diatoms. In the absence of dinoflagellates,

the microplankton component may be equated with diatoms. Many algorithms

that deal with size classes are abundance based (see Chapter 4 for further details

regarding such algorithms).

3.2.4.2 Optical-trait-based methods

Diatoms, being typically large-celled, have absorption spectra that are flattened

relative to those of smaller cells. The distinctive characteristics of diatom absorption

spectra have been exploited to discriminate them from other phytoplankton. In the

method of Sathyendranath et al. (2004b) and Jackson et al. (2011), two versions

of a spectrally-resolved reflectance model are implemented, one using absorption

characteristics of diatoms and the other using that of non-diatoms. The underlying

absorption models for diatoms and non-diatoms are based on simultaneous in situ

measurements of absorption spectra and chlorophyll concentrations made in waters

dominated by diatoms and non-diatoms. Relationships are then established between

chlorophyll concentration and reflectance ratios at selected pairs of wavebands, for

diatom and non-diatom models. These results are then applied to atmospherically-

corrected remote-sensing reflectance values, which are used to compute chlorophyll

concentration from two pairs of reflectance ratios (for diatom and non-diatom

models). The difference between pairs of computations is then examined. If the

percentage difference in the two chlorophyll values computed using the diatom

model is less than the corresponding value for the non-diatom model, then the pixel

is assigned to diatoms. Otherwise, the pixel in question is assumed to be dominated

by non-diatoms. The method is represented schematically in Figure 3.1.

This method is designed to identify whether or not diatoms dominate phy-

toplankton populations in a particular location. Once this decision is made, the

appropriate chlorophyll value can be assigned to the population. Also, if the results

are cumulated for a finite period, say a week or a fortnight, then one can generate

probability maps of diatom dominance for the area and for the period. This method

is not designed to yield fractional contributions from diatoms to total chlorophyll-a

in a single image. The method of Sathyendranath et al. (2004b) was developed for

the North West Atlantic, using regional observations of phytoplankton absorption.

Jackson et al. (2011) found that the optical properties of diatoms in the South East

Pacific differed from those of the North West Atlantic, and that the use of regional

observations of phytoplankton absorption in the reflectance model improved the
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Figure 3.1 Schematic flow chart showing the remote sensing approaches and
steps to classify diatom blooms.

performance of the regional model. The work of Jackson et al. (2011) points to a

general note of caution: diatoms represent a large diversity of species with a broad

range in size and a variety of cell shapes. As long as there are regional differences

in the species composition of bloom-forming diatoms, the model would ideally be

tuned for the region.

The optical traits of phytoplankton are also exploited in the differential optical

absorption spectroscopy (DOAS) developed by Perner and Platt (1979) and adapted

for phytoplankton applications by Bracher et al. (2009) and Sadeghi et al. (2012a).

The method is applied to satellite data with very high spectral resolution (hyper-
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spectral data) from the Scanning Imaging Absorption Spectrometer for Atmospheric

Chartography (SCIAMACHY) onboard the ENVISAT satellite. The method is described

in Chapter 5.

An alternative approach to exploiting the differences in the optical traits of

diatoms for their identification is to examine observed differences in their reflectance

spectra, as was done in the algorithm of Alvain et al. (2005). Using a large number

of in situ pigment observations that provided information on diatom-dominated

waters over a range of chlorophyll concentrations, they compared the corresponding

reflectance spectra with those from non-diatom dominated waters and established

statistical differences in the reflectance spectra that were then used to map diatom-

dominated waters from satellite data. A theoretical underpinning for their method

is provided in Alvain et al. (2012) and the full method (Alvain et al., 2005; 2012) is

discussed in detail in Chapter 5 of this report.

As in the case of abundance-based models, there are algorithms for identification

of size classes that are based on optical traits. Again, to the extent that microphyto-

plankton classes may be dominated by diatoms and not dinoflagellates, we can infer

some information on diatom distribution from such algorithms (see Chapter 4 for

details regarding these types of algorithms).

3.2.4.3 Ecological approaches

Another approach that has been used to map phytoplankton types from space is

based on the ecological and geographical preferences of various phytoplankton

types (e.g., Raitos et al., 2008). These authors used a number of satellite-derived

inputs to map phytoplankton types, including chlorophyll and water-leaving radi-

ance (at 555 nm) from ocean-colour data, along with the photosynthetically-active

radiation (PAR) data provided by NASA, sea-surface temperature (SST) from the

Advanced Very High Resolution Radiometer (AVHRR) and wind-stress data derived

from satellite scatterometers. The radiance value served as a proxy for the backscat-

tering coefficient, which is known to vary with phytoplankton type. The in situ

data on phytoplankton types, from the Continuous Plankton Recorder (Reid et al.,

2003a), were analyzed to determine dominant phytoplankton types in each sample

using the Z factor standardized method. The data for the North Atlantic Ocean

yielded over 3000 match-up data points between the years 1997 and 2003, and were

complemented with information on the geographic location (latitude and longitude)

of the sample. The data were processed using a probabilistic neural network to

associate patterns of in situ data (including location) with dominant phytoplankton

types. Once the neural network is established, the probabilistic distributions of

the phytoplankton types are mapped using the satellite data and the locations as

inputs. The method was used to map areas dominated by diatoms, dinoflagellates,

coccolithophores or silicoflagellates. More recently, Palacz et al. (2013) have also

used an ecological approach to map phytoplankton types. See Chapter 5 for further
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details on ecological approaches.

3.3 Detection of Coccolithophore Blooms

3.3.1 Background

Coccolithophores are marine phytoplankton that form external calcium carbonate

(CaCO3) scales or platelets (coccoliths) and are abundant at both high and low lati-

tudes where they can form large blooms (Beaufort et al., 2008). They are considered

to be major calcifiers in the open ocean and play a key role in the oceanic carbon

cycle (Iglesias-Rodriguez et al., 2002; Balch et al., 2005). As with all phytoplankton,

coccolithophores consume carbon dioxide (CO2) during photosynthesis and release

CO2 during respiration, yet they also generate CO2 when they produce coccoliths.

This pelagic calcification counter-acts the CO2 uptake related to their fixation of

carbon during primary production (Harlay et al., 2010). As a consequence, their

presence affects the air-to-sea CO2 flux and the oceanic CO2 sink in a complex

manner (Shutler et al., 2013). Sedimentation of their coccoliths also constitutes

a major regional input to carbonate sediments, which serves as the largest reser-

voir of carbon on Earth (Iglesias-Rodriguez et al., 2002). These phytoplankton are

also linked to the generation of dimethyl sulphide (DMS) gas (Keller et al., 1989;

Keller, 1989). Once ventilated to the atmosphere, DMS is oxidized to a variety of

compounds, including sulfate aerosols. These aerosols contribute to the pool of

cloud-condensation nuclei (Steinke et al., 2002; Marandino et al., 2008) and affect the

Earth’s radiation budget (and thus climate) by scattering sunlight and influencing

cloud physics and albedo. The DMS-derived sulfate aerosols can also react with rain

droplets to produce acid rain. Consequently, coccolithophores are considered to

play an important role in oceanic carbon and sulphur cycles and they are able to

influence our climate. Furthermore, these phytoplankton may be sensitive to (and

be important indicators of) climate change (Smyth et al., 2004; Winter et al., 2013)

and ocean acidification (Tyrrell, 2008).

Of the numerous coccolithophores that live in the sun–lit layers of the world’s

oceans, the cosmopolitan species Emiliania huxleyi, when present at high concen-

trations (blooms) in the surface layer, can profoundly impact the optical properties

of the upper ocean (Balch et al., 1991; Tyrrell et al., 1999; Holligan et al., 1993),

making them visible to the naked eye and from Earth observation (EO). They occur

predominantly during the spring and summer months (Tyrrell and Merico, 2004),

although the remains from previous blooms may be visible at the surface during

winter months, due to re-suspension within the water column from storm mixing

(Broerse et al., 2003). In the later stages of growth these phytoplankton shed their

coccoliths, turning the water a milky or turquoise-white colour (Holligan et al., 1983;

Merico et al., 2003; Smyth et al., 2004). These conditions are easily discernible

from satellite ocean-colour data owing to their high reflectance across the visible
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spectrum. This unique characteristic allows the study of their frequency and dis-

tribution by satellite EO (Brown and Yoder, 1994; Cokacar et al., 2001; Merico et

al., 2003; Smyth et al., 2004; Shutler et al., 2013). This characteristic also means

that their presence can distort spectral band ratio EO ocean-colour chlorophyll-a

estimations and certain atmospheric correction algorithms (Gordon et al., 1988;

Balch et al., 1989). Consequently, data locations deemed to contain coccolithophore

bloom are routinely masked from NASA ocean-colour chlorophyll-a retrievals. Due

to the large spatial extent over which these blooms occur, EO data provide a useful

tool for mapping their aerial extent. Methods to detect and map these blooms from

space have concentrated on spectral approaches of varying complexity (Groom and

Holligan, 1987; Brown and Yoder, 1994; Brown and Podesta, 1997; Brown, 2000;

Cokacar et al., 2001; Gordon et al., 2001; Shutler et al., 2010; Moore et al., 2012).

(a)"
(b)" (c)"

Figure 3.2 Example MERIS data on 20 June 2003 1124 UTC off the West English
Channel. The area of interest is from 48 to 52◦N and 10 to 2◦W. The a) MERIS
three-band pseudo true-colour image from combining three LwN bands (560,
490 and 443 nm), b) MERIS Algal 1 chlorophyll-a (units mg m−3) scene with
positions of eight study sites labelled, c) normalised water leaving radiance
spectra for each of the eight sites labelled in a) and b).

In this section we define a bloom as a phytoplankton concentration leading to a

spectral reflectance that is greater than the characteristic background reflectance

for a particular region. When studying coccolithophores using Earth observation

these concentrations are likely to be principally detached coccoliths, with some

coccospheres (coccolithophore cells). Figure 3.2a shows a MERIS pseudo-true colour

image and Figure 3.2b shows a chlorophyll-a scene of the Celtic sea in 2004; both

images are labeled with eight locations. The normalized water leaving radiance

spectra for each of these eight different locations are plotted in Figure 3.2c (these

spectra have been constructed using eight of the MERIS bands). The spectral

response for point 4 indicates that the spectral signal in this image element (or

pixel) is dominated by coccolithophores as it shows a high (saturated) and spectrally

flat response across all visible wavebands. From looking at Figure 3.2a it is apparent

that position 4 is located within the white area of a coccolithophore bloom (i.e. white

indicates a spectrally flat and high response across all wavelengths). In contrast,

points 1–3 and 5–8 exhibit a range of different spectral responses (Figure 3.2c) with



Detection of Dominant Algal Blooms by Remote Sensing • 47

much lower signals, and likely represent a combination of other phytoplankton

species, coloured dissolved material, or suspended particulates.

3.3.2 Detection using Earth observation

The earliest approach developed to detect these phytoplankton from EO uses data

from the AVHRR sensors orbiting the Earth from 1982 to present. This sensor is

carried onboard the NOAA series of satellites and the longevity of this data record

provides the means to study coccolithophores blooms over a time series extending

over 30+ years, with global coverage. However, due to lower detector gain and

sensitivity in the AVHRR channel of interest (channel 1, 580 – 680 nm), this method

is only able to detect very intense coccolithophore blooms. This approach, originally

developed by Groom and Holligan (1987), and more recently refined by Smyth et

al. (2004), has been used successfully to detect the presence of coccolithophores in

the north Atlantic (Trees et al., 1992; Holligan et al., 1993), the Barents Sea (Smyth

et al., 2004) and various other subpolar waters (Uz et al., 2013). However, due to

the reduced sensitivity, it is difficult to determine the full extent of surface blooms

using this approach, and regions of less intense blooms (i.e., the full extent of any

perimeters) are not detected.

A more complete description of the spatial extent of E. huxleyi blooms is possible

by using data from dedicated ocean-colour radiometric sensors, such as SeaWiFS,

MODIS and MERIS. The simplest approach to detect these phytoplankton groups

using visible spectrum sensors is to examine the normalized water leaving radiance

data, LwN(λ) (or equivalent Rrs(λ)), from a single spectral band. Due to the ability of

coccolithophores to scatter light at all wavelengths, any band in the visible spectrum

can potentially be used, but typically a band in the green part of the spectrum, e.g.,

LwN (555), is employed. This simplistic approach enables the identification of these

phytoplankton under the assumption that no other highly scattering particulates

are present in the water. For example, this approach has been used as a proxy to

study coccolithophore blooms in the waters south of Iceland (Raitsos et al., 2006).

Similarly, by producing a composite image using three spectral bands of normalized

water leaving radiance data, regions of suspected coccolithophores can be identified

by their characteristic relatively flat spectral response, i.e., coccolithophore blooms

appear white. For MODIS, such a composite would use 547, 443 and 412 nm data as

the three layers of a pseudo-true-colour image. A more advanced species-specific

approach was developed for CZCS data (Brown and Yoder, 1994) and later updated

for SeaWiFS (Brown, 2000; Cokacar et al., 2001). This empirical approach is based

on thresholding the spectral response across a combination of three spectral bands,

and provides a species-specific description of bloom extent. The algorithm was

developed using an in situ dataset collected in the North Atlantic. Due to the spectral

similarity between bands, this approach has also been successfully applied to MODIS.

Consequently, it is used within the standard NASA data processing chain (and the
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NASA SeaDAS tool) for both SeaWiFS and MODIS data.

The presence of spectrally-mimicking conditions, such as re-suspended sedi-

ments, may cause problems with this approach and can produce false indications

of blooms (Brown and Yoder, 1994; Broerse et al., 2003). This causes significant

problems when the algorithm is applied to blooms in certain shelf seas and coastal

zones, particularly in lower latitudes, which are often characterised by high con-

centrations of reflective suspended particulates. This characteristic is especially

prevalent during winter months, creating problems when studying annual trends or

long time series. Work by Shutler et al. (2010) attempts to overcome this shortfall

through exploiting temporal correlation to reduce the effects of the background

signals. Through analyzing a time series of data, a statistical description of the

region is generated. This allows anomalous regions (i.e., suspected coccolithophore

blooms) to be separated from the background variations (i.e., suspended particulates

from river outflows and mixing). By applying the spectral approach of Brown and

Yoder (1994) to only those regions that are anomalous, the number of false positives

can be reduced. Whilst considerably reducing the number of false positives, this

technique does involve a computation overhead. The approaches of Brown and Yo-

der (1994) and Shutler et al. (2010) yield similar results in open-ocean waters, under

the assumption that all suspended particles are due to coccolithophores. However,

the generation and analysis of long time series of coccolithophore blooms in coastal

regions will require the approach of Shutler et al. (2010). In theory, the approaches

of Brown and Yoder (1994) and Shutler et al. (2010) are also applicable to MERIS

data, yet to date this approach for MERIS data has not been investigated. No explicit

algorithm for detecting coccolithophores has been included in the standard ESA

MERIS data processing chain. However, regions exhibiting high levels of scattering

in the visible spectrum are labelled by the MERIS atmospheric correction algorithm

(Aiken and Moore, 2000). In the open ocean, these regions are likely to be blooms of

coccolithophores.

The only approach to date that has been applied to SeaWiFS, MODIS and MERIS

data is that of Moore et al. (2012). This approach combines an optical water type

(OWT) approach with that of the spectral classifier of Brown and Yoder (1994).

In the OWT scheme, mean reflectance vectors for coccolithophore blooms were

developed from Brown and Yoder (1994) classified pixels (i.e., NASA level 2 flagged

pixels) in SeaWiFS data. These vectors were then added to the NOMAD-based OWT

vectors (Moore et al., 2009) and filled a ‘missing class’ specific to coccolithophore

blooms, and thus provided a new coccolithophore bloom water type. Applying

these techniques to SeaWiFS, MODIS and MERIS data provides the means to study

coccolithophores blooms over a >13 year (1997 onwards) global time series. The

work of Shutler et al. (2010; 2013) and Moore et al. (2012) include results from

applying a selection of these algorithms over multiple year time series of the North

Atlantic and global oceans respectively.

Determining the concentration of detached coccoliths and calcite is also possible
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from EO data using two methods, both of which are based upon the backscatter

coefficient at 547 nm, i.e., bb(547). The 2-band method uses a look-up-table (LUT)

to estimate bb(547) based on the remote sensing reflectances in the blue and green

bands (Gordon and Balch, 1999; Balch et al., 2005). The 3-band method employs

a model that uses reflectances at LwN(667), LwN(748) and LwN(869) to estimate

bb(547) (Gordon et al., 2001). Both methods return similar results for moderate

to high concentrations, whereas the 2-band method performs better at low calcite

concentrations. The standard NASA processing (and the SeaDAS tools) for SeaWiFS

and MODIS data combines the two approaches (Gordon and Balch, 1999 and Gordon

et al., 2001) into a single blended algorithm. If the 2-band methods fails, the 3-

band method is used to retrieve the estimate. The existence of other suspended

particulates reduces its performance, so care must be taken when applying this

algorithm in coastal waters.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) (c) 

(d) (f) (e) 

Figure 3.3 Example scene of a coccolithophore bloom on 15 June 2004 with
land shown in grey (SeaWiFS at 1348 UTC and MODIS-Aqua at 1335 UTC). a)
SeaWiFS LwN three-band pseudo true-colour composite (555, 490 and 443 nm),
b) SeaWiFS LwN(555) response (units mW cm−2 sr−1 µm−1), c) applying the
approach of Brown and Yoder (1994) to SeaWiFS data, d) applying the approach
of Shutler et al., (2010) to SeaWiFS data, e) applying the OWT approach of Moore
et al. (2012) to SeaWiFS data and f) the combined two and three band calcite
concentration result using Gordon et al. (2001) and Gordon and Balch (1999) as
applied to MODIS-Aqua data (units moles m−3).

Figure 3.3 shows examples of using the seven different approaches to study

a coccolithophore bloom in the Celtic sea on 15 June 2004. Figure 3.3a shows a

SeaWiFS LwN three-band pseudo-true colour image, which clearly shows a large
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region of white illustrating a spectrally flat signal across all visible wavelengths.

Figure 3.3b shows the LwN at the 555 nm spectral band; Figure 3.3c shows the

output of the Brown and Yoder (1994) algorithm for the SeaWiFS scene, Figure 3.3d

shows the result of Shutler et al. (2010) for the same SeaWiFS scene, and Figure

3.3e shows detection using the OWT approach of Moore et al. (2012) on SeaWiFS

data. Figures 3.3b and 3.3c are comparable as this scene was captured during the

northern hemisphere summer when these waters are stratified. Figure 3.3f shows

the estimated calcite concentration using the combined approach of Gordon and

Balch (1999) and Gordon et al. (2001) applied to MODIS-Aqua data. The region of

missing (black) pixels within the bloom in Figure 3.3f is due to the MODIS-Aqua 547

nm band saturating due to the intense scattering of light.

Figure 3.4 Composite of classified coccolithophore blooms in SeaWiFS imagery
dating from October 1997 to September 2009 using the approach of Brown
and Yoder (1994) with the updated spectral criteria in Brown (2000). The
coccolithophore bloom class is white, the non coccolithophore bloom class
is blue, and land is green. Grey indicates areas where waters are less than
200 meters deep, where the algorithm is prone to errors, and lacking image
coverage.

Figure 3.4 shows all the regions identified as coccolithophore blooms in the

global oceans between 1997 – 2009, as detected by the approach of Brown and

Yoder (1994) using the updated spectral criteria (Brown, 2000). Regions of water

depth of less than 200 m have been masked in grey. As MODIS instruments and

the most recent VIIRS instrument continue the ocean-colour observations from the

SeaWiFS era, time-series of similar maps will provide unprecedented information on

the formation, evolution, and dynamics of coccolithophore blooms on both global

and regional scales.
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3.4 Detection of Karenia brevis and K. mikimotoi Blooms

3.4.1 Background

The dinoflagellate Karenia brevis forms massive harmful algal blooms (HABs) nearly

annually in the Gulf of Mexico (Tester and Steidinger, 1997; Magaña et al., 2003;

Walsh et al., 2006). These blooms, which are commonly referred to as “red tides”,

produce brevetoxin, a neurotoxin responsible for neurotoxic shellfish poisoning,

massive fish kills, marine animal mortality, and when aerosolised in sea spray,

respiratory irritation in humans and other mammals (Steidinger, 2009). As a result

of these potential effects, K. brevis blooms have enormous economic implications

in the form of fisheries and tourism-related losses for all five of the adjacent Gulf

coast states (Anderson et al., 2000).

The dinoflagellate Karenia mikimotoi is a high biomass HAB species that has

been identified in harmful concentrations in European waters and the coastal waters

of New Zealand (Faust and Gulledge 2002; Haywood et al. 2004; Rhodes et al. 2004;

Davidson et al. 2009). This dinoflagellate can be commonly present within the

marine flora at relatively low densities, but when the conditions allow, it can bloom

sporadically in high densities. These blooms can result in mortality of farmed

fish and other marine animals through the production of haemolytic cytotoxins

(Satake et al., 2005) and the hypoxic conditions often created by high cell densities

(Tangen, 1977). Traditionally, coastal management agencies and researchers have

relied on analyses of discrete water samples to detect and assess K. brevis and

K. mikimotoi blooms. The samples are usually acquired from nearshore waters,

and the analyses include microscopic cell counts, toxin analyses and determination

of chlorophyll-a concentration. However, these approaches are time consuming,

labour intensive, and spatially and temporally limited. As a result, data collected

in this way are often susceptible to considerable spatial bias and are ultimately

inadequate in terms of providing timely warnings of bloom events for coastal

management agencies (Cannizzaro et al., 2008). The challenge, therefore, has

been to develop monitoring systems with sufficiently high temporal and spatial

resolution that permit the accurate and timely identification of K. brevis blooms

and provide the means to monitor bloom development and transport. As K. brevis

and K. mikimotoi blooms strongly modulate the colour of surface waters (Carder

and Steward, 1985), measurement of ocean optical properties, either in situ or from

space-based platforms, may provide a robust means to reveal synoptic patterns in

bloom formation and transport at various temporal and spatial scales (Steidinger

and Haddad, 1981; Cullen et al., 1997; Tester and Stumpf, 1998; Schofield et al.,

1999; Kirkpatrick et al., 2000; Stumpf, 2001; Miller et al., 2006; Stumpf et al., 2009;

Davidson et al., 2009; Shutler et al., 2012; Kurekin et al., 2014).
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3.4.2 K. brevis bloom detection

Measurement of the spectral absorption properties of phytoplankton may allow

HAB detection since phytoplankton species often possess taxon-specific pigments

(Hoepffner and Sathyendranath, 1993; Johnsen et al., 1994). However, due to similar-

ities in the absorption spectra of phytoplankton pigments and pigment packaging

effects, absorption based discrimination amongst species can be challenging (Garver

et al., 1994). This is particularly true of K. brevis, which lacks the light harvesting

pigment, peridinin, normally associated with dinoflagellates. Instead, it contains

fucoxanthin, a pigment common to many algal groups such as diatoms, prymne-

siophytes and chlorophytes (Jeffrey and Vesk, 1997). The only pigment unique

to K. brevis is gyroxanthin diester that absorbs light in the same spectral region

as many carotenoids (Millie et al., 1995; Millie et al., 1997), but may impart suffi-

cient uniqueness to K. brevis absorption spectra to allow discrimination from other

species (Millie et al., 1997; Kirkpatrick et al., 2000; Craig et al., 2006). This property

has been exploited to develop an approach whereby the fourth derivatives of a

mixed phytoplankton assemblage absorption spectrum and a reference K. brevis

absorption spectrum are calculated to enhance minor spectral inflections, then their

similarity to each other is quantified by means of a similarity index (Millie et al., 1997;

Kirkpatrick et al., 2000; Craig et al., 2006). The magnitude of the similarity index (SI)

is then examined for correlation with proxies of K. brevis biomass. Kirkpatrick et

al. (2000) and Robbins et al. (2006) used a liquid waveguide capillary attached to a

spectrometer deployed on various in situ platforms to measure the hyperspectral

phytoplankton absorption coefficient (aB(λ) m−1). This was then used to calculate

an SI to allow the identification and tracking of K. brevis blooms. Craig et al. (2006)

derived aB(λ) from in situ hyperspectral Rrs(λ) using an inversion algorithm (Lee

et al., 2002) and found a strong correlation between K. brevis cell counts and the

magnitude of the SI (Figure 3.5a), thereby demonstrating the potential of apparent

optical property measurements for this approach. A sensitivity analysis also showed

that the approach was affected by CDOM and K. brevis cell concentrations (Craig et

al., 2006). These methods rely on hyperspectral data to reveal the subtle spectral

inflections imparted by the K. brevis pigment complement, and so, are not suitable

for use with multispectral sensors.

Other approaches for optically detecting K. brevis focus on methodologies that

are suitable for use with the multispectral data provided by current satellite sensors.

Steidinger and Haddad (1981) demonstrated the first use of satellites for detecting K.

brevis blooms using the CZCS sensor, and subsequently satellite remote sensing has

been proposed as a means of detecting, monitoring and characterising the location

and extent of HABs (Cullen et al., 1997; Tester and Stumpf, 1998; Schofield et al.,

1999). Stumpf et al. (2003) developed the chlorophyll anomaly approach, and this

method, along with other ancillary data, forms the basis of the operational product

currently in use by the US National Oceanic and Atmospheric Administration (NOAA)
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Figure 3.5 (a) Surface K. brevis cell concentration versus SI magnitude (Craig et
al., 2006); (b) Relationship between Chlorophyll and bbp(550) for the 10 ECOHAB
cruises between 2000 and 2001 on the central west Florida Shelf. Symbol size
increases with increasing K. brevis cell concentration (cells l−1). Upper and lower
threshold functions (dotted lines) for separating K. brevis bloom (>104 cells l−1)
and non-K. brevis bloom (<104 cells l−1) data were generated using chlorophyll-
specific particulate backscattering coefficients, equal to 0.007 m2 mg−1 and
0.003 m2 mg−1 respectively. The solid line represents the optimal threshold
function, generated using = 0.0045 m2 mg−1. The shaded area represents the
classification criteria (Chl ≥ 1.5 mg m−3 and ≤ 0.0045 m2 mg−1) for determining
K. brevis blooms. An empirical relationship determined for Case 1 waters (Morel,
1988) (dashed line) is also shown. Arrows point to misclassified data points
(8000 and 13,000 cells l−1) that were located on the edge of a bloom (Cannizzaro
et al., 2009).

(http://tidesandcurrents.noaa.gov/hab/). Stumpf and colleagues (2003) defined an

anomaly to flag for K. brevis as the difference in chlorophyll concentrations between

a single image and a 60-day running mean ending two weeks before the image.

An anomaly of >1 mg m−3 corresponding to a potential bloom of >1 ×105 cells

l−1 and associated with major fish kills (Steidinger et al., 1998), was considered

indicative of K. brevis. However, this cell concentration is more than an order of

magnitude greater than the current regulatory guideline of >0.5 × 104 cells l−1

for shellfish bed closure (NSSP, 2011). Hu et al. (2008) conducted an analysis

of SeaWiFS imagery spanning 1998 – 2003 from the west Florida Shelf using the

chlorophyll anomaly method and found that K. brevis blooms, confirmed by in situ

cell counts, were correctly identified. However, they also found that, despite the

absence of widespread reports of red tides by local fishermen, the method indicated

∼1000 km2 anomaly areas between the 10 and 50 m isobaths nearly every day.

This was the case even when only the late summer-fall period recommended by

Stumpf et al. (2003) was considered, and optically complex regions were omitted

from the analysis. Unfortunately, most of the patches flagged as possible K. brevis

blooms did not have corresponding in situ cell counts for validation. However,

it seems unlikely that these persistent features were always caused by K. brevis.

Rather, it is possible that, in at least some of these instances, the anomalies are

false positives caused by confounding factors such high CDOM concentration or

http://tidesandcurrents.noaa.gov/hab/
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enhanced reflectance due to bottom reflection or benthic resuspension. Additionally,

persistent elevated chlorophyll-a that results from prolonged blooms can give rise

to zero-valued anomalies (i.e., no change in chlorophyll-a above the 60-day mean)

thereby resulting in false negative flagging. However, the method is effective in

identifying “new” blooms (Tomlinson et al., 2004; Hu et al., 2008; Tomlinson et al.,

2009).

To overcome some of these difficulties (zero-valued anomalies, bottom reflec-

tion and benthic re-suspension), the approach of Shutler et al. (2012), taking into

account the temporal evolution of K. mikimotoi blooms, may be adopted. Alter-

natively, Hu and colleagues (2005) combined enhanced RGB (ERGB) images and

MODIS fluorescence line height (FLH) to detect and track a K. brevis bloom in the

West Florida Shelf. ERGB images are composites constructed from imagery at 551,

488 and 443 nm, and reveal dark features associated with high absorption due to

Chl and/or CDOM, and bright features associated with bottom reflection and/or

sediment resuspension. FLH utilises red wavelengths (667, 678, 748 nm) to detect

solar-stimulated chlorophyll fluorescence (Letelier and Abbott, 1996). The relation-

ship between chlorophyll-a and FLH is complex due to variability in fluorescence

quantum yield caused by taxonomic differences, phytoplankton physiology and light

exposure history (Kiefer, 1973; Letelier and Abbott, 1996). Nonetheless, over the

west Florida Shelf, Hu et al. (2005) established a robust relationship between FLH

and chlorophyll-a that yielded superior estimates of chlorophyll-a compared with

standard SeaWiFS band-ratio chlorophyll-a. With this relationship, they were able to

use FLH to differentiate between dark ERGB features produced by high chlorophyll-a

and those produced by high CDOM, thereby providing superior and more accurate

feature identification than chlorophyll-a imagery. However, this technique was not

developed for automatic detection and requires visual image interpretation.

Previous modelling and in situ studies of the optical properties of K. brevis have

shown that it exhibits lower backscattering per unit chlorophyll compared to other

species due to its relatively large size (20-40 µm) and low index of refraction (Carder

and Steward, 1985; Mahoney, 2003; Schofield et al., 2006). Consistent with these

findings, an in situ study by Cannizzaro et al. (2008) showed that K. brevis blooms

had 3–20 times lower particulate backscattering coefficients at 550 nm (bbp(550))

than diatom dominated waters at similar chlorophyll concentrations, and that this

led to 3-4 times lower Rrs(λ). Cannizzaro and colleagues (2008; 2009) also postulated

that the lower bbp(550) may be due to a paucity of sub-micron detrital particles

caused by either reduced grazing pressure due to cellular toxicity, or the inability of

K. brevis to outcompete rapidly-growing diatoms in high backscattering, detritus

rich coastal waters. Based on these findings, they developed a set of criteria for

detection of K. brevis blooms: 1) Chl-a >1.5 mg m−3 2) Chl-a:bbp(550) < 0.0045 m2

mg−1, as defined for case 1 waters by Morel (1988) (Figure 3.5b). This approach

was found to be suitable for both in situ and satellite based measurements of ocean

colour, but false positives were sometimes obtained when CDOM absorption at 443
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nm was two times or greater than aB(443) and when the water was very turbid.

To overcome the difficulties associated with obtaining accurate chlorophyll-a

estimates in optically complex waters, Cannizzaro et al. (2008) proposed the use

of FLH (Figure 3.6). This technique provided the ability to avoid erroneously high

estimates of chlorophyll-a often associated with high CDOM concentrations and so

reduce misclassifications of K. brevis blooms. Hu et al. (2008) implemented the

Chl-a:bbp(550) technique using SeaWiFs imagery on the west Florida Shelf, and found

that its performance was less satisfactory than the in situ scenarios described by

Cannizzaro et al. (2008; 2009), and speculated that this may be due to uncertainties

in the SeaWiFS-derived chlorophyll-a and backscattering products. Carvalho et al.

(2011) conducted a comparison of three K. brevis detection algorithms on the cen-

 

Figure 3.6 MODIS-Aqua (a) fluorescence line height (FLH) (mW cm−2 µm−1

sr−2) and (b) enhanced RGB (ERGB) composite imagery of the central west
Florida Shelf (26–28 ◦N) for 6 October 2006. Overlaid on both images are
K. brevis cell concentrations (cells l−1) (2–6 October 2006) sorted into four
groups: <103, 103–104, 104–105, and >105. The white arrows indicate false
negative classification events when the K. brevis bloom classification criteria
were applied to the October 2006 data (Cannizzaro et al., 2009).

tral west Florida shelf using, for the first time, MODIS-Aqua data spanning a 4-year

period. The algorithms tested were the Stumpf et al. (2003) NOAA operational

algorithm, Chl-a:bbp(550) Cannizzaro et al. (2008), and a new approach they named

the empirical approach. Their empirical approach essentially retained the method-

ology of Cannizarro et al. (2008) but replaced bbp(550) by water-leaving radiance,

Lw (550), reasoning that Lw is a lower order processing product and subject to less

IOP algorithm-associated uncertainty. They found that the operational method

had an elevated frequency of false-negative cases (i.e., low accuracy in detecting

known blooms), so decided to further compare only the Cannizzaro et al. (2008) and

empirical methods by optimisation via sensitivity analyses. Following optimisation,
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both algorithms were found to perform similarly.

Tomlinson et al. (2009) suggested that the low backscattering and detrital

absorption in K. brevis blooms may affect the spectral curvature of reflectance in the

blue region of the spectrum. Based on this, they developed a technique using the

spectral shape around 490 nm to differentiate K. brevis blooms from other blooms.

They concluded that, when used in an ensemble approach along with the Stumpf et

al. (2003) chlorophyll-a anomaly and Cannizzaro et al. (2008) algorithms, it could

increase the user accuracy (i.e., number of confirmed positives/number of satellite

positives) by ∼30–50%. Amin et al. (2009) proposed a technique called the Red Band

Difference (RBD). This takes advantage of the fact that, due to the low backscattering

properties of K. brevis, fluorescence dominates the water-leaving signal in the red

region of the spectrum producing a more pronounced red peak than non-K. brevis

blooms. However, modelling exercises showed that the RBD for K. brevis blooms was

not sufficiently unique to distinguish it from other blooms, and a second metric of K.

brevis, the K. brevis bloom index (KBBI), was introduced, which, when combined with

the RBD and a method to account for non-zero reflectance in the near infrared from

turbid waters, resulted in improved K. brevis identification. They note, however, that

to overcome noise in the imagery, an RBD threshold equivalent to a chlorophyll-a

concentration of ∼5 mg m−3 is required, potentially excluding many instances of K.

brevis blooms.

Most recently, Soto (2013) conducted an extensive evaluation, optimisation and

intercomparison of six published K. brevis detection techniques: 1) chlorophyll-a

anomaly (Stumpf et al., 2003), 2) spectral shape (Tomlinson et al., 2009), 3) bbp:Chl-a

ratio (Cannizzaro et al., 2008; 2009; Hu et al., 2011), 4) RBD-KBBI (Amin et al.,

2009), 5) a modification of the Carvalho et al. (2010) approach, but using Rrs(λ)(555)

instead of Lw (555), and 6) a multi-algorithm method proposed by Carvalho et al.

(2010). The techniques were implemented on the west Florida Shelf and it was found

that, after optimisation of the thresholds, the success of each of the approaches

in correctly identifying K. brevis blooms was significantly improved. Furthermore,

they developed a new and straightforward approach that utilised only FLH and

Rrs(λ)(555). This approach performed similarly to the most successful of the other

six techniques (RBD-KBBI), but is significantly easier to implement with existing

satellite products and allows for easier adjustment of the thresholds based on

the needs of the user. Several other methods for satellite detection of K. brevis

blooms such as image segmentation (Zhang, 2002), artificial intelligence approaches,

and a combination of techniques (Carvalho et al., 2010), have been proposed and

complement the approaches discussed herein.

3.4.3 K. mikimotoi bloom detection

A number of the approaches that have been developed for detecting and monitoring

K. mikimotoi are similar to those developed for K. brevis. As with K. brevis there are
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two distinct approaches: algal (or biomass) concentration-based and those that are

spectrally based.

As already discussed for K. brevis, in situations where the HABs dominate

the biomass, algorithms that detect new increases (or anomalous increases) in

chlorophyll-a are effective tools for identification. Through the use of background

subtraction, (the process of removing a mean background signal to identify regions

of interest) an algal anomaly can be detected. However, many approaches using

simple background subtraction regimes to detect high biomass blooms are region

specific or require tuning (e.g., Stumpf et al. 2003; Miller et al. 2006; Davidson et al.,

2009). Phytoplankton blooms will typically last several weeks so care must also be

taken to ensure that the bloom of interest does not dominate the background image,

thus meaning that it will not be detected by background subtraction technique. More

recent work has exploited the statistical analysis of temporal data to aid detection

(Shutler et al., 2012). This work provides a region-independent approach that is able

to follow seasonal trends and avoids the need for specific tuning. The approach was

originally developed to detect blooms of harmless coccolithophores (Shutler et al.,

2010) and was later applied to K. mikimotoi (Shutler et al., 2012). The approach was

shown to achieve a correct classification rate of 68% (false alarm rate of 0.24, N=25)

on a small database of in situ samples.

As already mentioned, blooms of K. mikimotoi can significantly alter the colour of

surface waters. Miller et al. (2006) exploited this characteristic and used multivariate

classification as an objective means to discriminate between harmful (K. mikimotoi

and cyanobacteria) and harmless algae in SeaWiFS data. The approach produces

maps of HAB likelihood, rather than distinct regions of HABs and non-HABs. Miller

then used the approach to monitor the dynamics of a number of different bloom

instances. In order to estimate the constituents of the surface water, along with

Rrs(λ) data they used an inversion scheme to estimate the inherent optical properties

(IOP). This approach was also applied to MERIS data (Shutler et al., 2005) and used to

aid the study of a large K. mikimotoi bloom that occurred in Scottish waters in 2006

(Davidson et al., 2009); the bloom resulted in damage to the fish gills of farmed fish

and extensive mortalities of benthic organisms. More recently Kurekin et al., (2014)

further developed the approach to study K. mikimotoi and Phaeocystis globosa and

its application to both MERIS and MODIS data. The approach was shown to correctly

identify 89% of Phaeocystis globosa HABs in the southern North Sea and 88% of K.

mikimotoi blooms in the western English Channel.

3.4.4 Summary

All of the approaches discussed above have been shown, to a greater or lesser

degree, to be useful in the identification of K. brevis and/or K. mikimotoi blooms,

and demonstrate unambiguously the role of ocean colour in detection, management

and mitigation of HABs. In most cases, the approaches require careful, contextual
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interpretation by skilled users to be most effective, but recent work has refined and

simplified the methods making true automation more likely. The new generation

of geostationary satellites such the South Korean GOCI (Geostationary Ocean Color

Imager) and the proposed GEO-CAPE (NASA) sensors will offer multispectral to

hyperspectral measurements at timescales ranging from hours to decades and will,

undoubtedly, greatly enhance the capabilities of remote sensing to detect HABs.

3.5 Detection of Trichodesmium Blooms

3.5.1 Background

Trichodesmium spp., a charismatic marine cyanobacterium, is well known to form

large surface blooms that can cover 100’s of thousands of kilometers and can be

observed from space-based sensors. This nitrogen fixer has been shown to play an

important role in global and regional nitrogen and carbon cycles (Capone et al., 1997;

Gruber and Sarmiento, 1997; Karl et al., 1997). On continental shelves such as the

west Florida shelf, Trichodesmium blooms can serve as a significant nitrogen source

for toxic Karenia brevis blooms (Walsh and Steidinger, 2001). Accurate assessment

of Trichodesmium blooms on global and regional scales can thus improve our

understanding of nitrogen and carbon cycles as well as our capacity to forecast toxic

blooms.

3.5.2 Bloom detection

The first report in the literature of a direct observation of Trichodesmium is the

photograph taken from the Space Shuttle of a massive bloom of this organism

in the Capricorn Channel (Kuchler and Jupp, 1988). To identify and quantify a

specific species of bacteria from space, the organism needs to have characteristic

properties that can be remotely sensed. Phototrophic bacteria such as cyanobac-

teria carry auxiliary pigments including phycoeryrthin (PEB) and phycocyanin (PC)

that have unique optical properties (e.g., Figure 3.7). Researchers (Subramaniam

and Carpenter, 1994; Bracher et al., 2009) have proposed techniques that exploit

changes in absorption of light due to the presence of these pigments to identify and

quantify cyanobacteria such as the filamentous, non-heterocystous Trichodesmium

spp. However, it should be noted that Garver et al. (1994) analyzed about 400 in

situ absorption spectra and concluded that more than 99% of the variance in the

absorption spectra of particulate matter was related to the amount of material, and

only a very small signal (less than 0.5%) was related to the presence of auxiliary

pigments. In other words, they concluded that, for typical conditions (non-mono

species, non-bloom, organism that are heterogeneously mixed through the upper

water column), it was unlikely that ocean-colour remote sensing would be able to

uniquely identify particular phytoplankton groups. Morel (1997) analyzed optical
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Figure 3.7 Spectra of remote sensing reflectance (Rrs) and absorption coeffi-
cient (ap) measured from Trichodesmium mats off the west coast of Florida. The
vertical dashed lines denote the local absorption maxima due to Chl (chlorophyll-
a), PUB (phycourobilin), PEB (phycoerythrobilin), and PC (phycocyanin). The
empty and filled rectangles show the positions and bandwidths of the MODIS
bands. The 10-nm ocean bands centered at 443, 488, 531, 551, and 667 nm
have 1-km nadir resolutions. The land bands at 469 (459 – 479), 555 (545 –
565), 645 (620 – 670), and 859 (841 – 876) nm have spatial resolutions of 500,
500, 250, and 250 m, respectively. Local reflectance maxima are found at 478,
528, and 558 nm, while local reflectance minima are found at 490 and 550 nm.
Figure adapted from Hu et al. (2010a).

data collected during a dense bloom (3 × 108 cells per liter) of Synechococcus, a

cyanobacterium that contains PEB, and contributed to over half the chlorophyll

concentration. He concluded that it would be “illusory to expect more than the

possibility of producing an index or a flag indicating the presence of PEB bearing

organisms” from ocean-colour sensors.

Trichodesmium has several unique attributes that has allowed for its unique

identification under specific conditions: 1) in addition to its absorption character-

istics due to the presence of PEB, it also contains gas vesicles that scatter light

making surface blooms of this organism “brighter”. Indeed, senescing blooms of

this organism have been described as silvery grey in colour (Devassy et al., 1978); 2)

Water molecules absorb strongly in the red/near infrared region of the spectrum and

the optical signature of sub-surface blooms in this region of the spectrum are lost

due to this absorption by water. However, the gas vesicles in Trichodesmium cause it

to accumulate at the surface as a microlayer above the water (Villareal and Carpenter,

2003) creating a high reflectance in the near infrared – so high that surface blooms

of Trichodesmium often get classified as clouds in standard satellite data processing

routines. This high reflectance of surface blooms of Trichodesmium was exploited
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by Subramaniam et al. (1999) to detect this organism using the visible and infrared

bands of the AVHRR sensor. Capone et al. (1998) used the same technique to map

a bloom of Trichodesmium in the Arabian Sea that covered an area greater than 2

million square kilometers.

The first use of ocean-colour satellites to map Trichodesmium was shown by

Dupouy et al. (1988) who used CZCS imagery to map a massive bloom of Tri-

chodesmium in the waters off New Caledonia. Subramaniam and Carpenter (1994)

developed an empirical algorithm based on the bright reflectance and potential

changes in reflectance due to presence of phycoerythrin. The first optical model

for estimating the remote sensing reflectance of Trichodesmium for developing

remote sensing algorithms was developed by Borstad et al. (1989). Tassan (1995)

used a three-component optical model to determine the minimum concentration

of Trichodesmium needed to identify this organism from space. Subramaniam et

al. (1999) developed an optical model that was based on Trichodesmium-specific

measurements of absorption and backscatter. They used the combination of the

absorption, fluorescence, and scattering properties of Trichodesmium in addition

to the high infrared reflectance to develop satellite algorithms for its detection

and quantification with SeaWiFS data (Subramaniam et al., 2002). They concluded

that widespread use of this algorithm was not feasible because of the challenges

of spatial resolution of the satellite. Since Trichodesmium slicks are often very

heterogeneous in their spatial distribution, it was very difficult to use standard

globally applicable algorithms. Westberry et al. (2005) used a semi-analytical model

to produce global maps of this organism and analyze its occurrence on a global

basis, where the optical signatures of Trichodesmium blooms could be identified for

waters with chlorophyll-a concentrations greater than 0.8 mg m−3.

The Maximum Chlorophyll Index (MCI) approach of Gower et al. (2005; 2008) has

also been used to detect and track surface slicks of Trichodesmium. The MCI detects

the local reflectance peak around 709 nm for intense phytoplankton blooms, so

the identified blooms are not Trichodesmium specific. In contrast, Hu et al. (2010a)

used a Floating Algae Index (FAI) to first identify surface mats of blooms, and then

used reflectance spectral curvatures in the blue-green wavelengths to differentiate

Trichodesmium blooms from other blooms (e.g., Figure 3.8). Indeed, because of

the Trichodesmium-specific pigments such as PUB and PEB, Trichodesmium bloom

mats showed unique spectral curvatures that can be differentiated from other

bright features such as coccolithophore blooms (Figure 3.8) or Sargassum blooms

(Hu et al., 2010a). Application of this approach successfully identified a massive

Trichodesmium bloom south of Fiji Island (Figure 3.9a). However, such an approach

is limited to blooms only when they form surface mats that result in elevated “red-

edge” reflectance in the near-infrared. Likewise, a similar approach developed for

the Great Barrier reef region (McKinna et al., 2011) worked well only for surface

mats of Trichodesmium blooms. In contrast, the approach of Dupouy et al. (2011)

developed for the South Western Tropic Pacific examined the radiance anomaly in
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the visible wavelengths relative to waters without Trichodesmium blooms. This

approach does not rely on the elevated reflectance in the NIR, and therefore may be

applicable for blooms where Trichodesmium cells are mixed in the water column.

(a) 

Oct 18, 2010, South Fiji 
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Image size:  
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Figure 3.9 (a) MODIS-Aqua FAI image showing a Trichodesmium bloom south
of Fiji Island in the South Pacific on 18 October 2010. The bloom showed
spectral curvatures in the blue-green wavelengths similar to those shown in Fig.
3.8; (b) MODIS-Aqua FAI image showing a cyanobacteria bloom of Microcystis
aeruginosa in Taihu Lake, China (a shallow, freshwater lake of about 2300 km2

centered around 31.2◦N, 120.2◦E.
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3.5.3 Other cyanobacterial blooms

Various types of cyanobacterial blooms other than Trichodesmium have been re-

ported in both marine and fresh waters. Whether they can be differentiated from

space depends upon whether they exhibit spectral signatures that can be detected by

the remote sensors at specific spectral, spatial, and radiometric resolutions. Below

are two examples of such cyanobacterial blooms.

3.5.3.1 Nodularia blooms in the Baltic Sea

Each summer during upper water column warming, a sequence of cyanobacterial

blooms occur in the Baltic Ocean, usually culminating in a major bloom of Nodularia

spumigena. Nodularia, a nitrogen fixing cyanobacteria, is also associated with

nodularin, a hepatotoxin (Sivonen et al., 1989) and beta methyl amino alanine

(BMAA), a neurotoxic amino acid (Cox et al., 2005). Kahru et al. (1993) showed

that surface blooms of these organisms can be detected using the AVHRR sensor

and compiled a time series of images to explore the factors that contribute to the

formation and transport of these blooms (Kahru et al., 2000), yet the algorithm to

detect the bloom was based on the a priori knowledge that Nodularia spumigena is

the dominant bloom species. Based on field-measured optical properties, Metsamaa

et al. (2006) showed signatures around 630 and 650 nm in the modelled reflectance

spectra, which may be useful for developing remote sensing algorithms for intense

blooms (chlorophyll >8 – 10 mg m−3).

3.5.3.2 Microcystis blooms in lakes

Simis et al. (2007) developed a technique for quantifying concentrations of phy-

cocyanin, the marker pigment for freshwater cyanobacteria, and found that their

algorithm could allow for assessment of cyanobacterial risk to water quality and

public health following the World Health Organization guidelines (WHO, 2003) in

about 70% of the cases they considered. Budd et al. (2001b) exploited the enhanced

scattering of light by surface blooms of the toxic cyanobacterium Microcystis to map

blooms of this organism using visible band channels on the AVHRR and Landsat The-

matic Mapper (TM) sensors. Using this combination, Budd et al. (2001a) constructed

a time series of satellite-based turbidity maps for Lake Erie from 1987 to 1993,

representing the period from before to after the establishment of zebra mussels

(Dreissena polymorpha) in these waters. Similarly, using the MODIS FAI to capture

the elevated reflectance in the NIR when blooms of Microcystis aeruginosa form sur-

face mats (Figure 3.9b), Hu et al. (2010b) established a 10-year time-series of bloom

characteristics for Taihu Lake of China to study bloom seasonality and inter-annual

changes. Similar to the Baltic case, however, these bloom detection algorithms

require a priori knowledge of the bloom type in the specific study regions.
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3.6 Detection of Ulva prolifera Blooms

3.6.1 Background

Green tides of macroalgae blooms have been reported in the world’s oceans (e.g.,

Fletcher, 1996; Blomster et al, 2002; Nelson et al. 2003; Merceron et al., 2007),

but it was not until summer 2008 when a massive bloom of the macroalgae Ulva

prolifera in the Yellow Sea off Qingdao, China, caught wide international attention

from both the research community and the public (Hu and He, 2008). Since then,

several targeted studies attempted to determine the bloom’s origin, cause, temporal

evolution, and ecological consequences (Lü and Qiao, 2008; Sun et al., 2008; Liu et al.,

2009a; Hu et al., 2010c). Although Ulva prolifera may serve as an important habitat

for marine animals and can be utilized as fertilizers, it also represents a marine

hazard for transportation. Excessive Ulva prolifera may cause a beach nuisance and

is a burden to local management (Hu and He, 2008; He et al., 2011). Satellite remote

sensing has been used to study the extent and distribution of the green macroalgae

blooms. In particular, Hu et al. (2010c) used MODIS and Landsat time series to

demonstrate that the Ulva prolifera blooms in the Yellow Sea and East China Sea

are recurrent and they related to local seaweed aquaculture. The principle to detect

these blooms from space is briefly discussed below.
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Figure 3.10 Ulva prolifera bloom off Qingdao, China. (b) MODIS reflectance
of Ulva prolifera bloom and bloom-free water. Also shown is their difference
spectrum. Note the reflectance peak at 859 nm, which forms the basis to use
FAI for bloom detection (Hu, 2009).

The individual multi-cell Ulva prolifera are thin filaments that can grow to one

meter in length. Their aggregation can make them appear as surface vegetation

(Figure 3.10a), and therefore detectable in satellite imagery (Figure 3.10b). Most algo-

rithms to differentiate phytoplankton functional groups rely on visible wavelengths

(Nair et al., 2008). However, atmospheric interference, especially for the Yellow

Sea, may induce unexpected errors in these wavelengths. This is because that the
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interference is estimated from longer wavelengths in the near-infrared or shortwave-

infrared and then extrapolated to the visible. In contrast, reflectance data in the

near-IR derived from satellite measurements are less prone to the extrapolation-

induced errors. Indeed, Ulva prolifera blooms show elevated reflectance in the

near-IR, which can be used to differentiate them from the bloom-free background

water.

3.6.2 Bloom detection

Based on the above argument, the traditional way to quantify surface vegetation,

through a Normalized Difference Vegetation Index (NDVI), was used to detect Ulva

prolifera blooms (Hu and He, 2008). However, NDVI is very sensitive to changes in

observing conditions such as variable aerosols and solar/viewing geometry. Using

model simulations and satellite data product comparison, Hu (2009) showed that

the relative reflectance height in the near-IR is relatively stable against these variable

conditions. Thus, similar to the concept of the MODIS fluorescence line height (FLH,

Letelier and Abott, 1996) and MODIS maximum chlorophyll index (MCI, Gower et

al., 2005), a floating algae index (FAI) was introduced to detect and quantify the

surface area of Ulva prolifera blooms (Hu, 2009). The FAI is defined as the difference

between MODIS Rayleigh corrected reflectance (Rrc) at 859-nm and a baseline formed

linearly between Rrc at 645 nm and 1240 nm. The baseline subtraction provides a

simple and practical means to correct atmospheric effects due to aerosol scattering,

thus making bloom features comparable under different observing conditions.

The linear design of the FAI makes it simple to estimate surface area of a bloom

from mixed pixels. Using statistics and visual examination to determine the FAI

threshold values for 0% and 100% pixel coverage, respectively, Hu et al. (2010c)

estimated that MODIS 250-m resolution data could be used to detect algae slicks >5

m wide when the length is greater than several pixels. This preliminary estimate is

dependent on the sensor’s sensitivity and therefore should not be generalized for

other sensors.

While the details on the spectral shape of Ulva prolifera surface slicks/patches

and application of FAI to document the 10-year occurrence of the algae blooms

in the Yellow Sea and East China Sea can be found elsewhere (Hu, 2009; Hu et al.,

2010c), Figure 3.11 shows two MODIS FAI images obtained on 21 June 2010 in

coastal waters off Qingdao. Rrc spectra from the identified slicks show elevated

Rrc in the near-IR, indicating floating vegetation. Given the fact that Ulva prolifera

blooms are recurrent in this region, one may conclude that these surface floating

features are the green macroalgae, Ulva prolifera. Note that the two images were

collected only three hours apart from MODIS/Terra and MODIS/Aqua, respectively.

The two wide-swath (about 2330-km) satellite instruments not only increase the

chance of cloud-free observations, but also complement each other to potentially

estimate the movement, direction and speed of these surface floating features.
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Figure 3.11 MODIS FAI images on 21 June 2010 showing an Ulva prolifera
bloom off Qingdao, China in the Yellow Sea (about 200 x 200 km centered
around 36◦N, 120◦E). The Ulva prolifera aggregation on the surface makes them
appear as surface vegetation slicks and patches, which can be identified and
quantified using the FAI (Hu, 2009; Hu et al., 2010c).

The FAI approach has limitations. First, because of water’s strong absorption

in the near-IR, submerged blooms do not show elevated reflectance in the near-IR,

and therefore cannot be identified using FAI imagery. This shortcoming may limit

the ability to detect a bloom in its early stage. Further, FAI does not distinguish the

spectral differences (except in the near-IR) from various bloom types. In principle,

FAI detects the Rrc peak in the near-IR and therefore can be used to identify any

suspicious features that show near-IR peaks, such as Trichodesmium blooms and

Sargassum spp. macroalgae (Subramaniam et al., 2002; Gower et al., 2006). For

the same reason, FAI cannot distinguish them spectrally. The ability of using FAI

to detect Ulva prolifera in the Yellow Sea and East China Sea relies on the a priori

knowledge that these green macroalgae blooms are recurrent. In an unknown

environment, the ability to differentiate algae types is limited. However, once the

suspicious features are delineated in FAI imagery, Hu et al. (2010b) showed that

the spectral curvatures in the blue-green wavelengths can be used to differentiate

Trichodesmium from Sargassum in the Gulf of Mexico. The approach to combine

FAI and other spectral information to differentiate other phytoplankton groups,

especially in other parts of the world’s oceans, remains to be tested. Nevertheless,

the simple design of the FAI makes it straightforward to implement for many

existing and planned satellite instruments at various spatial resolutions (e.g., MODIS,

Landsat, Suomi NPP/VIIRS), and time-series studies using FAI imagery may reveal

previously unknown oceanographic phenomena and processes.
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3.7 Detection of Sargassum spp. Blooms

3.7.1 Background

The brown macroalgae, Sargassum spp., has two holopelagic species, Sargassum

natans and Sargassum fluitans, both characterized by numerous blades, a thallus,

and air bladders that form surface mats or “weak lines” on the ocean surface at

convergence zones (Ryther, 1956; Figure 3.12a). The macroalgae provides important
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Figure 3.12 (a) Pelagic Sargassum mats in the Gulf of Mexico (GOM). (b) MODIS
reflectance of Sargassum lines in the western GOM and South Atlantic Bight.
Also shown is a Rrs spectrum collected from a Sargassum mat in the northern
GOM in September 2011. Note the elevated reflectance around 600 nm in both
MODIS and in situ spectra. The major difference between MODIS and in situ
spectra in the NIR wavelengths is primarily due to the mixed MODIS pixels.

habitat (food, shade, shelter from predators) to a variety of marine animals including

fish, shrimp, crabs, and several threatened species of turtles (South Atlantic Fishery

Management Council, 2002; Rooker et al., 2006; Witherington et al., 2012). Accurate

knowledge of Sargassum occurrence and their biomass distributions can help plan

field surveys to study these marine organisms and their associated ecosystem.

Sargassum may also play an important role in marine primary productivity, thus

contributing to carbon cycling (Gower et al., 2006). Sargassum may affect local

biogeochemistry through nutrient remineralization, enhanced coloured dissolved

organic matter, and bacteria activities (Laptointe, 1995; Zepp et al., 2008). Sargassum

can also be a natural source of fertilizer for dune plants which help to stabilize

coastal dune systems from erosion (Tsoar, 2005; Anthony et al., 2006). On the other

hand, excessive Sargassum on the beach represents a nuisance and a health hazard,

and they often need to be physically removed. Many beaches around the GOM and

in the southern Caribbean suffer from Sargassum deposition on a regular basis (e.g.,

Gower et al., 2013). Timely information on the occurrence of Sargassum blooms is

useful for both research and management such as implementation of harvesting

policy, equipment rental for beaching cleaning, and guidance on recreational fishing.

Time series of Sargassum abundance and distributions can help understand their
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origin, evolution, and transport among various marginal seas, as such information

is currently limited despite a handful of remote sensing studies (Gower and King,

2011; Gower et al., 2013).

3.7.2 Bloom detection

Similar to other surface floating vegetation, Sargassum shows elevated reflectance

in the NIR (the red-edge reflectance, see in situ Rrs spectrum in Figure 3.12b). In

addition to this feature, the reflectance around 600 nm is also elevated; this is why

Sargassum mats often appear brownish. While the red-edge reflectance is not unique

to Sargassum (e.g., other organisms such as Ulva prolifera and cyanobacteria may

also show elevated NIR reflectance), the elevated reflectance around 600 nm might

be useful in differentiating brown Sargassum from other types of macroalgae (e.g.,

the green macroalgae Ulva prolifera) or microalgae (e.g., cyanobacteria).

Based on the principle of red-edge reflectance and several assumptions, Gower

et al. (2006), perhaps the first remote sensing-based Sargassum study, used MERIS

and MODIS to detect and quantify Sargassum in the Gulf of Mexico. Specifically, the

reflectance red edge at the 709-nm MERIS band (300-m resolution) was examined, and

elevated reflectance was assumed to be caused by Sargassum surface aggregations.

The elevated reflectance in the NIR also caused negative MODIS FLH values, which

were used (together with some a priori knowledge of the ocean environment) as an

indicator of floating Sargassum mats. The concept has been extended to MODIS data

to form the FAI (Hu, 2009) to examine the elevated reflectance at 859-nm (250-m

resolution) to detect Sargassum and other floating materials. This is because the

859-nm MODIS band (designed for land use) does not saturate over bright targets

and it has higher spatial resolution than the 1-km ocean bands.

Figure 3.13a shows a MODIS-Terra FAI image collected east of Bermuda, where

elongated line features can be clearly visualized. Although there is no strictly

concurrent ground truth data on the same day, local reports for the same period

indicated that these lines could be Sargassum slicks. Application of this approach to

MODIS data over the Gulf of Mexico, the Sargasso Sea, and the central Atlantic Ocean

showed success in detecting floating algae lines in many images, which formed the

basis to establish time-series data for statistical analysis. Indeed, Gower and King

(2011) and Gower et al. (2013) used MERIS time-series data to document spatial

distributions of Sargassum abundance and their temporal changes in the Gulf of

Mexico and Atlantic. The addition of MODIS data may provide complementary

results to refine the interpretations, as the MODIS swath width is twice as wide as

that of MERIS, and furthermore there are two MODIS instruments in orbit.

Both MODIS and MERIS are limited by their coarse resolutions when detecting

surface features. Hu et al. (2010c) proposed that macroalgae slicks of <5 m wide

could not be detected by the MODIS 250-m data at current MODIS signal-to-noise

ratio (SNR). However, the simple design of FAI could be extended to other higher-
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(a) MODIS FAI image, 12/8/2009

Bermuda

(b) Landsat-7 FAI 
image, 3/14/2008

Duck Key

Image size: 20 km x 20 kmImage size: 100 km x 100 km

Figure 3.13 MODIS and Landsat FAI images (250- and 30-m resolutions, re-
spectively) showing Sargassum-like features in the Sargasso Sea near Bermuda
at 32.30◦N, 64.77◦W (a) and in the Florida Strait near Duck Key at 24.77◦N
80.91◦W (b). Some of the prominent features are annotated with brown arrows.
Note that the slicks shown in (b) cannot be detected by MODIS on the same day
due to the coarser resolution of MODIS.

resolution sensors such as Landsat TM or ETM+ (30-m) as long as the sensor has

three spectral bands in the red, NIR, and shortwave infrared (SWIR) wavelengths

(Hu, 2009). Figure 3.13b shows a Landsat-7 EMT+ FAI image, where surface lines of

floating algae, thought to be Sargassum, could be visualized. The global availability

of Landsat data series, in particular with the recently launched Landsat-8, will greatly

facilitate regional studies of Sargassum distributions and their movement patterns.

3.8 Summary and Discussion

Through demonstration of several examples, this chapter presents the basic princi-

ples and algorithms in remote sensing detection of several dominant phytoplankton

functional types including diatoms, coccolithophores, Karenia brevis, Karenia miki-

motoi, Trichodesmium, Ulva prolifera, and Sargassum. Most of these types can

be found globally, while Ulva prolifera and Sargassum have only been reported

regionally. The algorithms shown here can be summarized as follows:

v Diatoms: based on the differences between pigment absorption spectra be-

tween diatoms and other phytoplankton types.

v Coccolithophores: based on the elevated reflectance in the visible spectrum

(particularly in the blue-green wavelengths) and on band ratios.

v Karenia brevis: based on chlorophyll-specific high biomass (anomaly) de-

tection, chlorophyll-specific backscattering efficiency, spectral shape in the

blue-green wavelengths, or band ratios in the red and NIR.

v Karenia mikimotoi: based on chlorophyll-specific high biomass (anomaly)
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detection or its spectral shape.

v Trichodesmium: based on absorption features of Trichodesmium-specific pig-

ments and on the red-edge reflectance

v Ulva prolifera: based on the red-edge reflectance of the floating macroalgae

v Sargassum - based on the red-edge reflectance of the floating algae.

The demonstrations showed successful examples, yet there are limitations in

all algorithms and there is much room for further improvement. On the algorithm

accuracy, except for the case of Trichodesmium where the spectral shapes show

unique features that can be distinguished from other phytoplankton types, most

of these algorithms require a priori information on the ocean environment. For

example, without knowing the location of the image, it would be very difficult to

tell whether the red-edge reflectance is caused by Ulva prolifera or by Sargassum.

Likewise, the spectral characteristics of Karenia brevis, and Karenia mikimotoi are

not expected to be unique on a global basis, where other phytoplankton types (e.g.,

other toxic blooms or waters containing mixed phytoplankton populations) may be

falsely detected as K. brevis or K. mikimotoi blooms. Similarly, sediment plumes

from rivers or the re-suspension due to storms of historical coccoliths can cause

false positives when attempting the detection of coccolithophore blooms. Likewise,

if other non-diatom phytoplankton have similar pigment absorption properties to

diatoms in other marginal seas, it would be difficult to differentiate diatoms from

others. In the future, the algorithms should be tested in other regions with more

cases, where more spectral bands are analyzed to rule out other look-alike (spectrally

similar) features.

Another limitation is how to quantify the bloom biomass or chlorophyll con-

centrations. Except for the case of diatoms, one K. mikimotoi approach and one

coccolithophore approach, most of the algorithms only show the presence or ab-

sence of a certain bloom. This is primarily due to the difficulties in sampling the

blooms and matching the satellite observations. K. brevis blooms are known to

be very patchy, where concentrations of the phytoplankton cells can change by

orders of magnitude within hundreds of meters. In this case, it is extremely difficult

to match the field samples with large satellite pixels. Likewise, blooms of Tri-

chodesmium, Ulva prolifera, and Sargassum are also very patchy, creating difficulties

in validating satellite algorithms. In addition, it is difficult to determine the biomass

or chlorophyll concentration per bloom area to relate to surface reflectance, as the

presence of a boat often disturbs the bloom environment. Even though the bloom

could be sampled accurately in the field, satellite pixels are often mixed with bloom

features and bloom-free water, thus requiring appropriate algorithm to un-mix the

pixels. Gower et al. (2006) and Gower and King (2011) estimated Sargassum biomass

based on several crude assumptions, yet these assumptions require field validation.

Likewise, the assumption used in Hu et al. (2010c) on the biomass of Ulva prolifera

per unit area also needs field validation. Clearly, the immediate need in the future

is to develop improved sampling techniques to develop algorithms to quantify the
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bloom intensity.

Except for the case of diatoms, coccolithophores, and Trichodesmium cells mixed

in the water column, the detection limit of floating mats of Trichodesmium, Ulva

prolifera, and Sargassum is unknown due to the sampling difficulty as mentioned

above. This is in addition to the spatial resolution restrictions as shown in Figure

3.13b. The detection limit is also a function of the sensor’s spatial resolution

and SNR, which varies among sensors. Thus, in addition to developing improved

sampling techniques, it is necessary to study and compare sensor performance for

their ability to detect and quantify the various blooms.

Despite the above limitations, it is clear that the algorithms worked well on

the case studies outlined here. Indeed, with some a priori knowledge of the ocean

environment and availability of global ocean-colour data and Landsat data, it is

possible to establish remote sensing systems to assess and monitor blooms on a

quasi-operational fashion in different ocean regions. In the absence of validated algo-

rithms to estimate biomass or chlorophyll-a concentrations, the relative patterns in

space and time based on educated assumptions can still provide critical information

on the spatial and temporal changes of these biologically and ecologically important

marine organisms.
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4.1 Introduction

For many ecological and biogeochemical processes, the size of phytoplankton is a

good indicator of its functional role (Sieburth et al., 1978). For example, nutrient

uptake, light absorption, sinking rate and export are all influenced by cell size

(McCave, 1975; Eppley and Peterson, 1979; Morel and Bricaud, 1981; Prieur and

Sathyendranath, 1981; Probyn, 1985; Michaels and Silver, 1988; Sunda and Hunts-

man, 1997; Boyd and Newton, 1999; Laws et al., 2000; Bricaud et al., 2004; Guidi et

al., 2009). Cell size also influences phytoplankton physiology (Platt and Denman,

1976; Geider et al., 1986; Chisholm, 1992; Raven, 1998), metabolic rates (Platt and

Denman, 1977; 1978) and the marine food web (Maloney and Field, 1991; Legendre

and LeFevre, 1991; Parsons and Lalli, 2002). Partitioning phytoplankton according

to size offers an integrative approach to describing phytoplankton function and

structure in relation to key marine biogeochemical cycles (Le Quéré et al., 2005;

Marañón, 2009). Many phytoplankton types classified according to their biogeochem-

ical function may also be approximately partitioned according to their size (Table

4.1). Thus, to a first-order approximation, a size-based classification is suitable for

categorising phytoplankton functional groups.

Many large-scale marine biogeochemical models adopt a size-based classification

(e.g., Aumont et al., 2003; Blackford et al., 2004; Kishi et al., 2007; Marinov et al.,

2010) and require measurements of phytoplankton size for validation and model

improvement. In the past, this has typically relied on in situ measurements. Owing

to the spatial-temporal sampling advantages of remote sensing over conventional in

situ measurements, there has been an increasing effort to extract information on

phytoplankton size structure using satellite ocean-colour observations.

In open-ocean waters (Case 1 waters according to Morel and Prieur, 1977),

variations in sea surface reflectance are driven primarily by the abundance of

71
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Table 4.1 Phytoplankton taxonomic groups, important ele-
ments and compounds that play a distinctive role in the related
biogeochemical cycles, and typical size classes of the taxonomic
groups (adapted from Hirata and Brewin, 2009). See also Le
Quéré et al., 2005; Nair et al., 2008 and Chapter 1 of this report.

Taxonomic group Biogeochemical elements Typical Cell Size

and compounds

Diatoms Si Micro (> 20µm)

Dinoflagellates DMS Micro (>20µm)

Haptophytes CaCO3, DMS Nano (2-20µm)

Cyanobacteria N2 Pico (<2µm)

Si = Silica, DMS = dimethyl sulfide, CaCO3 = calcium carbonate, N2 = nitrogen gas

phytoplankton, with co-varying influence (at least to a first-order, Siegel et al., 2005)

from detritus and yellow substances. However, changes in abundance are also

typically accompanied by modifications in the size structure of the phytoplankton

community (Yentsch and Phinney, 1989; Ciotti et al., 1999). The challenge here is

to use ocean-colour data to estimate not just phytoplankton abundance, but also

additional information on the size structure of phytoplankton present. Current

approaches that detect phytoplankton size from satellite data in Case 1 waters may

be partitioned into two categories: abundance-based approaches (uni-variate) and

spectral-based approaches (multi-variate).

4.2 Abundance-Based Approaches

Abundance-based approaches rely on observed relationships between some measure

of abundance of phytoplankton and their size structure. Such methods typically

assume that information on the size-structure of phytoplankton is latent in the

satellite-derived bio-optical fields, such that large phytoplankton cells, generally

associated with high biomass, typically dominate in eutrophic regions (e.g., upwelling

areas), whereas small phytoplankton cells, usually associated with low biomass,

generally prevail in oligotrophic areas such as the subtropical gyres (Chisholm,

1992; Platt et al., 2005; Aiken et al., 2009). Within this general class of approaches,

differences exist in the implementation, as detailed below.

4.2.1 Size-classes based on discrete trophic classes

Uitz et al. (2006) used the near-surface chlorophyll-a concentration to infer the

column-integrated phytoplankton biomass and vertical distribution of three phy-
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toplankton size classes (pico-, nano- and microphytoplankton). They analysed an

extensive set of algal pigment data determined by high performance liquid chro-

matography (HPLC), comprising about 2400 vertical pigment profiles collected in

various trophic regimes encountered in the open ocean (Case-1 waters exclusively).

For each in situ sample, the fractional contribution of each size class to the total

chlorophyll concentration was derived from pigment data, using specific biomarker

pigments (Vidussi et al., 2001; Uitz et al., 2006).

In situ data were partitioned into stratified and mixed waters based on the ratio

of the euphotic depth (Zp) to the mixed-layer depth (Zm) at the sampling station.

Nine trophic categories (S1-S9) were identified in stratified waters and five in mixed

waters (M1-M5), based on class intervals in surface chlorophyll concentration. For

each category, an associated mean size structure was determined from the in situ

HPLC data (vertical composition and column integrated chlorophyll concentration).

Therefore, given information on the surface chlorophyll-a concentration, Zp and Zm,

the chlorophyll biomass and vertical distribution of the three phytoplankton size

classes can be estimated.

The method is illustrated here given information on satellite-derived surface

chlorophyll (O’Reilly et al., 1998), euphotic depth (Morel et al., 2007), and a global

climatology of mixed layer depth (de Boyer Montégut et al., 2004). Figure 4.1

shows a flow diagram of the Uitz et al., (2006) approach, which may in fact be

used in a continuous manner across discrete trophic categories, by interpolating

between the mean chlorophyll values associated with each of the trophic categories,

as was done when generating the size-class maps in Figure 4.1. The Uitz et al.,

(2006) approach was the first method to provide quantitative information on the

phytoplankton community composition within the entire euphotic zone, rather than

just the surface layer as observed from satellite.

Ranges in phytoplankton abundance have been used also by other authors to

demarcate waters dominated by different phytoplankton size classes. For example,

Aiken et al. (2007) showed that waters dominated by different size classes of phyto-

plankton had ranges in chlorophyll concentration and in phytoplankton absorption

coefficients that differed from each other, and used this information to map waters

dominated by different phytoplankton size classes in the Benguela upwelling region.

Similarly, Hirata et al. (2008a) proposed that ranges in phytoplankton absorption

coefficient at a single wavelength could be used to identify at the global scale, waters

dominated by different size classes of phytoplankton. Unlike the method of Uitz et

al. (2006), the methods of Aiken et al. (2007) and Hirata et al. (2008a) are designed to

identify dominant size classes at a satellite pixel, and not the fractional contribution

of each size class to total chlorophyll biomass.
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Figure 4.1 Flow diagram showing the application of the Uitz et al. (2006)
approach. Method illustrated using a mapped Level 3 monthly chlorophyll
image from MODIS-Aqua for April 2011.

4.2.2 Phytoplankton size classes based on a continuum of abundance
measures

The methods presented in this section make use of a continuum of abundance

measures to infer the size structure of phytoplankton in the ocean, rather than

discrete class intervals, as was the case in the previous section.

Brewin et al. (2010a) proposed a simple model designed to estimate the chloro-

phyll concentrations of three phytoplankton size classes (pico- <2µm, nano- 2-20µm

and microphytoplankton >20µm) as a continuous function of total chlorophyll con-
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centration. The model is based on the work of Sathyendranath et al. (2001) and

assumes small cells are incapable of growing beyond a particular chlorophyll con-

centration, with an upper limit imposed possibly from a combination of bottom-up

(e.g., nutrient control) and top-down (e.g., grazing) processes, and that, beyond this

value, chlorophyll is added to a system solely by the addition of larger size classes

of phytoplankton (Raimbault et al., 1988; Chisholm, 1992).

The model can be expressed through two simple exponential equations, such that

the chlorophyll concentrations of the combined pico-nanophytoplankton population

(Cp,n), cells <20µm, and the picophytoplankton population (Cp), cells <2µm, can be

expressed according to:

Cp,n = Cmp,n[1− exp(−Sp,nC)], (4.1)

and

Cp = Cmp [1− exp(−SpC)], (4.2)

where the total chlorophyll-a concentration is represented as C [mg m−3], the

subscripts p and n refer to picophytoplankton and nanophytoplankton respec-

tively, Cmp,n and Cmp are the asymptotic maximum values for the associated size

classes (<20µm and <2µm respectively) and Sp,n and Sp determines the increase in

size-fractionated chlorophyll (<20µm and <2µm respectively) with increasing total

chlorophyll-a (C). The chlorophyll concentration of nanophytoplankton (Cn) and

microphytoplankton (Cm) can then be calculated according to:

Cn = Cp,n − Cp, (4.3)

and

Cm = C − Cp,n. (4.4)

The percentage of each phytoplankton size class to the total chlorophyll concentra-

tion (Pm, Pn and Pp) can then be calculated by dividing the size-specific chlorophyll

concentrations (Cp, Cn and Cm) by the total chlorophyll concentration (C) and

multiplying by 100.

The unknown parameters of Eqs. 4.1 – 4.4 (Cmp,n, Cmp , Sp,n and Sp) can be

computed if we know the total chlorophyll concentration (C), the chlorophyll con-

centrations of the combined pico-nanophytoplankton population (Cp,n) and the

picophytoplankton population (Cp), using an appropriate fitting procedure (e.g.,

least-square fit). The concentrations Cp,n and Cp can be estimated using specific

biomarker pigments following Uitz et al. (2006), with further refinements (e.g.,

Brewin et al., 2010a; Hirata et al., 2011; Devred et al., 2011), or alternatively by

use of size-fractionation. Once these parameters are established, the chlorophyll

concentrations of each size class can be computed directly from total chlorophyll,

and hence from any satellite-based estimate of chlorophyll (Figure 4.2).

Brewin et al. (2010a) established their model parameters from an analysis

of a large database of HPLC pigment data in the Atlantic Ocean. Devred et al.
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Figure 4.2 Diagram showing the application of the models of Hirata et al.
(2011) (left) and Brewin et al. (2010a) (right) to satellite data. Methods are
illustrated using a mapped Level 3 monthly chlorophyll image from MODIS-
Aqua for April 2011.

(2011) derived the parameters of Eqs. 4.1-4.4 using large datasets comprising of

phytoplankton absorption and chlorophyll data, though they did not use their results

to implement an abundance-based method (see section 4.3.1.2 for discussion on the

spectral-based Devred et al. (2011) model). The underlying models of Brewin et al.

(2010a) and Devred et al. (2011) are the same (see Sathyendranath et al., 2001) but

the model parameters differ from each other (Table 4.2), because of methodological

differences in the implementation, and in the datasets used (see legend of Table

4.2).

As the chlorophyll concentration tends towards zero, the derivative of Eqs. 4.1

and 4.2 can be expressed according to:

dCp,n
dC

∣∣∣∣
C→0

= Sp,nCmp,n, (4.5)

and
dCp
dC

∣∣∣∣
C→0

= SpCmp , (4.6)

respectively. In the Devred et al. (2011) approach, in order to help obtain model

parameters solely from phytoplankton absorption and chlorophyll data, the assump-

tion is made that as the chlorophyll concentration tends towards zero there is no

contribution from large cells, and hence C = Cp and the products of Sp,nCmp,n and

SpCmp are equal to one. This assumption is not made in the Brewin et al. (2010a)

model as HPLC data is used to fit the equations, but unlike Devred et al. (2011), the

model of Brewin et al. (2010a) is constrained by uncertainty in deriving information

on size classes from HPLC data (or alternatively size-fractionated filtration).
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Table 4.2 Parameter values for Eqs. 4.1 – 4.6 provided
from Brewin et al. (2010a) for the Atlantic Ocean (Atlantic
Meridional Transect HPLC data), Brewin et al. (2011a) from
the NOMAD HPLC dataset version 1.3, Brewin et al. (2012)
from the Indian Ocean and Devred et al. (2011) using
chlorophyll and absorption data from the NW Atlantic and
NOMAD.

Study Parameters for Eqs. 4.1 – 4.6

Cmp,n ∗ Sp,n Cmp ∗ Sp Cmp,nSp,n Cmp Sp

Brewin et al. (2010a) 1.057 0.851 0.107 6.801 0.900 0.728

Brewin et al. (2011a) 0.775 1.152 0.146 5.118 0.893 0.747

Brewin et al. (2012) 0.937 1.033 0.170 4.804 0.968 0.817

Devred et al. (2011) 0.546 1.830 0.148 6.765 1.000 1.000

∗ denotes units in mg m−3

Similarly, Hirata et al. (2011) proposed a number of empirical equations to

estimate the fractional contribution of three phytoplankton size classes (pico- <2µm,

nano- 2-20µm and microphytoplankton >20µm) and seven phytoplankton functional

groups (diatoms, dinoflagellates, green algae, haptophytes, pico-eukaryotes, prokary-

otes and Prochlorococcus sp.) to the total chlorophyll concentration in a satellite

pixel. They expressed the percentage (P ) of each size class in the total chlorophyll

concentration as:

Pm = [0.912+ exp(−2.733 · log10(C)+ 0.400)]−1 · 100, (4.7)

Pp = (−[0.153+ exp(1.031 · log10(C)− 1.558)]−1 (4.8)

−1.860 · log10(C)+ 2.995) · 100,

and

Pn = 100− Pm − Pp, (4.9)

where Pm, Pn and Pp are the percentages of chlorophyll for micro-, nano- and

picophytoplankton respectively. The model parameters in Eqs. 4.7 to 4.9 were

estimated using a large database of HPLC measurements (including data from

the Atlantic Meridional Transect (AMT); the Beagle cruise; the NASA SeaBASS and

NOMAD databases; the SEEDS II iron enrichment experiment; the Japanese Fisheries

Research Agency; and the Oshoro-Maru cruise by Hokkaido University). Using

the total chlorophyll concentration from ocean colour as input, the percentage

contribution of each size class can be computed as illustrated in Figure 4.2.
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Figure 4.3 Comparison of methods that propose patterns of change in the
size structure with a change in chlorophyll.

4.2.3 Comparison of abundance-based methods

Three of the abundance-based approaches presented above (Uitz et al., 2006; Brewin

et al., 2010a; Hirata et al., 2011) are designed to estimate fractions of size classes in

a given chlorophyll concentration. Of these, the method of Uitz et al. (2006) assigns

size classes according to a finite number of trophic statuses defined on the basis

of surface chlorophyll and on whether or not the euphotic zone may be treated as

stratified or mixed. The methods of Brewin et al. (2010a) and Hirata et al. (2011)

are both based only on chlorophyll concentration, but differ from each other in the

functional relationships assigned to relate total chlorophyll concentration to partial
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chlorophyll concentrations associated with the size classes. The equations used

by Brewin et al. (2010a), and also Devred et al. (2011), emerge from an underlying

conceptual model (Sathyendranath at al., 2001) on how phytoplankton populations

change with chlorophyll concentration, whereas the equations of Hirata et al. (2011)

are purely empirical, and are not constrained by an underlying model. Note that the

Devred et al. (2011) model is not included in the comparison of abundance-based

methods as it is classified as a spectral-based approach (see section 4.3.1.2).

These differences notwithstanding, all three approaches assume change in size

structure with a change in chlorophyll. These patterns are compared in Figure

4.3. In general, all three approaches are consistent in that the percentage of large

cells (>20µm) to total chlorophyll increases monotonically as a function of total

chlorophyll-a and that of small cells (<2µm and <20µm) decreases monotonically.

Furthermore, the fraction of nanophytoplankton (2-20µm) to total chlorophyll ap-

pears to display a uni-modal relationship with increasing chlorophyll. The relation-

ships developed using diagnostic pigment analysis of HPLC data are in qualitative

agreement with those proposed by Devred et al. (2011) using phytoplankton absorp-

tion and chlorophyll measurements (Figure 4.3).

Table 4.3 Differences in the use of diagnostic pigments to infer size structure
from Uitz et al. (2006), Brewin et al. (2010a) and Hirata et al. (2011). Micro
>20µm, Nano 2-20µm and Pico <2µm.

Diagnostic Pigment
Taxonomic
group

Uitz et al.
(2006)

Brewin et al.
(2010a)

Hirata et al.
(2011)

Fucoxanthin Diatoms Micro Micro Micro/Nano

Peridinin Dinoflagellates Micro Micro Micro

19’-Hex-fucoxanthin Prymnesiophytes Nano Nano/Pico Nano/Pico

19’-But-fucoxanthin Pelagophytes Nano Nano Nano

Alloxanthin Cryptophytes Nano Nano Nano

Zeaxanthin
Cyanobacteria,
Prochlorophytes

Pico Pico Pico

Total chlorophyll-b∗
Chlorophytes,
Prochlorophytes

Pico Pico Nano

∗ Total chlorophyll-b = chlorophyll-b + divinyl-chlorophyll-b

One of the sources of deviations among methods of Uitz et al. (2006), Brewin et

al. (2010a) and Hirata et al. (2011) could be different diagnostic pigment methods

adopted in each approach (Table 4.3). Brewin et al. (2010a) and Hirata et al. (2011)

adapted the method proposed by Vidussi et al. (2001) and Uitz et al. (2006). The

Brewin et al. (2010a) approach introduces an empirical pico-eukaryote adjustment

that partly attributes 19’-Hexanoyloxyfucoxanthin to the pico-size class in low

chlorophyll waters. Its effect can be observed in Figure 4.3 as the model of Brewin
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et al. (2010a) produces higher estimates of picophytoplankton percent chlorophyll,

and lower estimates of nanophytoplankton percent chlorophyll, when compared

with Uitz et al. (2006) at low chlorophyll concentrations. The model of Hirata et al.

(2011) introduced a further adjustment, attributing a portion of the fucoxanthin

pigment to the nano-size class (also see the adjustment proposed by Devred et al.,

2011), as fucoxanthin can occur in both micro- and nano-sized phytoplankton. The

impact of this modification is probably responsible for the differences observed in

Figure 4.3 at low chlorophyll concentrations (<0.2 mg m−3) as the model of Hirata

et al. (2011) produces higher estimates of nanophytoplankton percent chlorophyll

(between 0.04 to 0.2 mg m−3 chlorophyll) and lower estimates of microphytoplankton

percent chlorophyll, when compared with Brewin et al. (2010a). Another source

of the differences between curves in Figure 4.3 could be the spatial and temporal

differences in in situ data used to parameterise each approach.

The observed differences in the patterns of change in the size structure with

a change in chlorophyll between models (Figure 4.3) are further exemplified when

mapping the differences between each approach to a monthly satellite composite of

the North Atlantic (Figure 4.4).

Figure 4.4 Comparison of abundance-based models for a Level 3, MODIS-
Aqua composite of April 2011. H-U refers to the model results of Hirata et al.
(2011) minus the results of Uitz et al. (2006); B-U refers to the model results
of Brewin et al. (2010a) minus the results of Uitz et al. (2006); and H-B refers
to the model results of Hirata et al. (2011) minus the results of Brewin et al.
(2010a).
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4.3 Spectral-Based Approaches

Spectral-based approaches utilise optical characteristics of phytoplankton or total

particulate matter that vary as a function of size. To see how this might be done,

let us begin with a brief examination of the relationship between ocean colour and

inherent optical properties. Reflectance at the sea surface, at wavelength λ, can be

related to the absorption (a) and backscattering coefficients (bb) according to:

Rrs(λ) = G
bb(λ)

a(λ)+ bb(λ)
, (4.10)

where G is a dimensionless parameter that varies with sun-zenith angle and shape

of the volume-scattering function. The absorption coefficient (a) can be partitioned

into the sum of contributions from pure sea-water (aw ), phytoplankton (aB) and

combined non-algal particles and dissolved substances (adg) such that:

a(λ) = aw(λ)+ aB(λ)+ adg(λ). (4.11)

The absorption by non-algal particles and dissolved substances are often combined

in a remote sensing context, as they display similar spectral shapes (Carder et al.

1991; Nelson et al., 1998). Similarly, the backscattering coefficient can be expressed

as:

bb(λ) = bbw(λ)+ bbp(λ), (4.12)

where bbw(λ) represents back-scattering by pure seawater, and bbp(λ) refers to the

backscattering from particulate matter, including both phytoplankton and detrital

matter. In Case 1 waters, phytoplankton may directly or indirectly influence all

non-water components of Eqs. 4.11 and 4.12 (aB , adg and bbp), but explicit optical

information about the phytoplankton is only contained in the inherent optical

properties (IOPs) directly determined by phytoplankton (aB and to a lesser extent

bbp). Spectral-based approaches can therefore be partitioned into those that use

distinct optical signatures of aB (absorption approaches) or bbp (backscattering

approaches). In contrast to absorption approaches, the backscattering approaches

provide information on the size of the whole particulate assemblage and not only

on phytoplankton cells. There is currently no method to partition the contribution

of bbp by phytoplankton and non-algal particles using satellite data.

Approaches that utilise spectral information about either absorption or backscat-

tering have been implemented using inversion methods, where the satellite re-

flectance is inverted to obtain information on size structure. One way to develop

inversion methods is to use a forward model to simulate reflectance values where

the IOPs are varied according to the size structure of the phytoplankton, from which

a look-up-table is produced for comparison with the satellite reflectance to obtain

information on size structure.
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4.3.1 Absorption spectral-based approaches

Spectral-based approaches that use phytoplankton absorption (aB) rely on size-

dependent changes in the spectral shape of aB or changes in the chlorophyll-specific

absorption coefficient (a∗B ). It has been well established that small phytoplank-

ton display a higher a∗B at blue wavelengths and more pronounced peaks when

compared with large phytoplankton cells (Duysens 1956; Morel and Bricaud, 1981;

Sathyendranath et al., 1987). Such signatures have been used to develop absorption-

based approaches for identifying size structure in phytoplankton communities from

satellite data.

4.3.1.1 Two size classes of phytoplankton

Making use of size-fractioned phytoplankton absorption spectra (pico <2µm, ultra

2-5µm, nano 5-20µm and micro >2µm) and microscopic analyses from a variety of

natural sea-water surface samples, Ciotti et al. (2002) suggested that a size parameter

could be retrieved from the phytoplankton absorption coefficient normalised by

its spectral mean for the 400–700 nm range, hereafter denoted aB(λ). They found

that more than 80% of the variability in aB(λ) could be explained by the dominant

size class and developed a two-component model that related aB(λ) of a sample to

the size structure of the phytoplankton. In their model, aB(λ) is assumed to vary

linearly between two possible extremes, which were represented by the smallest and

the largest cells in their dataset. A dimensionless size factor (Sf ) varying between 0

(100% microphytoplankton) and 1 (100% picophytoplankton) is used, such that:

aB(λ) = [SfaB,pico(λ)]+ [(1− Sf )aB,micro(λ)], (4.13)

where aB,pico(λ) and aB,micro(λ) represent the spectral shapes of pico- and microphy-

toplankton respectively. Ciotti and Bricaud (2006) partitioned the total absorption

(a), derived from satellite data using the model of Loisel and Stramski (2000) and

Loisel and Poteau (2006), into aB and adg using either analytical decomposition

or non-linear optimisation (Ciotti and Bricaud, 2006; Bricaud et al. 2012). The

phytoplankton size factor (Sf ) and the slope of the exponential decrease of adg with

wavelength (Sdg) was obtained assuming:

a(λ) = aw(λ)+ aB(505)([SfaB,pico(λ)]+ [(1− Sf )aB,micro(λ)]) (4.14)

+adg(443) exp[−Sdg(λ− 443)].

The known parameters of the above equation are aB(505), aB,pico(λ), aB,micro(λ) and

aw(λ). Phytoplankton absorption at 505 nm is estimated as a power function of

chlorophyll (Bricaud et al., 1998) using a standard chlorophyll algorithm (e.g., NASA

OC4) prior to the inversion. The retrieved parameters in the approach include Sf ,

adg(443) and Sdg. Note that this approach allows a pixel-by-pixel retrieval of Sdg for
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the very first time. Bricaud et al. (2012) successfully applied this approach to 12

years of SeaWiFS data and analysed spatial-temporal variations in phytoplankton

size, as indexed by Sf , at global and regional scales.

Using the Ciotti et al. (2002) model, Mouw and Yoder (2010) developed an

approach to estimate the fraction of microphytoplankton in the phytoplankton

assemblage in a satellite pixel by application of a forward ocean-colour model.

Using the HYDROLIGHT software (Mobley and Sundman, 2006), remote sensing

reflectances (Rrs(λ)) were modelled using inherent optical properties (Figure 4.5).

The phytoplankton absorption coefficient (aB(λ)) was modelled as a function of

chlorophyll and the chlorophyll-specific absorption coefficients for micro- and pi-

cophytoplankton derived from Ciotti et al. (2002) and Ciotti and Bricaud (2006),

respectively. A size factor for microphytoplankton (Sfm), the inverse of the Sf
parameter developed by Ciotti et al. (2002) (Sfm = 1 − Sf ), was used to vary the

chlorophyll-specific absorption coefficient between pico- and microphytoplankton.

An ensemble of simulations was run varying Sfm, adg(443) and chlorophyll concen-

tration (C) within realistic bounds found across the global ocean. The result was a

look-up table (LUT) of simulated RLUTrs (λ), C , Sfm and adg(443).
In their method, Mouw and Yoder (2010) first estimated chlorophyll and adg(443)

from satellite data using the GSM model (Maritorena et al., 2002). These values were

then used to narrow the search-space of the simulated LUT. The satellite-retrieved

remote-sensing reflectances (RSAT
rs (λ)), adjusted so as to be equivalent to RLUT

rs (λ),
were then compared with corresponding values in the LUT. The closest match

between the adjusted and simulated values was determined and the associated Sfm

assigned to that pixel. A schematic diagram showing the application of the approach

of Mouw and Yoder (2010) is provided in Figure 4.5.

Devred et al. (2006) extended the two-population absorption model of Sathyen-

dranath et al. (2001) to obtain the chlorophyll-specific absorption coefficients

(a∗B (λ)) for two component size classes. Their model estimates aB(λ) as a function

of chlorophyll assuming the assemblages of the two sizes vary as the chlorophyll

concentration changes, such that:

aB(λ) = Cmp,n[a∗p,n(λ)− a∗m(λ)][1− exp(−Sp,nC)]+ a∗m(λ)C, (4.15)

where Cmp,n represents the chlorophyll-maximum for small cells, Sp,n determines

the increase in small-celled chlorophyll with increasing total chlorophyll-a (C), and

a∗p,n(λ) and a∗m(λ) represent chlorophyll-specific absorption coefficients of small-

and large-celled populations, respectively. These parameters were derived directly

from the absorption and chlorophyll data, assuming that small cells dominate at low

chlorophyll concentrations. Devred et al. (2006) used a∗m(440)=0.05 (m2 [mgC]−1) as

an arbitrary threshold value to distinguish between populations dominated by small

(pico- and nanophytoplankton) and large (microphytoplankton) populations, and

demonstrated a good correlation between size structure inferred from absorption

characteristics and those estimated independently using HPLC pigment analysis.
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Significant seasonal and regional changes in a∗p,n(λ) and a∗m(λ) were identified,

related to changes in species composition.

4.3.1.2 Three size classes of phytoplankton

Using a large database of absorption and HPLC data, and making use of relationships

between HPLC diagnostic pigments and size structure (Vidussi et al., 2001; Uitz et

al., 2006), Uitz et al. (2008) computed chlorophyll-specific absorption coefficients

for pico- (a∗p(λ)), nano- (a∗n(λ)) and microphytoplankton (a∗m(λ)), and modelled

changes in these coefficients with depth-related changes in irradiance, such that:

a∗B (λ) =
1
C

3∑
i=1

Cia∗i (λ) exp

(
−Ri

z
Z p

)
, (4.16)

where i = {pico-, nano- and microphytoplankton} and Ri represent the slopes de-

scribing the variations in the chlorophyll-specific absorption coefficients for the

three size classes along the vertical z/Zp axis (z = depth and Zp = euphotic depth).

The model was coupled to the abundance-based method of Uitz et al. (2006), and

together with additional size-specific phytophysiological parameters (Uitz et al.,

2008), used to compute size-fractionated primary production at regional and global

scales (Silió-Calzada et al., 2008; Uitz et al., 2009; 2010; 2012).

Making use of HPLC data and the pigment size-class model of Brewin et al.

(2010a) (see Eqs. 4.1 – 4.4), Brewin et al. (2011a) extended the two-component model

of Sathyendranath et al. (2001) and Devred et al. (2006) to three-components, such

that:

aB(λ) = a∗p(λ)Cmp [1− exp(−SpC)]+ (4.17)

a∗n(λ){Cmp,n[1− exp(−Sp,nC)]− Cmp [1− exp(−SpC)]} +
a∗m(λ){C − Cmp,n[1− exp(−Sp,nC)]},

where the pico- and the nanophytoplankton components are split into two compo-

nents, and a∗p(λ) and a∗n(λ) represent the chlorophyll-specific absorption coeffi-

cients of pico- and nanophytoplankton respectively, and Sp determines the rate of

change in the chlorophyll concentration associated with picophytoplankton, with

change in total chlorophyll concentration. The three terms in Eq. 4.17 represent the

contributions to absorption at wavelength (λ) from each of the three size classes.

To solve the above equation, Brewin et al. (2011a) used a database of correspond-

ing phytoplankton absorption and HPLC pigment data (Werdell and Bailey, 2005).

The parameters Cmp,n, Cmp , Sp,n and Sp were first obtained using the pigment-based

model of Brewin et al. (2010a) (see Eqs. 4.1 – 4.4), and then Eq. 4.17 was fitted to the

phytoplankton absorption and chlorophyll data to obtain the chlorophyll-specific

absorption coefficients for pico- (a∗p(λ)), nano- (a∗n(λ)) and microphytoplankton

(a∗m(λ)). They used the model to map the absorption at 443 nm from the three size



86 • Phytoplankton Functional Types from Space

classes, using Eq. 4.17 along with satellite-derived chlorophyll values (O’Reilly et al.,

1998).

Devred et al. (2011) solved Eq. 4.17 by successive two-step application of the two-

component model of Sathyendranath et al. (2001) and Devred et al. (2006), such that,

a∗p(λ), a∗n(λ) and a∗m(λ) were derived directly from the absorption and chlorophyll

data. The method was then integrated into the model of Sathyendranath and Platt

(1997), incorporating Raman Scattering (Sathyendranath and Platt, 1998), to compute

the chlorophyll concentrations of the three size classes directly from remote-sensing

reflectances, using non-linear optimisation. Computed size-fractionated chlorophyll

compared well with independent estimates using HPLC pigment data.

4.3.1.3 Comparison of spectral approaches based on absorption

Figure 4.6 shows spectral values of chlorophyll-specific phytoplankton absorption

coefficients for pico-, nano- and microphytoplankton from a number of studies. In

general, the coefficients display some consistency, such that at blue wavelengths

picophytoplankton has higher chlorophyll-specific absorption coefficients than the

nanophytoplankton size class, which are higher than those of the microphytoplank-

ton size class. Furthermore, picophytoplankton generally displays sharper peaks in

absorption than the nano-size class, and the microphytoplankton size class displays

the flattest spectral shape.

Despite this consistency, some differences are also evident in Figure 4.6. A

probable cause is differences in the methods by which the coefficients were derived.

For instance, the Uitz et al. (2008) and the Brewin et al. (2011a) methods made use

of HPLC data, Ciotti et al. (2002) made use of filtered size-fractioned phytoplankton

absorption data, and Devred et al. (2006; 2011) used phytoplankton absorption and

chlorophyll data. There are also considerable spatio-temporal differences in the

datasets used in each study. The chlorophyll-specific phytoplankton absorption co-

efficient and its associated spectral shape are influenced not only by phytoplankton

size structure, but also the physiological state of the phytoplankton and changes

in the growth environment (Johnsen et al., 1994). Differences in phytoplankton

species within size-classes are also likely contributors to the discrepancies between

coefficients presented in Figure 4.6. It remains to be evaluated how sensitive the

spectral-based absorption approaches are to variations as shown in Figure 4.6.

To evaluate the sensitivity of blue-green reflectance ratios (typically used to esti-

mate chlorophyll empirically from satellite data) to the differences in the chlorophyll-

specific phytoplankton absorption coefficients of the different size classes, a simple

Case 1 optical model was developed (Figure 4.7). In this model, the IOPs are modelled

as a function of chlorophyll: ad and ag are modelled following Bricaud et al. (2010)

and Morel (2009); aw is taken from Pope and Fry (1997); bbp is modelled following

Huot et al. (2008); and bbw is estimated from Zhang and Hu (2009) and Zhang et al.

(2009). The phytoplankton absorption coefficient (aB) was estimated as a product of
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Figure 4.6 Chlorophyll-specific phytoplankton absorption coefficients and
spectral shapes of phytoplankton absorption coefficients for three size classes,
estimated from some studies. For the Devred et al. (2011) study, the super-
script 1 refers to coefficients derived using data from the North-West Atlantic
and super-script 2 data from the NOMAD database. For the Uitz et al. (2008)
study, surface spectra are shown and z/Zp in Eq. 4.16 is set to zero.

the chlorophyll-specific phytoplankton absorption coefficient (a∗B ) and chlorophyll

concentration. Having computed a and bb, remote-sensing reflectance (Rrs) was

estimated at a number of wavelengths following Gordon et al. (1988). A number

of simulations were run for each size class by varying a∗B among values shown in

Figure 4.6. The maximum band ratio (Rrs(443) > Rrs(490) > Rrs(510)/Rrs(555)) for

each simulation was then plotted as a function of chlorophyll (Figure 4.7) with the

empirical OC4v6 algorithm O’Reilly et al. (1998) superimposed.
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Consistent with Dierssen (2010), the general shape of the OC4v6 algorithm

was retrieved for each simulation, with high blue-green reflectance-ratios at low

chlorophyll concentrations and low blue-green reflectance-ratios at high chlorophyll

concentrations. The amplitude and shape of the trend line, however, varied accord-

ing to the size structure. At lower chlorophyll concentrations, the OC4v6 algorithm

was closer to the picophytoplankton simulations, but at higher chlorophyll concen-

trations it was closer to the nano- and microphytoplankton simulations. The results

highlight the fact that information on the absorption properties of phytoplankton

size is implicit in the empirical OC4v6 algorithm (Dierssen, 2010). Both in situ

and modelling studies, however, have shown that empirical algorithms such as the

OC4v6, can overestimate chlorophyll concentration in waters where specific IOP

values are higher than average and vice versa (Loisel et al. 2010; Mouw et al., 2012).

For instance, as shown in Figure 4.7 at a chlorophyll concentration of 1 mg m−3, if

a picophytoplankton population dominates, with a higher than average a∗B (443)
typically observed at 1 mg m−3, chlorophyll would be overestimated using the OC4v6

algorithm. Studies have shown that species-dependant algorithms can result in

better estimates of chlorophyll when compared with standard empirical algorithms

(Sathyendranath et al., 2004b; Alvain et al., 2006).

For our test case (Figure 4.7), the relationships between the blue-green reflectance-

ratios and chlorophyll concentration display consistency for each size class. For a

given chlorophyll concentration, the blue-green reflectance-ratio of picophytoplank-

ton is always lower than that of nanophytoplankton, which is lower than that of the

microphytoplankton size class, regardless of whether values from the studies of

Ciotti and Bricaud (2006), Uitz et al. (2008), Brewin et al. (2011a) or Devred et al.

(2011) were used.

Figure 4.7 An example of the expected variation in the ratio of blue-to-green
reflectance caused by varying the chlorophyll-specific phytoplankton absorption
coefficients of three size classes of phytoplankton from a number of different
studies shown in Figure 4.6.
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4.3.2 Backscattering approaches

Backscattering approaches differ from absorption-based approaches as they provide

size estimates for the whole particulate pool and not just for phytoplankton. To link

the size-structure of the whole particulate pool with the size-structure of the phy-

toplankton assumes that either the ocean particulate assemblage is predominately

biogenic, or that there exists some natural covariation between the size distributions

of phytoplankton and that of non-algal particles.

Spectral-based approaches that use the particle backscattering coefficient (bbp)

to derive information on size structure typically rely on the assumption that small

particles have enhanced backscattering towards shorter wavelengths, whereas larger

particles tend to have a flatter backscattering spectrum. Morel (1973) showed that

the spectral dependency of scattering is sensitive to the shape of the particle size

distribution (PSD), using theoretical calculations. Using field data, Reynolds et al.

(2001) observed that the spectral dependency of bbp expressed as a power function

with exponent γ increases with the relative contribution of small sized particles

to the total particle assemblage (see also Ulloa et al., 1994). Their equation is

represented as Eq. 4.18 below, where λ0 is the reference wavelength.

bbp(λ) = bbp(λ0)
(
λ
λ0

)−γ
. (4.18)

Using Mie scattering calculations, Ulloa et al. (1994) and Wozniak and Stramski

(2004) found that, as the slope of the PSD increases, so does the spectral slope of

bbp (γ). Therefore, γ may provide an index of the proportion of small-sized and

larger particles in the total particle assemblage, and potentially information on the

slope of the PSD, with higher γ values indicating a steeper slope of the PSD and vice

versa.

Loisel et al. (2006) applied an inverse optical model (Loisel and Stramski, 2000;

Loisel and Poteau, 2006) to derive the particulate backscattering coefficient (bbp)

at three wavelengths. Once bbp is obtained at the three wavelengths using the

Loisel and Poteau (2006) model, Loisel et al. (2006) computed γ as the slope of

the linear regression between log[bbp(λ)] and log[(λ)]. Application of the model

to satellite imagery demonstrated a general decrease in γ from oligotrophic to

eutrophic regimes, with higher values of γ (> 2) in oligotrophic waters where smaller

phytoplankton dominate, and lower values of γ (∼ 0) in more eutrophic waters

where larger phytoplankton dominate. This is consistent with the expectation that

small particles have enhanced backscattering at shorter wavelengths and that the

spectral shape of back-scattering by large particles is flatter. An inverse correlation

between chlorophyll and γ was noted, but with significant spatial and temporal

variation.

Kostadinov et al. (2009) assumed that the PSD can be approximated by a linear

function in log space (the classical power-law or Junge-type distribution), with
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parameters ξ, the slope, and N0, the particle number concentration for a given

reference diameter D0, such that:

N(D) = N0

(
D
D0

)−ξ
, (4.19)

where N(D) is the number of particles per volume of seawater normalised by the

size bin width and D is the particle diameter. Based on simulations using Mie

theory, a look-up table (LUT) was generated of γ and corresponding values of ξ
and log10(bbp(440)/No). Using satellite remote-sensing reflectance, γ and bbp(440)
were computed using the model of Loisel and Poteau (2006), on a pixel-by-pixel

basis. Corresponding values of ξ and No were then estimated from the LUT. Then, ξ
and No were used to estimate the particle number and volume concentrations of

pico-, nano- and micro-sized particles by integration of Eq. 4.19 between certain

size diameter limits. A schematic diagram of the method of Kostadinov et al. (2009)

is provided in Figure 4.8.

Kostadinov et al. (2009) provide a detailed description of assumptions and uncer-

tainties in their approach and highlight the fact that highest uncertainty is expected

in very productive regions. Furthermore, when retrieving information on particle

size-structure, the assumption is made that relative proportions of biovolume are

roughly constant across size classes. The Kostadinov et al. (2009) approach was

validated against HPLC data (Kostadinov et al., 2010) which indicated pigment-based

pico-, nano- and micro-sized phytoplankton correspond approximately to pico-,

nano- and micro-particles derived from backscattering. The approach has been

applied to 10-years of satellite measurements to investigate seasonal and inter-

annual variations in phytoplankton size structure (Kostadinov et al., 2010). Results

indicate that, whereas spatial patterns in log-transformed chlorophyll and ξ exhibit

a marked inverse correlation (r = −0.88 for waters deeper than 200m), trends

in ξ and particle-size classes, and their relationships with the El Niño Southern

Oscillation, may behave differently to that of chlorophyll, emphasising a need to

capture additional information beyond chlorophyll, for use in ocean ecosystem

characterisation.

Using data from the Benguela (eastern boundary current system) in South Africa,

Hirata et al. (2008b) developed a model that retrieves ξ, and then linked it to the

dominant phytoplankton size class. Using Lorenz-Mie light scattering theory, the

ratio of bbp at two wavelengths (λ1 and λ2) can be tied to ξ and γ assuming that:

bbp(λ1)
bbp(λ2)

=
(
λ1

λ2

)−ξ+3

=
(
λ1

λ2

)−γ
, (4.20)

where γ = ξ − 3 (Morel, 1973). Equation 4.20 shows that it is the relative spectral

variation of bbp(λ) at a pair of wavelengths that is required to estimate ξ rather

than the absolute magnitude of bbp(λ). The Lorenz-Mie approach also highlights

the direct
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relationship between γ and ξ. However, the full Mie calculations show deviations

from this simple relationship, especially for low values of ξ (e.g., see Figure 1 in

Kostadinov et al., 2009). Using in situ data, Hirata et al. (2008b) showed that

γt (the spectral dependency of bb, not of bbp) may be related to γ according to

γ = 0.562γt − 0.220. Then ξ was estimated as:

ξ = 0.562γt + 2.780. (4.21)

Hirata et al. (2008b) also used a relationship between ocean-colour reflectance

ratio and γt . The ocean-colour reflectance can be expressed as:

Rrs(λ) = tF(λ)
bb(λ)
a(λ)

, (4.22)

where t and F(λ) are the transmittance function between air-sea interface and the

bidirectional reflectance function, respectively. When t has no significant wavelength

dependency (Austin, 1974), the ocean-colour reflectance ratio can be expressed as:

Rrs(λ1)
Rrs(λ2)

= δ(λ1, λ2)
bb(λ1)
bb(λ2)

= δ(λ1, λ2)
(
λ1

λ2

)−γt
, (4.23)

where δ(λ1, λ2) is [F(λ1)a(λ2)]/[F(λ2)a(λ1)]. For the wavelength pair λ1 = 490 nm

and λ2 = 555 nm, Hirata et al. (2008b) found a mean value of δ(λ1, λ2)−1 of 1.003,

with a standard deviation of 0.291, based on an analysis of in situ data (NOMAD

version 2.0). Substitution of Eq. 4.21 into 4.23 (assuming δ(λ1, λ2) is constant),

gives:

ξ = A1 · log
(
Rrs(λ1)
Rrs(λ2)

)
+A0, (4.24)

where A1 and A0 are empirically-determinable coefficients. Eq. 4.24 suggests that

ξ may be derived from a simple ocean-colour ratio. Note that ξ derived using Eq.

4.24 is highly correlated with chlorophyll estimated from a simple ocean-colour

ratio (O’Reilly et al., 1998). Hirata et al. (2008b) showed that for the Benguela

study area A0 = 2.5311 and A1 = 1.4480 when using satellite Rrs(λ). They then

identified the dominant phytoplankton size classes using threshold values of ξ
derived from in situ data (ξ <2.38 for microphytoplankton, ξ >2.38 and <3.53 for

nanophytoplankton, and ξ >3.53 for picophytoplankton).

Figure 4.9 shows maps of (a) ξ, (b) the dominant phytoplankton size classes

estimated using the backscattering approach of Hirata et al. (2008b) and (c) the

absorption approach of Hirata et al. (2008a), for the Benguela upwelling system

using SeaWiFS data for December 2005. It is clear that the dominant phytoplankton

size classes derived from both approaches (backscattering and absorption) agree

well.
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Figure 4.9 SeaWiFS-derived variables for December 2005: a) Junge parameter
ξ, b) phytoplankton size classes using the backscattering and PSD approach
following Hirata et al. (2008b), and c) phytoplankton size classes using the
absorption approach (aB) following Hirata et al. (2008a). Higher values of ξ
(approximately 5) indicate abundance of smaller particles, and lower values
(toward 1) indicate larger particles.

4.3.2.1 Comparison of spectral approaches based on backscattering

The spectral approaches based on backscattering of Loisel et al. (2006) and Kostadi-

nov et al. (2009) differ in their conceptual framework from that of Hirata et al.

(2008b). Loisel et al. (2006) estimate γ using an inversion model and relate it

qualitatively to small and large particles in the ocean. The method of Kostadinov et

al. (2009) builds on the work of Loisel et al. (2006), and using Mie theory, relates γ
quantitatively to parameters of the particle size distribution (PSD), such as the slope

(ξ) and the particle number concentration (No) for a given reference diameter (Do),
to compute the particle volume concentrations of three size classes of particles.

Alternatively, Hirata et al. (2008b) empirically relate the slope of the PSD (ξ) to

a simple blue-green ocean-colour band-ratio. These differences notwithstanding,

all three approaches link a change in particle size structure to a change in the

spectral slope of bbp(λ) (γ), and assume that particle populations dominated by

small particles have a relatively high value of γ and ξ and the inverse for particle

populations dominated by large particles.

To evaluate the sensitivity of blue-green reflectance ratios to the differences in

values of γ associated with small and large particles, a simple Case 1 optical model

was developed (Figure 4.10), similar to that of Figure 4.7. In this model, the IOPs are

modelled as a function of chlorophyll: ad and ag are modelled following Bricaud

et al. (2010) and Morel (2009); aB modelled as a power-function of chlorophyll

following Bricaud et al. (1995); aw is taken from Pope and Fry (1997); bbp(550) is

modelled following Huot et al. (2008); and bbw is estimated from Zhang and Hu

(2009) and Zhang et al. (2009). Using different values of γ, the spectral shape of bbp

is then set to environments expected of small-cell dominated populations (γ ∼ 2)

and environments dominated by large-cell populations (γ ∼ −1). Having computed
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a and bb, remote sensing reflectance (Rrs) was estimated at a number of wavelengths

following Gordon et al. (1988) for the different values of γ. A maximum band ratio

(Rrs(443) > Rrs(490) > Rrs(510)/Rrs(555)) for each simulation was then plotted as

a function of chlorophyll (Figure 4.10) with the empirical OC4v6 algorithm (O’Reilly

et al., 1998) superimposed.

Figure 4.10 An example of the expected variation in the ratio of blue-to-green
reflectance caused by varying typical values of γ for small and large particles.

Consistent with Figure 4.7, the general shape of the OC4v6 algorithm was

retrieved for each simulation (Figure 4.10). However, the location of the trend

line varied according to the chosen γ value. At lower chlorophyll, the OC4v6

algorithm was closer to the model results for environments dominated by small

cells (γ ∼ 2), whereas, at higher chlorophyll the OC4v6 algorithm was closer to that

of environments dominated by large cells (γ ∼ −1), indicating that information on

the backscattering properties of the size classes are also implicitly built into the

empirical OC4v6 algorithm.

4.4 Discussion

4.4.1 Spectral-based approaches: absorption or backscattering?

Spectral-based models shown in this chapter are based on the spectral characteristics

of either the phytoplankton absorption coefficient, or the particle backscattering

coefficient. There are advantages and disadvantages to using either index.

The advantage of using spectral characteristics of the phytoplankton absorption

coefficient, in comparison with the particle backscattering coefficient, is that it can

be solely tied to the phytoplankton, whereas, the particle backscattering coefficient

is influenced by all particles (organic or inorganic) in addition to phytoplankton.

Whereas some studies have attempted to partition the influence of these components

on bbp using Mie scattering theory (Stramski and Keifer, 1991), there is currently
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no method available using satellite data. Some have argued that phytoplankton are

responsible for only a small fraction of backscattering by particles, as they are large

with respect to the wavelengths of visible light and their refractive index is similar

to seawater (Stramski and Keifer, 1991). However, numerous evidences, based

on theoretical and experimental studies, have suggested that phytoplankton-sized

particles may contribute more to backscattering than previously predicted (Bohren

and Singham, 1991; Bricaud et al., 1992; Kitchen and Zaneveld, 1992; Vaillancourt et

al., 2004; Clavano et al., 2007; Bernard et al. 2009; Dall’Olmo et al., 2009; Whitmire

et al., 2010; Martinez-Vicente et al., 2012).

On the other hand, the shape of the phytoplankton absorption coefficient is influ-

enced by light and nutrient-driven changes in intracellular pigment concentrations,

whereas, the particle backscattering coefficient is less sensitive to physiological

variability in the phytoplankton. Making use of bio-optical models tuned to the

Chukchi and Bering Sea shelf region, Fujiwara et al. (2011) used information on

both the shape of the phytoplankton absorption coefficient and the shape of the

particle backscattering coefficient, as input to a multi-linear regression to determine

the fraction of small and large celled phytoplankton in Artic waters. They found

model performance improved when using both pieces of information.

4.4.2 Advantages and disadvantages of abundance-based and spectral-
based approaches

As highlighted in Figures 4.7 and 4.10, empirical relationships that tie the chlorophyll

concentration to the ratio of blue to green reflectance, implicitly contain information

on the size structure of the phytoplankton. Abundance-based approaches essentially

expose these underlying relationships. They are easy to implement offering a

simple method to reveal the expected size structure of the phytoplankton at a

given pixel, based on in situ correlations between size structure and phytoplankton

abundance. The model of Hirata et al. (2008b) could also fall under the abundance-

based category, considering it uses a blue-to-green reflectance ratio to estimate the

slope of the particle size distribution which is empirically related to size structure.

Abundance-based approaches have been used in primary production models to

provide synoptic estimates of size-fractionated primary production using satellite

data (Silió-Calzada et al., 2008; Uitz et al., 2008; 2009; 2010; 2012; Hirata et al., 2009;

Brewin et al., 2010b).

A disadvantage of abundance-based approaches is that they are indirect methods

for detecting phytoplankton size structure. They rely on observed patterns of

change in the size structure with a change in abundance. They would fail to

distinguish between blooms of different types of phytoplankton with the same

abundance. Variability in optical properties of phytoplankton within size-classes

according to temperature, nutrient and light regimes may introduce additional

classification errors. Furthermore, considering that abundance-based methods rely
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on observed relationships between size structure and abundance, and considering

that these relationships maybe subject to change (e.g., climate change), abundance-

based approaches are less suitable for long-term analysis as they require on-going

recalibration with in situ observations.

In comparison with abundance-based approaches, spectral-based approaches are

more direct, as they rely on observing distinct optical signatures. They are therefore

more suitable for long-term analysis. Unlike abundance-based approaches, they are

also capable of detecting changes in size structure independent of phytoplankton

concentration.

A disadvantage of spectral-based approaches is that the optical signatures on

which they depend can be small and easily confounded with noise (Garver et al.,

1994). Accurately exploiting the spectral characteristics of different phytoplankton

size classes to identify and distinguish among them may not always be successful.

Problems with spectral-based approaches can also occur when trying to discriminate

different phytoplankton size classes with similar optical signatures. Furthermore, as

with abundance-based approaches, variability in optical properties of phytoplankton

within size-classes according to temperature, nutrient and light regimes, may also

introduce additional classification errors in absorption-based approaches.

An initial intercomparison of abundance-based and spectral-based approaches

indicated that they may perform with similar accuracy (Brewin et al., 2011b). How-

ever, uncertainties in the intercomparison procedure and data sources (both in situ

and satellite) suggest that improved availability of in situ observations is required to

draw more definitive conclusions. Continuing international intercomparison efforts

are currently underway (Hirata et al., 2012).

Figure 4.11 shows a hierarchical classification of models used for phytoplankton

size-class detection as described in this chapter. The models become progressively

more complex and complete from the upper to the lower level of the flow diagram.

Pending future international intercomparison efforts (Hirata et al., 2012), there is

currently little evidence to indicate which approach gives the best performance.

It is likely that models perform differently under contrasting conditions and envi-

ronments, hence the need to tailor models for specific applications or for specific

regions. The choice of model, whether abundance-based or spectral-based (using

absorption or backscattering approaches), should depend very much on the scientific

question being addressed.
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4.4.3 Novel and future methods

In this chapter, methods for detecting phytoplankton size structure have been

partitioned into abundance-based and spectral-based approaches. This classification

is by no means exhaustive. Advanced statistical approaches have been applied

to optical data to extract additional information on phytoplankton such as size

structure. Such methods include self-organising maps, multi-layered perceptrons

and neural-networks (Chazottes et al., 2006; 2007; Bricaud et al. 2007).

Raitsos et al. (2008) used combined bio-optical and other information (including

chlorophyll concentration, water-leaving radiance, sea-surface temperature (SST),

photosynthetic available radiation, wind stress and geographic and temporal loca-

tion) as input to a neural-network to map the distribution of diatoms, dinoflagellates,

silicoflagellates and coccolithophores. The phytoplankton types were grouped into

size-classes and included in a size-class intercomparison (Brewin et al., 2011b) yield-

ing reasonable results. Barnes et al. (2011) used information on remotely-sensed

SST as well as chlorophyll concentration as input to an empirical model to estimate

information about the phytoplankton community in relation to its size structure,

such as the median phytoplankton cell weight and the slope and intercept of the

size spectra.

Pan et al. (2010b) developed empirical algorithms based on reflectance ratios

to approximate key phytoplankton pigment concentrations (e.g., fucoxanthin and

zeaxanthin) in the northeast coast of the United States. Using these empirical algo-

rithms coupled to CHEMTAX analysis, the distributions of different phytoplankton

communities were mapped using satellite observations (Pan et al. 2010a). Such an

approach could be applied to HPLC-based size class classification methods, to map

size-class distributions using satellite observations. Roy et al. (2010) developed an

approach that used the in vivo absorption coefficient of phytoplankton cells per unit

chlorophyll concentration, to derive the average size of the phytoplankton popula-

tion analytically. Their model computes the average cell size for a sample, given the

phytoplankton absorption coefficient at 676 nm and the chlorophyll concentration.

The method is easy to apply as an operational tool for in situ measurements and

has the potential for application to remote sensing of ocean-colour data.

Most of the theoretical models that underpin our understanding of the effect of

size on inherent optical properties are based on the assumption that the suspended

particles in the ocean, including phytoplankton, can be modelled as homogenous

spheres. But refinements to such models have been explored Kitchen and Zaneveld

(1992). For example, Bernard et al. (2007; 2009) investigated the optical properties of

algal cells using two-layered spherical geometry. Two-layered models were used to

examine effects of varying cellular geometry, chloroplast volume and complex index

of reflection on optical efficiency factors. The approach was then extended to poly-

dispersed populations using equivalent size distribution models to demonstrate

variability in simulated inherent optical properties for phytoplankton assemblages
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of changing dominant cell size and functional type. The study indicated that the

combined use of equivalent size distributions with heterogeneous geometry can

be used to establish a quantitative formulation between single particle optics, size

structure and assemblage-specific IOPs, and has potential for application to ocean

colour.

A recurrent problem in using ocean-colour data to extract information on phyto-

plankton or particle size structure is the limited number of wavelengths available to

address the problem, compared with the number of model parameters that are to be

retrieved. The development of hyperspectral remote sensing is expected to alleviate

this problem significantly. Hyperspectral remote sensing may allow for monitoring

additional spectral features characteristic of phytoplankton communities that are

indistinguishable though current multi-spectral sensors. Lubac et al. (2008) used in

situ hyperspectral and multispectral data to investigate the feasibility of detecting

Phaeocystis globosa in coastal waters. They found that, whereas it is feasible to

detect Phaeocystis globosa using multispectral data, additional information about

CDOM concentration should be included. By analysing the second derivative of Rrs

using hyperspectral data, which was found to be closely related to a∗B of Phaeo-

cystis globosa as well as its relative biomass, additional information about CDOM

concentration was not required, as the second derivative was not effected by the

characteristic exponential function associated with CDOM.

4.5 Summary

In this chapter a number of approaches designed to detect phytoplankton size

structure have been illustrated. Such approaches were partitioned into abundance-

based methods, that rely on observed relationships between some measure of

abundance of phytoplankton and their size structure, and spectral-based methods,

that utilise optical characteristics of phytoplankton or total particulate matter that

vary as a function of size.

Abundance-based methods were partitioned into those that rely on discrete

trophic classes and those that estimate phytoplankton size structure based on a

continuum of abundance measures. Despite their conceptual differences, abundance-

based methods essentially assume a change in size structure with a change in

chlorophyll (or possibly other measures of abundance, such as total phytoplankton

absorption coefficient at a specific wavelength), with large cells dominating at

high concentrations and small cells at low concentrations. Differences between

abundance-based approaches can be partly explained by the differences in the

methods and in situ data used for model parameterisation.

Spectral-based methods can be partitioned into those that use distinct optical

signatures of the phytoplankton absorption coefficient or the particle backscattering

coefficient. Absorption-based spectral approaches have been proposed to detect
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two and three size classes, and despite some conceptual differences, essentially rely

on the assumption that small cells have a higher chlorophyll-specific absorption

coefficient at blue wavelengths and more pronounced peaks when compared with

larger phytoplankton. Backscattering spectral-based approaches typically rely of the

assumption that smaller particles have enhanced backscattering at blue wavelengths

whereas large particles display a relatively flat backscattering spectrum.

Similarities and differences between abundance-based and spectral-based ap-

proaches were investigated in this chapter, as were advantages and disadvantages of

each method. The classification into abundance-based and spectral-based methods

is by no means clear cut, and we have highlighted some other novel approaches that

are likely to gain in strength with the development of hyperspectral satellite data.



Chapter 5

Remote Sensing Algorithms for Multiple
Phytoplankton Types

Shubha Sathyendranath, Severine Alvain, Astrid Bracher, Takafumi
Hirata, Samantha Lavender, Dionysios Raitsos and Collin Roesler

5.1 Introduction

This chapter is devoted to algorithms that are designed to deal with detection and

mapping of multiple phytoplankton types using satellite data. The chapter describes

a number of approaches that differ from each other from a technical perspective, as

well as in the nature of the products.

One of the methods is based on observed differences in the anomalies of re-

flectance spectra with changes in the dominant type of phytoplankton present in the

water. Another makes use of differential absorption spectra of phytoplankton types.

This approach exploits hyperspectral satellite data, and a novelty of the method is

that it deals with the total signal received by the satellite, without going through an

atmospheric correction algorithm first to isolate the ocean signal. Methods based

on Artificial Neural Networks are presented, which make use of data from multiple

satellites, including ocean-colour sensors, and map the phytoplankton types on

the basis of their environmental preferences. Abundance-based methods are also

available for mapping multiple phytoplankton types that infer phytoplankton types

from measures of abundance derived from ocean-colour data. Algorithms based on

forward modelling of remote-sensing reflectance that accounts for the distinctive

inherent optical properties of different phytoplankton types, combined with statisti-

cal inversion methods to identify the contributions of the component types from

observed reflectance spectra have also been proposed.

Of all these algorithms, the abundance-based methods and the environmental

approaches can be classified as indirect methods, in the sense that the distribu-

tions of phytoplankton types are inferred, and not detected directly from any

remotely-sensed signal that sets each phytoplankton type apart from everything

else. According to this criterion, the other methods can be treated as direct methods.

Some of these algorithms are designed to identify dominant phytoplankton types,

whereas some of the others are capable of identifying the relative contributions

101
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from multiple types. Some are based on pigment concentrations as measure of

abundance of phytoplankton populations, whereas others are based on cell counts.

5.2 Statistical Methods Based on Spectral Anomaly

As seen in Chapter 1 and elsewhere in this report, various phytoplankton species

in the ocean have different types and proportions of accessory pigments, result-

ing in slightly different absorption spectra. Furthermore, phytoplankton types

are also distinguished often by their cell sizes and refractive indices that affect

their absorption and backscattering efficiency. All these changes lead to modifi-

cations of the reflectance spectrum that are type-specific. When such differences

exist, anomalies in remote-sensing reflectance (Rrs) spectra can be associated in

a systematic manner with the dominant phytoplankton type present, and par-

ticular features in the anomaly spectra can then be associated directly with the

phytoplankton types. This information can then form the basis of remote-sensing

algorithms for identifying those phytoplankton types. The approach is illustrated

using the work of Alvain et al. (2005; 2008), which goes by the acronym PHYSAT (see

http://log.univ-littoral.fr/Physat: IDDN.FR.001.330003.000.S.P.2012.000.30300).

Since the method is based on direct empirical comparison of information on

community structure with anomalies in Rrs, it is particularly important to assemble

an exhaustive in situ dataset that is representative of all possible cases to which the

method is applied.

5.2.1 Establishing a global in situ dataset for satellite match-ups

The first step is to collect the pertinent in situ measurements with biological in-

formation rich enough to indicate the dominant species, and numerous enough to

allow a statistical approach using ocean-colour measurements made by satellite at

the same time and place. The samples should be representative of a wide range

of climatic conditions and geographic locations. For PHYSAT, the requisite data

were first collected by sampling along a commercial sea route: A German shipping

company agreed to host an oceanographer on board one of its ships, the Contship

London, to collect water samples on each of its voyages from Le Havre (France) to

Noumea (New Caledonia). This was the origin of the GeP&CO project (Geochemistry,

Phytoplankton and Color of the Ocean; Dandonneau et al., 2004). This long sea

route crossed most conditions that can be encountered in the world ocean (except

the polar and subpolar regions) and included the North Atlantic with its spring

phytoplankton bloom, the East coast of North America, the Caribbean Sea and Gulf

of Panama, the Equatorial Pacific with abundant nutrients but no iron, the South

Pacific anticyclonic gyre where plankton is scarce, and Temperate waters near New

Zealand and the Tasman Sea.

http://log.univ-littoral.fr/Physat
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Routine measurements of about 20 pigments enabled most phytoplankton

groups, with known pigment signatures, to be identified. GeP&CO consisted of

12 campaigns, one per trimester from November 1999 to August 2002 (see http:

//www.lodyc.jussieu.fr/gepco/). This database was used to establish the first version

of PHYSAT (2005; 2008). More recently, a new calibration and validation exercise

was undertaken, with additional in situ measurements, some of which were acquired

in the Austral Ocean (NOMAD dataset: http://oceancolor.gsfc.nasa.gov/, ICOTA and

OISO campaigns, see Alvain et al., 2012). However, due to the requirement for

very clear sky conditions, only 12% of the in situ measurements could be matched

with coincident and co-located satellite measurements. This underlines the need to

collect field data, whenever possible, covering large spatial and seasonal domains.

This is crucial in developing an appropriate match-up database that would ensure

good calibration of validation of remote-sensing algorithms such as PHYSAT.

5.2.2 Removing the effect of chlorophyll concentration

Once sufficient in situ information is available, it can be used in empirical models to

identify specific features in the coincident remotely-sensed measurements. However,

for studying the impact of phytoplankton community structure on Rrs, it is important

that these effects are distinguished from the effect of changes in abundance of

phytoplankton (as indexed by chlorophyll concentration).

The first step in the algorithm development is to establish a statistical model of

average spectra of marine reflectances (Rrs) from satellite observations (Alvain et

al., 2005), which serves as a reference against which individual reflectance spectra

are compared. The average spectra were generated as a function of chlorophyll-a

concentration, using a large number of reflectance data corresponding to a range of

chlorophyll concentrations, which were then binned in small chlorophyll intervals

between 0.04 and 4 mg m−3 (see Figure 1 in Alvain et al., 2005 for the reference

set for SeaWiFS. LUT for other sensors are available on the PHYSAT web page http:

//log.univ-littoral.fr/Alvain,195). Note that the mean signal must be computed

for each satellite sensor to account for the sensor-specific differences in the Rrs

signal, and that the reference set is generated independently of the match-up

dataset described above. This set of spectra is used as a reference set against which

observations are compared.

Next, each Rrs spectrum from the match-up data set is paired with the reference

spectrum for the corresponding chlorophyll concentration. Then, the reflectance

value from the match-up dataset at each wavelength is normalised by the corre-

sponding value from the paired reference set, to identify spectrally-resolved radiance

anomalies, Ra.

Because the reference spectra used to normalize the observations change with the

chlorophyll concentration, it is important to use consistent chlorophyll algorithms

to establish the reference spectra and to estimate the chlorophyll concentration

http://www.lodyc.jussieu.fr/gepco/
http://www.lodyc.jussieu.fr/gepco/
http://oceancolor.gsfc.nasa.gov/
http://log.univ-littoral.fr/Alvain,195
http://log.univ-littoral.fr/Alvain,195
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in the match-up dataset. For example, the SeaWiFS reference spectra cannot be

used to normalize MODIS reflectance spectra because the chlorophyll algorithms

used in the standard processing of data from the two sensors are not the same.

Note, however, that anomalies of the reflectance are independent of chlorophyll

concentration by virtue of the normalization, and so should be independent of the

bio-optical algorithm.

5.2.3 Reflectance anomalies and phytoplankton types

Comparison of the reflectance anomalies with the pigments in the match-up database

reveal systematic differences in the anomalies that correspond with changes in the

phytoplankton type (see Figure 5.1):

Nano-eukaryotes Prochlorococcus

Synochococcus-like Diatoms

Figure 5.1 Anomalies in MODIS-Aqua reflectance spectra used to identify four
phytoplankton types (see Ben Mustapha et al., 2013). Results are based on the
use of Self Organising Maps to characterize the types. If the anomaly spectrum
from a pixel is within a range defined by the mean value of the anomaly
spectrum for a particular phytoplankton type ± one standard deviation, then
that pixel is assigned to that particular phytoplankton type.

v The lowest negative spectral anomalies corresponded with abundant con-

centrations of 19’hexanoyloxyfucoxanthin, a pigment found in haptophytes

(considered as nano-eukaryotes).

v Waters with relatively abundant divinyl-chlorophyll-a, which exists only in the

genus Prochlorococcus, were characterized by anomalies (Ra) slightly lower

than one.

v Observations with slightly positive anomalies had a high zeaxanthin-to-divinyl-

chlorophyll-a ratio. Zeaxanthin is characteristic of photosynthetic cyanobac-
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teria belonging to both Synechococcus and Prochlorococcus genera, whereas

divinyl-chlorophyll-a is present only in Prochlorococcus. Therefore, a high

zeaxanthin/total-chlorophyll-a ratio which is also associated with a limited

divinyl-chlorophyll-a/total-chlorophyll-a ratio can be used to identify samples

dominated by Synechococcus.

v Finally, the highest positive spectral anomalies (Ra markedly greater than

1.2) were found for observations with especially high fucoxanthin content, a

pigment which is characteristic of diatoms. Note that, with some exceptions

(e.g., diatoms), the shapes of the anomaly spectra also appear to change with

phytoplankton types, in addition to changes in the magnitude.

These results suggest that dominant phytoplankton functional types can be

identified by remote sensing once sufficient in situ information is available to

characterise shapes and amplitudes of Ra at a range of chlorophyll-a concentrations

(Alvain et al., 2005). The capability to characterise the Ra spectra for various

phytoplankton has been recently improved (Ben Mustapha et al., 2013) using Self

Organizing Maps (SOM) (Kohenen, 1984). This allows the characterisation of a larger

portion of the in situ dataset and the identification of a wider range of Ra spectra

than was possible earlier. The improved method (Ben Mustapha et al., 2013) allows

the classification of twice the number of pixels than the initial method published by

Alvain et al. (2005).

5.2.4 Implementation of the method

Since the implementation of the method requires information provided by satellites

(marine reflectance spectra and chlorophyll concentration), it can be applied to data

from any ocean-colour satellite. A data processing chain has been established to

identify the dominant phytoplankton group in a given pixel, and to map global

distributions of the groups discussed above.

The first step is to discard all pixels with an aerosol optical thickness greater

than 0.15 or with chlorophyll-a concentration outside the 0.04 to 4 mg m−3 range.

For each remaining valid pixel, the normalization is applied to derive spectral

anomalies given chlorophyll-a and Rrs at the five chosen wavelengths of MODIS or

SeaWiFS (between 400 and 600 nm). The anomaly spectrum is then compared with

the means of the Ra spectra for each of the four phytoplankton types shown in

Figure 5.1. If the Ra spectrum from the sample is within the mean plus or minus

one standard deviation of the mean Ra spectrum for a particular phytoplankton

type, then that pixel is identified as being dominated by that phytoplankton group.

Pixels with Ra spectra that cannot be classified as one of the phytoplankton groups

are still considered valid and are assigned to an additional group of “unidentified

phytoplankton assemblages”.

A monthly synthesis product from PHYSAT is presented in Figure 5.2. To

generate this product, daily maps of phytoplankton groups at a resolution of 1/12◦
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were used to produce monthly maps by selecting, for each pixel, the phytoplankton

type that was dominant for at least half of the days when data were available. The

PHYSAT database and further information is available at http://log.univ-littoral.

fr/Physat.

Figure 5.2 Monthly climatology (SeaWiFS data, 1998 – 2010) of the dominant
phytoplankton groups (nano-eukaryotes, Prochlorococcus, Synechococcus-like
cyanobacteria (SLC), diatoms and Phaeocystis-like, see Alvain et al., 2008) for
January (top) and June (bottom). White colour represents areas where remotely-
sensed measurements were either not available or not usable according to the
algorithm criteria, or where dominant phytoplankton types were not identified.

Patterns shown in Figure 5.2 are in good agreement with previous knowledge of

the distribution of phytoplankton groups. A validation exercise (Alvain et al., 2012)

has shown that these results are satisfactory for diatoms and nano-eukaryotes with

73% and 82% successful identification, respectively. A decrease in success rates was

observed for Prochlorococcus and Synechococcus-like cyanobacteria (SLC) (61 and

57%, respectively, with incorrect identification mainly associated with a confusion

between the two groups). This result was anticipated since these two groups show

http://log.univ-littoral.fr/Physat
http://log.univ-littoral.fr/Physat
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similar Ra characteristics and geographical distribution.

The results from this approach have been used to study the distribution of phy-

toplankton groups and their forcing by (sub)-mesoscale ocean circulation (D’Ovidio

et al., 2010; De Monte et al., 2013). In addition, they have been used to validate bio-

geochemical models of the global ocean (Bopp et al., 2005), and in studies examining

links between atmospheric compounds and phytoplankton groups (Colomb et al.,

2009; Arnold et al., 2010; Belviso et al., 2012). Furthermore, these products have

been used to study the influence of climate on marine ecosystems (Demarcq et al.,

2011; Masotti et al., 2011; Alvain et al., 2013).

5.2.5 A theoretical explanation for PHYSAT

Although the method was developed as an empirical, statistical method, recent

studies have provided a theoretical underpinning for the method. In a recent

study (Alvain et al., 2012) radiative transfer simulations (Hydrolight: Mobley, 1994)

were used to provide a theoretical basis for the features in the radiance anomalies

identified in the PHYSAT method. Sensitivity analyses were performed to assess

the impact of the variability in specific phytoplankton absorption, absorption by

coloured dissolved organic matter, and particle backscattering. The shape and ampli-

tude of the spectra of the theoretically-computed anomalies for three phytoplankton

groups considered in the algorithm (diatoms, nano-eukaryotes and picoplanktonic

cyanobacteria) were in good agreement with the empirical results. The theoretical

studies also revealed that optical differentiation between phytoplankton types may

take into consideration the influence of substances other than phytoplankton. For

example, dissolved organic matter may allow the distinction between phytoplankton

under some conditions, but it can also lead to no identification or misidentifica-

tion. Based on the theoretical analysis, it is now possible to evaluate the optimal

conditions for application of the algorithm, based on the bio-optical properties of

phytoplankton and other optical constituents in the water. Indeed, it is now recog-

nised that differences between Ra depend on the relative contribution to reflectance

from absorption by phytoplankton and coloured dissolved organic matter, and from

backscattering by particles. The theoretical study confirmed that phytoplankton

functional types are generally associated with a specific bio-optical environment,

which allowed separation between groups in the majority of encountered cases

(Alvain et al., 2012).

These recent theoretical results also highlight the necessity to consider the

environmental conditions preferred by the different types of phytoplankton, to

improve further the detection of phytoplankton types from space (see Section 5.5

below dealing with environmental algorithms). Finally, complementary studies,

based on a large in situ database of IOP measurements for various phytoplankton

species, will also be necessary to obtain a better agreement between the theoretical

and empirical spectral anomalies of the different groups.



108 • Phytoplankton Functional Types from Space

5.3 Differential Absorption-Based Method

It has been shown in the past (e.g., Bricaud et al. 2007) that differentiation of

phytoplankton absorption spectra with respect to wavelength can be used to identify

and quantify phytoplankton pigments and phytoplankton types from absorption

spectra (see Chapter 2). But the use of such methods in a remote-sensing context

has been limited because of the requirement for high-spectral resolution data

(i.e., hyperspectral data); current space borne ocean-colour sensors have limited

spectral resolution. Furthermore, in a remote-sensing context, appropriate non-

linear optimization methods have to be developed to isolate the phytoplankton

absorption signal from all other atmospheric and oceanographic constituents that

contribute to the satellite signal.

These challenges have been addressed by Bracher et al. (2009) and Sadeghi

et al. (2012a) who have developed and improved a method called PhytoDOAS, an

adaptation of Differential Optical Absorption Spectroscopy (DOAS, developed by

Perner and Platt, 1979) to detect phytoplankton types from hyperspectral satel-

lite data. The method is designed for concurrent retrieval, at the global scale, of

chlorophyll-a concentrations associated with different phytoplankton groups (di-

atoms, cyanobacteria, coccolithophores and dinoflagellates) from hyperspectral

satellite data from the Scanning Imaging Absorption Spectrometer for Atmospheric

Chartography (SCIAMACHY), which operated onboard the ENVISAT satellite from

2002 to 2012. This satellite sensor measured the direct solar and backscattered

solar radiation in the UV-VIS-NIR spectral regions with a high spectral resolution

(0.2 to 1.5 nm). Though SCIAMACHY was designed for the study of atmospheric

chemical composition, the work by Bracher et al. (2009) and Sadeghi et al. (2012a)

have successfully demonstrated its use as a hyperspectral ocean-colour satellite.

In the PhytoDOAS method, the ratio of the backscattered radiation at the top

of the atmosphere to the direct solar radiation (both measured by SCIAMACHY) is

computed. Using Levenberg-Marquardt least-square non-linear optimization, this

spectrally-resolved ratio is fit to a modelled ratio that includes the contributions of

all relevant absorption and scattering constituents in the ocean-atmosphere system,

within the considered wavelength range. The analysis takes into account different

phytoplankton groups, water vapour, water, and the atmospheric trace gases O3,

O4, NO2, glyoxal (CHOCHO) and iodine oxide (IO). In addition, Raman scattering

of light by air (Ring effect) and by water molecules (vibrational Raman scattering),

which causes the filling-in of Fraunhofer lines in the backscattered spectra, are

treated as pseudo absorbers in the retrieval. The contributions of other substances

with low levels of structure in the derivative spectra of inherent optical properties

(e.g., absorption by coloured dissolved organic material and non-algal particles

and scattering by air molecules and particles) are approximated by a second-order

polynomial. The fit-factors of all relevant absorbing and scattering constituents with

a high level of structure in the derivative spectra within the considered wavelength
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range are the outputs of the retrieval. In the case of phytoplankton types, whose

absorption coefficients are normalized to the chlorophyll-a concentration of each

group, the units of the fit-factor are mg chlorophyll-a m−2. This is the amount of

chlorophyll associated with that group, and represents the concentration integrated

over the depth range observed by the satellite. The average chlorophyll-a concen-

tration (mg chl m−3) for each satellite pixel is finally calculated by dividing the

phytoplankton fit-factor for chlorophyll by the penetration depth for light derived

from the fit-factor for the vibrational Raman scattering for water molecules, taken as

a measure of water clarity, and hence, of the penetration depth of the satellite signal

(Vountas et al., 2007). Note that the penetration depth at a particular wavelength

is taken to be the inverse of the back-scattering coefficient for that wavelength

according to Vountas et al. (2007), whereas conventionally, in optical oceanography,

this quantity is taken to be the inverse of the diffuse attenuation coefficient, as in

Gordon and McCluney (1975) and Gordon and Clark (1980).

Within the PhytoDOAS retrieval, the wavelength range considered is 429 to

495 nm in the single-target fit mode (only one phytoplankton type is retrieved at

a time) as developed by Bracher et al. (2009), where diatoms and cyanobacteria

fit-factors are retrieved in separate runs of the algorithm. The wavelength range has

been extended to 529 nm for the multi-target fit mode developed by Sadeghi et al.

(2012a) where diatom, coccolithophore and dinoflagellate fit-factors are retrieved

simultaneously. The retrieval uses characteristic specific absorption spectra for

the different phytoplankton groups measured on natural water samples collected

during various research cruises in the Atlantic Ocean. The dominance of particular

groups in samples were identified according to the composition and quantity of

marker pigments measured using High-Performance Liquid Chromatography (HPLC),

as described in Bracher et al. (2009) and Sadeghi et al. (2012a). The sample used

to represent diatoms appeared to be made up of ∼70% of diatoms. In the case of

dinoflagellates, the value was ∼90%, and for cyanobacteria it was 100%. Since none of

the field samples available were identified as being dominated by coccolithophores,

an absorption spectrum from a culture of Emiliania huxleyi was used to represent

this phytoplankton type. The absorption spectra used for the four phytoplankton

types and their corresponding differential spectra are shown in Figure 5.3.

The SCIAMACHY differential optical depth spectra (Figure 5.4) clearly show

the distinct optical characteristics of different phytoplankton groups. In fact, the

residuals of the optimization are much lower when differences in the absorption

spectra of phytoplankton types are taken into consideration, compared with the

case where these differences are not accounted for. Comparing the version of the

retrieval that identifies a single dominant group with the version designed to retrieve

multiple types simultaneously, it was found that the multi-type version diminished

the residual in 80% of the cases (Sadeghi et al., 2012a).

The whole SCIAMACHY data set has been processed from July 2002 until the end

of the ENVISAT mission in April 2012. Figure 5.5 shows, as an example, monthly
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Figure 5.3 (Left) Specific absorption spectra of cyanobacteria (red), E. huxleyi
(green), dinoflagellates (orange) and diatoms (blue) used in the PhytoDOAS
fits of Bracher et al. (2009) and Sadeghi et al. (2012a). (Right) Differential
specific absorption spectra of the left spectra. Each spectrum was derived
by subtracting a second order polynomial fit from the corresponding specific
absorption spectrum, shown in the left panel.

Diatoms Coccolithophores

Lat: 14.83  Lon: -23.76 Lat: -52.90  Lon: -67.38

Figure 5.4 Spectral differential optical depth of SCIAMACHY data (dotted line)
and the corresponding fit (straight line) for diatoms (left) and coccolithophores
(right) using the specific differential absorption coefficients of each type scaled
to match the observations according to the PhytoDOAS method described in
Sadeghi et al. (2012a).

chlorophyll-a concentration for the four phytoplankton groups for October 2009

in the Western Pacific computed using the PhytoDOAS routine. Also plotted along

a cruise track are the chlorophyll-a concentrations of the four types, derived from

in situ HPLC pigment analysis obtained at the same time during the TransBrom

Sonne cruise (Zindler et al., 2013). Both in situ and satellite results show similar

ranges for this region. Preliminary validation by Bracher et al. (2009) indicated that

satellite-derived information on cyanobacteria and diatom distributions matched

well with corresponding in situ information based on pigment analyses of co-located

water samples. Bracher et al. (2009) and Sadeghi et al. (2012a) also showed that

the results from PhytoDOAS for diatoms, cyanobacteria and coccolithophores corre-

sponded well with model results from the NASA Ocean Biogeochemical Model (Gregg

and Casey, 2007). So far, no verification for the differential absorption method for

dinoflagellates has been obtained. This method, applied to SCIAMACHY data, was

used to study the development of coccolithophore blooms in three selected oceanic
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cyanobacteria diatoms

coccolithophores dino�agellates

Figure 5.5 Colour coded chlorophyll-a concentration of cyanobacteria, di-
atoms, coccolithophores and dinoflagellates (in mg m−3) as a monthly mean
of October 2009 from PhytoDOAS retrieval. The coloured circles are the
chlorophyll-a concentration of the respective groups derived from HPLC pig-
ment concentration and further CHEMTAX analysis of in situ water samples
taken during the TransBrom Sonne cruise (9–23 October 2009) at the specific
locations.

regions from 2003 to 2010 (Sadeghi et al., 2012b). The results were compared

with other satellite products: total chlorophyll-a from ESA’s ocean-colour dataset,

GlobColour (http://www.globcolour.info/; merged SeaWiFS-MODIS-MERIS data) and

particulate inorganic carbon (PIC) from MODIS-Aqua. Results indicated that the

seasonal patterns were consistent with the other ocean-colour products, especially

with the PIC from MODIS-Aqua. Since PIC is a proxy for the abundance of coccol-

ithophores in the open ocean, this agreement indicates that the PhytoDOAS method

functions reasonably well with respect to retrieval of coccolithophores.

The spectral differential absorption method, as implemented in PhytoDOAS, ex-

ploits hyperspectral data in the blue-green domain to discriminate between different

phytoplankton types according to their characteristic absorption properties, without

assuming empirical relationships, as in the case of some other PFT methods (as

for example, in abundance-based methods discussed in this chapter and elsewhere

in the report). It is therefore possible, in principle, to use this method to detect

changes in the distribution of phytoplankton types, which may be missed by em-

pirical methods. The method presented here is based on in situ absorption spectra

representative of particular types, measured in natural seawater samples (except

http://www.globcolour.info/
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for coccolithophores). However, absorption spectra chosen to be representative of a

certain group might also be vulnerable to change with the size of the population,

which may vary with species or, to a smaller extent, with environmental conditions.

Such changes are not accounted for in the present implementation of the method.

Regional adaptations of the retrieval should be able to overcome this short-coming,

at least to some extent.

Another limitation of the PhytoDOAS products is dictated by the relatively poor

spatial and temporal resolution of the SCIAMACHY sensor: pixel resolution of

30× 30 km at best, and a temporal resolution of about 6 days for global coverage.

Since the absorption spectra used for diatoms and dinoflagellates in the PhytoDOAS

method were not pure samples, these spectra were, in principle, influenced to a

small extent by the other types of phytoplankton that were present in the samples.

The similarity in the absorption spectra of many different types of phytoplankton

limits the number of types that can be detected.

The inversion method, which treats separately the spectral signatures of sub-

stances with a high level of structure in the derivative spectra (such as those of

phytoplankton) from those that show a low level of structure, is relatively insensitive

to atmospheric noise. One of the outputs from the retrieval is the penetration depth

at the mean wavelength of the wavelength range. The PhytoDOAS biomass derived

is the mean averaged over the penetration depth, assuming a uniform biomass

distribution from the surface to the base of the penetration depth. PhytoDOAS

phytoplankton group time series data have been used in various studies focusing on

marine biogeochemistry, oceanic emissions and ecosystem dynamics (e.g., Sadeghi

et al., 2012b; Ye et al., 2012).

The DOAS technique has potential for further improvements and extensions to

derive PFTs of higher accuracy and higher temporal and spatial resolution from

ocean-colour data, and also to derive new ocean-colour products. The atmospheric

radiative transfer model, SCIATRAN (Rozanov et al., 2002), used in the algorithm

to derive the pseudo-absorption of inelastic scattering, has been extended recently

to account for coupled atmospheric-oceanic radiative transfer (Blum et al., 2012;

Rozanov et al., 2014). Coupled radiative transfer models like SCIATRAN can be

used to evaluate the sensitivity of the PhytoDOAS algorithm. This is done by

simulating top-of-atmosphere spectra with varying phytoplankton compositions and

concentrations which than can be used in the PhytoDOAS retrieval. The simulations

can be used to verify whether additional phytoplankton groups, or even the effect

of CDOM and chlorophyll fluorescence, which also cause filling-in of Fraunhofer

lines, can be identified in hyperspectral satellite measurements. To derive DOAS

ocean-colour products with higher temporal and spatial resolution, the method can

be adapted (with the help of radiative transfer simulations) to other hyperspectral

satellite sensors, i.e., the current OMI on AURA, the GOME-2 instruments on Metop-A

and -B, and similar upcoming sensors (e.g., Sentinel-5-precursor, Sentinel-4 and

Sentinel-5). All of these satellite sensors have improved spatial resolution and
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temporal coverage. This will provide a long-term perspective of phytoplankton

group products with reasonable temporal and spatial resolution.

5.4 Abundance-Based Methods

Abundance-based methods for mapping phytoplankton types are very similar in

concept and implementation to abundance-based methods for mapping phytoplank-

ton size classes, which were described in Chapter 4. The method is illustrated here

using the work of Hirata et al. (2011).

In this method, Hirata et al. (2011) assembled a large data base of HPLC-based

pigment data. Using the method of Uitz et al. (2006), contributions of the three

phytoplankton size classes (micro, nano and picophytoplankton) to total chloro-

phyll concentration in each sample were computed on the basis of their diagnostic

pigments. Next, the contribution to microplankton from diatoms is computed using

the concentration of fucoxanthin, a diagnostic pigment for diatoms. Microplankton

is assumed to be composed of diatoms and dinoflagellates, and the chlorophyll

concentration associated with dinoflagellates is estimated by subtracting the diatom

contribution from the microplankton concentration. Similarly, nanoplankton is sub-

divided into green algae and Prymnesiophytes, and picoplankton into prokaryotes

and pico-eukaryotes and a separate class is assigned to Prochlorococcus sp.

Table 5.1 Equations used by Hirata et al. (2011) to estimate fractions (0.0 to
1.0) of phytoplankton size classes (micro-, nano and picoplankton) and some
phytoplankton functional types. If a fraction is greater than 1, it is set to 1.0,
and if it is less than zero, it is set to zero. *Note: a typo in the original paper
for the Prochlorococcus formula has been corrected.

PSCs/PFTs Formula a0 a1 a2 a3 a4 a5 a6

Microplankton [a0 + exp(a1x + a2)]−1 0.91 -2.7 0.40

Diatoms [a0 + exp(a1x + a2)]−1 1.3 -4.0 0.20 — — — —

Dinoflagellates (= Micro−Diatoms) — — — — — — —

Nanoplankton (= 1−Micro− Pico) — — — — — — —

Green Algae (a0/y)exp[a1(x + a2)2] 0.25 -1.3 -0.55 — — — —

Prymnesiophytes (' Nano− GreenAlgae) — — — — — — —

Picoplankton −[a0 + exp(a1x + a2)]−1

+a3x + a4 0.15 1.0 -1.6 -1.9 3.0 — —

Prokaryotes (a0/a1/y)exp[a2(x + a3)2/a2
1]

+a4x2 + a5x + a6 0.0067 0.62 -19 0.96 0.10 -0.12 0.063

Prochlorococcus* (a0/a1/y)exp[a2(x + a3)2/a2
1]

+a4x2 + a5x + a6 0.0099 0.68 -8.6 0.97 0.0074 -0.16 0.044

x = log10(Chl-a); y =Chl-a

The partial contributions of each of these functional types is then plotted against

the total chlorophyll concentration for all the samples, and empirical functions are

fitted to each of the cases to capture the observed patterns. Once these empirical

relationships are established, satellite-derived chlorophyll concentration is used to
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compute and map the concentrations assigned to each of the phytoplankton types.

The set of equations necessary for estimating the various phytoplankton types

empirically, starting with satellite-derived chlorophyll-a concentration, is provided

in Table 5.1, from Hirata et al. (2011). Examples of outputs from the Hirata et al.

(2011) method are presented in Figure 5.6

Figure 5.6 Partial contributions of diatoms, nanoplankton, haptophytes and
Synechococcus + Prochlorococcus derived using the Hirata et al. (2011) method
with SeaWiFS data from 1998 – 2010 to obtain the January and June climatolo-
gies, as in Figure 5.2.

5.5 Ecological Algorithms

Most of the algorithms presented and discussed in this report have been based

exclusively on ocean-colour data. However, the possibility exists that improved and

more robust algorithms might be possible by including additional information such

as the physical, chemical and biological niches that favour different phytoplankton

functional types.

The environments under which different types of phytoplankton thrive are

reasonably well known, and we are learning more about them. For example, it

is understood that diatoms do well in low-light, high-turbulence environments,

and Prochlorococcus tends to dominate in high-light, low-nutrient, conditions. The
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regional and ecological preferences of phytoplankton types are discussed at some

length in Chapter 1. Information on many environmental factors is amenable to

remote sensing, and if combined with the associated in situ information on the

composition of phytoplankton community, it could form the basis for algorithm

development. Note that such algorithms would fall under the category of indirect

methods: the goal is not to detect the phytoplankton types directly. Instead, one

searches for conditions that would favour one or another type of phytoplankton,

and maps are then generated to indicate the probable distribution of phytoplankton

types under a particular set of conditions. One might call such algorithms ecological

algorithms, because the algorithms are based on ecological considerations.
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Figure 5.7 Schematic representation of the probabilistic neural network struc-
ture used to compute the probability of diatom occurrence.

One such method was implemented by Raitsos et al. (2008). They made use

of a statistical approach known as Probabilistic Neural Network (PNN, see Figure

5.7), which is a type of Artificial Neural Network that employs Bayesian statistics

(Specht, 1988; 1990). They used in situ data on phytoplankton composition and

geographical location along with satellite-derived ocean-colour and physical vari-

ables. In particular, the variables that were used to identify the ecological “niches” of

phytoplankton types were chlorophyll-a concentration, photosynthetically available

radiation (PAR) at the sea surface, sea-surface temperature (SST), wind stress and

normalised water-leaving radiances (LwN); these were supplemented by geo-location

information including longitude, latitude and season. The information on phyto-

plankton composition used to develop and train the PNN was derived from the

Continuous Plankton Recorder (CPR), which is an upper-layer plankton monitoring

programme in the North Atlantic Ocean and North Sea operating since 1931 (Reid

et al., 2003b). Dominance of each phytoplankton type in the sample was estimated

on the basis of cell counts (Raitsos et al., 2008). The total fraction of the functional

types was correctly identified with an accuracy of >80%. The success in identification

was not uniform across functional types. The order of performance was: silicoflagel-

lates, coccolithophores, dinoflagellates, diatoms and no-dominance (93%, 91%, 83%,
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81% and 80%, respectively). Additional details on the methodological approach as

well as potential biases arising from the data used, or from the methodology, are

identified in Raitsos et al. (2008).

In a somewhat similar approach, Palacz et al. (2013) used an Artificial Neural Net-

work (ANN) to combine remotely-sensed and modelled data (SST, wind speed, PAR,

Chl-a and Mixed Layer Depth) with biomass estimates of different phytoplankton

types from the NASA Ocean Biogeochemical Model (NOBM) to compute distribu-

tions of four PFTs (diatoms, coccolithophores, cyanobacteria and chlorophytes)

in key biogeochemical provinces, with a particular focus on resolving the diatom-

coccolithophore coexistence in the sub-polar, high-nitrate, low-chlorophyll (HNLC)

regions.

To some extent, the choice of predictive variables is dictated by data availability.

It is, therefore, interesting to see which of the predictive variables have the most

impact on the outcome. The importance of each predictor for the discrimination var-

ied depending on whether the analysis is performed for the ensemble of functional

types, or for individual functional types (in other words, some predictive variables

were important to discriminate some functional types, but not necessarily all func-

tional types). For instance, in the Raitsos et al. (2008) method, the relative impact of

the eight predictors was assessed using the value of the smoothing function: the

higher the value of the function associated with a particular variable, the higher

is its importance as a discriminating factor. Spatio-temporal information such as

longitude, month and latitude made an important contribution to the discrimina-

tion of the phytoplankton types. SST was found to be most important, followed

by light intensity and wind stress. Chlorophyll-a and LwN[555] did contribute to

the overall discrimination, but were of lesser importance compared with the other

variables. Latitude, along with PAR and SST were the key factors for discriminating

diatoms from other types. In addition, wind stress and chlorophyll-a play important

discriminatory roles, whereas longitude had the lowest impact. Dinoflagellates

were distinguished mostly on the basis of spatio-temporal information i.e., latitude,

month and longitude, with PAR being the key physical property in the discrimination,

followed by LwN[555] and wind stress. SST and chlorophyll-a contributed less to the

dinoflagellate discrimination. For discrimination of coccolithophores, the influence

of month, PAR, wind stress and LwN[555] appeared to be more important than SST.

Longitude and LwN[555] had the highest impact for discriminating silicoflagellates,

followed by month, SST and PAR; although chlorophyll-a and wind stress contributed

to the final discrimination, their impacts appeared to be less significant. Finally,

for the case of no-dominance, almost all predictors played important roles, but

contributions of chlorophyll-a and LwN[555] were smaller.

Figure 5.8 illustrates a previously-unpublished example of diatom presence in

the Northeast Atlantic derived using the Raitsos et al. (2008) method. The exam-

ple denotes a monthly map of probability of diatom occurrence during May 2005.

This example is independent of the period used for training the neural net (1997 –
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Figure 5.8 Map of diatoms presence for May 2005. May is an important month
for diatom blooming in the study area. The scale of probability of diatom
occurrence is from 0 (diatoms absent) to 1 (exclusively diatoms).

2003). This work demonstrated that neural networks are able to discriminate and

identify four major functional types (diatoms, dinoflagellates, coccolithophores and

silicoflagellates) with an accuracy of >80%. It is a first step towards an ecological

approach, which would ideally be able to map phytoplankton types without geo-

graphical or seasonal information. As geographical information was considered

during the training of the PNN, and since they appeared to be important, the resul-

tant phytoplankton maps could only be produced for the North Atlantic Ocean. Once

additional in situ data on the distribution of phytoplankton types becomes available,

an attempt to exclude the geographical information could be made. Although this

might decrease the accuracy of the model, it might lead to results that are more ap-

plicable globally. It is also noted that additional variables such as nutrients (known

to be key regulators of phytoplankton abundance; Redfield et al., 1963) and the

mixed-layer depth (responsible for the stratification and supply of nutrients; Estrada

and Berdalet, 1997) were not used in the analysis because they are not available

through remote sensing, and in situ data are not available either at sufficiently fine

spatial and temporal resolution. However, wind stress (a measure of vertical mixing)

was included as a discriminatory variable. Another possibility to broaden the list

of variables used to define ecological niches might be to use outputs from ocean

models, provided they are of sufficient accuracy and resolution (see Palacz et al.,

2013).

Platt et al. (2005) argued that growth, as well as community and size structure

of phytoplankton assemblages, are controlled by a number of physical factors

that define the habitat of the epipelagic zone. Therefore, one factor alone was

not sufficient to identify the PFTs. It has been argued (Alvain et al., 2005) that

chlorophyll-a alone is insufficient to discriminate PFTs (notwithstanding the many
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abundance-based methods that are available, and discussed in other parts of this

report). At any rate, using chlorophyll-a concentration in combination with other

variables may lead to significant improvement in the performance of satellite-based

methods for mapping phytoplankton types, as the ecological approach presented

here demonstrates.

As with any neural network, the results of PNN are influenced by the represen-

tativeness of the in situ and satellite match-up data used to train the network. In

the approach illustrated here, the in situ data came from the Continuous Plankton

Recorder, which might be biased towards larger cells, because of the nominal mesh

size of the silk used for filtering the samples: the nominal mesh size is 270 µm,

though strands of silk that lie across the mesh help trap much smaller organisms,

which are also enumerated during sample analysis. But is difficult to quantify any

potential bias that might exist, compared with any other type of in situ method

for enumeration of phytoplankton types. Abundance of a phytoplankton type was

determined on the basis of cell counts in this approach, and the results might be

very different if another measure of abundance (say chlorophyll-a concentration)

was used in the analysis.

Overall, the results of Raitsos et al. (2008) and Palacz et al. (2013) highlight the

benefits of using advanced statistical techniques to unravel complex and highly non-

linear ecological interactions. The ecological approach has considerable potential for

mapping spatial and temporal (seasonal cycle) trends in PFTs using remote sensing

data alone, or together with outputs from physical and biological models.

5.6 Methods Based on Non-Linear Inversion of Ocean-Colour
Models

In the context where the absorption (a) and backscattering (bb) coefficients of

seawater are known, irradiance reflectance R or remote-sensing reflectance Rrs at

a particular wavelength λ can be expressed as functions of these inherent optical

properties. For example, we have (see also Section 4.3 of Chapter 4):

Rrs(λ)∝
bb(λ)

a(λ)+ bb(λ)
. (5.1)

The absorption coefficient can then be expressed as the sum of contributions

from each component:

a(λ) = aw(λ)+ aB(λ)+ adg(λ), (5.2)

where subscriptsw , B and dg stand for water, phytoplankton biomass and combined

detritus and gelbstoff (coloured dissolved organic matter). Similarly,

bb(λ) = bbw + bbp, (5.3)
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where subscript p refers to particles. To be able to apply such models to remote-

sensing of phytoplankton types, we have to subdivide phytoplankton absorption

into its components:

aB(λ) = ΣNi=1ai(λ), (5.4)

in which we consider the phytoplankton community to be composed of N compo-

nents, each with absorption ai, with i going from 1 to N. According to Beer’s Law,

the magnitudes of the absorption due to each component is related linearly to the

concentration of the substance. To introduce the concentrations of the components

into the equation, we make use of specific absorption coefficients, or absorption

per unit concentration of phytoplankton. With chlorophyll biomass Bi representing

concentration of component i, with corresponding specific absorption coefficient

a∗i , the above equation can be rewritten as:

aB(λ) = ΣNi=1Bia
∗
i (λ). (5.5)

Absorption by the combined detritus and dissolved matter (adg) that appears in

the model (Eq. 5.2) is usually expressed as an exponential function:

adg(λ) = adg(λ0) exp
(
− Sdg(λ− λ0)

)
, (5.6)

where adg(λ0) is the magnitude of the absorption at a reference wavelength (λ0),
and Sdg is the slope of the exponential function. Particle backscattering that appears

in Eq. 5.3 is often approximated by a function of the form:

bbp(λ) = bbp(λ0)
( λ
λ0

)n, (5.7)

where bbp(λ0) is the magnitude of the backscattering at the reference wavelength,

and n determines the wavelength dependence in particle backscattering. Note that

the reference wavelengths used in Eqs. 5.6 and 5.7 need not be the same. These two

equations, together, introduce four more model parameters: adg(λ0), Sdg, bbp(λ0),
and n. Algorithms developers have to make a decision about whether some of these

parameters (e.g., Sdg and n) can be held constant, or expressed as functions of other

variables, or treated as unknowns in the model. Thus, if a∗i (λ) are known for each

of the phytoplankton components of interest, then we have a non-linear system

of equations (Eqs. 5.1 – 5.7) with at least N unknowns (the values of Bi). There

may be up to four additional unknown parameters in the model associated with

defining spectral variations in adg and bbp, as we see from Eqs. 5.6 and 5.7. Then,

if we have observations of Rrs at a number of wavebands equal to or greater than

the number of unknown parameters, the set of Rrs values can be used along with

non-linear optimisation techniques to solve for the concentrations of phytoplankton

components. Such algorithms, which include a forward reflectance model and an

inversion method are in routine use these days to retrieve in-water constituents
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as represented, for example, in Eqs. 5.2 and 5.3. Many of them are described in

IOCCG Report No. 5 (2006). What sets apart the algorithms examined in this section

is the effort to take the models a step further, and partition the phytoplankton

concentration into its components.

Roesler and Perry (1995) have pointed out that inversion methods that minimise

the differences between observations and model may not yield satisfactory solutions

for the unknowns: (a) if the model itself (Eq. 5.1) is a poor description of reality

(errors in models may be related to how the proportionality between left and right-

hands of the equation is defined, or from not including inelastic scattering processes

such as Raman scattering or fluorescence); (b) if an incomplete set of components

are assigned to absorption (Eq. 5.2) and back-scattering (Eq. 5.3); and if the optical

properties of the components are poorly prescribed. Furthermore, technical choices

such as the optimisation algorithm selected, the constraints applied and wavelengths

used can impact the output from the inversion algorithm. The non-linearity in the

system may be such that the uncertainty in the retrieved parameters is high. Poor

precision and accuracy in the observations will further increase uncertainty. Clearly,

it is essential that each of the model components have spectral optical characteristics

that distinguish it from all other components, if the inversion is to be successful.

The feasibility of such approaches has been demonstrated by Gege (1998), who

applied the method to quantify the components of the phytoplankton community of

Lake Constance, using hyperspectral ship-based measurements of remote-sensing

reflectance at 512 wavelengths. Phytoplankton belonging to the classes cryptophyta,

diatoms, green algae and dinoflagellates were identified using this method. Roesler

et al. (2004) used the reflectance model developed by Roesler and Perry (1995) with

some modifications introduced by Roesler and Boss (2003) and a two-step inversion

method (Roesler and Perry, 1995), to quantify phytoplankton components from

in situ hyperspectral reflectance measurements in the southern Benguela region

off South Africa. They showed that the method was successful in quantifying

the concentrations of diatoms, the dinoflagellate Dinophysis, other dinoflagellates,

Mesodinium and chlorophytes in absorption units and in chlorophyll units.

Though forward models and inverse algorithms have been used to estimate

phytoplankton size classes from satellite data (e.g., Ciotti and Bricaud, 2006; Mouw

and Yoder, 2010; Devred et al., 2011; see Chapter 4), they are yet to be used in

a routine manner for mapping phytoplankton types (noting however, the overlap

between size and type, as noted elsewhere in this report). No doubt, as hyperspectral

data from satellites become more routinely available, it should become easier to

implement such methods directly to satellite-derived reflectance spectra.
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5.7 Discussion and Conclusion

This chapter has provided an overview of different types of methods that have

been developed to map multiple types of phytoplankton from ocean-colour data

simultaneously.

All the algorithms discussed here are similar in their requirement of a com-

prehensive database of in situ observations and match-up satellite data for their

validation. The details of the requirements may, however, differ from one algo-

rithm to another: for example, most of the algorithms discussed here are based

on pigments as the measure of abundance of phytoplankton types, whereas the

neural network approach of Raitsos et al. (2008) is based on cell counts. Ideally,

the validation database would cover the full range of all possible concentrations of

phytoplankton for which the method would be applied; it would cover a broad range

of geographic locations and oceanographic conditions; and it would encompass

many representative cases where different phytoplankton types dominate. Match-up

databases are also required for validation of other, and perhaps simpler, algorithms,

such as those for estimation of chlorophyll concentration or inherent optical prop-

erties. The present context merely highlights the value of including information on

phytoplankton types in the database. Since the database should include match-ups

for each sensor for which the algorithms are to be applied, the database should be

maintained over a long time, and in a consistent manner. The paucity of in situ data

limits the extent to which the algorithms can be validated or compared with each

other.

In situ data are also required for algorithm development, but the different

approaches presented here differ significantly from each other in their data re-

quirements for model development. The method of Alvain and colleagues (2005;

2008) is developed using an extensive match-up database of in situ pigments and

satellite-derived remote-sensing reflectance values. The abundance-based method of

Hirata et al. (2011) is based on a database of diagnostic pigments and chlorophyll-a.

The model-based approaches, such as the differential absorption method of Bracher

et al. (2009) and the non-linear inversion methods (Gege, 1998; Roesler et al., 2004)

require specific inherent optical properties of each of the phytoplankton types

modelled. The ecological approaches (Raitsos et al., 2008; Palacz et al., 2013) use a

variety of satellite and in situ observations along with modelled variables to train

the algorithm. Of all these approaches, the one proposed by Palacz et al. (2013) is

unique in that they side step the problem posed by paucity of in situ data by using

modelled data on phytoplankton functional types to develop the algorithm. This of

course, presupposes that the model used is sufficient for the requirements of the

algorithm.

The ecological methods and the abundance-based methods discussed here are

indirect methods, in the sense that the phytoplankton types are deduced from other

satellite products, and no phytoplankton-type-specific satellite signal is used to
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distinguish between phytoplankton types. Abundance-based methods make use of

some measure of concentration of total phytoplankton concentration, whereas the

ecological method accepts that total concentration of phytoplankton by itself may

be insufficient to identify niches favoured by different types of phytoplankton. In

the context of climate variability and climate change, it is important to ask whether

adaptation to change would modify ecological relationships that exist at present,

and which are used in indirect methods to map phytoplankton types.

Differential optical absorption spectroscopy is best implemented using hyper-

spectral data, as discussed in Section 5.3. The method enhances, through differenti-

ation with respect to wavelength, differences in the fine structure in phytoplankton

absorption spectra that are associated with different types of phytoplankton. Tor-

recilla et al. (2011) also showed, using cluster analysis, that taking second derivative

of hyperspectral remote-sensing reflectance spectra obtained under non-bloom

conditions improved the possibility of differentiating between diagnostic pigments.

Though second derivative with respect to wavelength of remote-sensing reflectance

from MODIS-Aqua sensor has been applied (Simon and Shanmugam, 2012) to map

some species of phytoplankton with unusual spectral signatures (Trichodesmium

erythareum, Noctiluca scintillans, Noctiluca miliaris, and Cochlodinium polykrikoides)

in coastal waters around India, limited spectral resolution in multi-spectral satellite

data is bound to prevent the full exploitation of the power of the method. The

model-based non-linear inversion techniques have also been tested in the field using

hyperspectral data, and would be best implemented to hyperspectral satellite data.

Such algorithms are likely to become more prevalent as hyperspectral ocean-colour

data become more readily available.

The approach promulgated by Bracher et al. (2009) and Sadeghi et al. (2012a) also

exploit the fine structure in the absorption spectra of different phytoplankton types

to distinguish them from each other and from all other absorbing and scattering

substances (such as aerosols, atmospheric molecules, pure seawater, non-algal

particles and coloured dissolved organic matter) that contribute to the satellite

signal at the top of the atmosphere, but have inherent optical properties varying

slowly with wavelength in the blue and green parts of the spectral domain. The

method thus targets absorption by phytoplankton, without having to go through a

complex atmospheric correction procedure, and is unique in this respect, compared

with the other methods discussed here. The price is the inability to distinguish

well, in the coupled ocean-atmosphere system, between all the other components

whose optical properties vary only slowly with wavelength. This raises an interesting

and important question: is this novel approach, which deviates from the classical

approach in ocean-colour remote sensing, yielding better results than previously

possible? To address this question, and related questions regarding the relative

performance of algorithms, we need to compare them in a systematic manner.

But this is not a trivial task, as noted above with respect to the data required for

validation, and for additional reasons outlined below.
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Though all the algorithms presented here are designed with similar objectives

in view, some differences between them make comparisons difficult (see Table 5.2).

Table 5.2 Key characteristics of various algorithms used to determine phyto-
plankton functional types.

Method Key characteristics Constraints

Method based
on spectral
anomalies.

Maps dominant types. Abun-
dance measured in chlorophyll
units. Designed for diatoms,
dinoflagellates, Synechococcus-
like cyanobacteria, Phaeocystis-
like phytoplankton, Prochlorococ-
cus and nano-eukaryotes. Imple-
mented for SeaWiFS and MODIS
sensors (multispectral).

Needs a large number of match-up
in situ and satellite data covering a
range of conditions for algorithm de-
velopment; the reference spectra and
the characteristic reflectance anomaly
spectra for phytoplankton types have
to be set up for each satellite sensor.
Requires extremely clear-sky condi-
tions.

Method based
on differential
absorption.

Maps abundance of diatoms,
cyanobacteria, coccolithophores
and dinoflagellates. Abundance
measured in chlorophyll units.
Implemented for the SCIAMACHY
sensor (hyperspectral).

Does not account for within-type vari-
ability in the absorption characteris-
tics of phytoplankton types. Designed
for hyperspectral sensors. Low pixel
resolution and low temporal coverage
in products dictated by sensor charac-
teristics.

Multi-sensor
ecological ap-
proaches.

Indirect method. Maps abun-
dance of silicoflagellates, diatoms,
coccolithophores, dinoflagellates
and non-dominance. Abundance
measured in cell counts. Uses
multiple satellite inputs for clas-
sification.

Need large database of multi-satellite
(and possibly modelled) data and in
situ data on phytoplankton types to
develop algorithm as in Raitsos et al.
(2008) method. In situ data availability
was limited to North Atlantic. Palacz
et al. (2013) model was trained using
outputs from a biogeochemical model,
and tested only for selected areas of
the world ocean.

Abundance-
based methods.

Indirect method. Hirata et al.
(2011) have mapped abundance
of diatoms, green algae, Prym-
nesiophytes, prokaryotes, pico-
eukaryotes and Prochlorococcus
sp. Applicable to any sensor
which provides chlorophyll con-
centration.

Products should not be treated as in-
dependent of chlorophyll-a. Need a
large and representative database of
diagnostic pigments and chlorophyll-
a for algorithm development.

Ocean-colour
model-based
inversion meth-
ods.

Products change with implemen-
tation. Possible to use different
measures of abundance, such as
absorption, pigment concentra-
tion or cell counts. Current meth-
ods based on hyperspectral data.

Yet to be implemented for routine op-
eration from satellite sensors.
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Not all of them are capable of quantifying proportions of different types present in

a location simultaneously. The phytoplankton types that are studied change with

methods. Different measures of abundance are used in different algorithms, with

chlorophyll units, absorption coefficients and cell counts being in use. The methods

have been implemented for different sensors, and consequently, not all methods

yield products at the same time and at the same place.

In spite of these difficulties with comparisons, a standardized method has to be

put in place to compare algorithms and evaluate their performance on a common

basis, with the same criteria and the same input data, as was done, for example,

by Brewin et al. (2013) for some other ocean-colour products. Such an activity

would benefit greatly from the availability of a comprehensive database of the

kind mentioned above. For the approaches that require and use extensive data

on phytoplankton types for model development (e.g., methods based on spectral

anomalies, ecological methods or abundance-based methods), it is even more difficult

to obtain an equally comprehensive, but independent dataset for model validation.

There is an increasing requirement from the user community to characterise

the errors in the satellite products. The descriptions of the approaches provided

in this chapter, and the comparison in Table 5.2 show that each of the approaches

has different sources of uncertainties and hence different error budgets from each

other.
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General Discussion and Conclusion
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This monograph is being written at a time when the field of remote sensing of

phytoplankton types is in a stage of dynamic growth. It is therefore not the intention

of the authors of this report to suggest that what is described here represents the

last word on the topic. Rather, we focus on a review of what has been attempted

so far, with the full realization and even optimism that future developments will

outperform what has been achieved to date. Hence the value of much of what is

in this report may be transient, particularly when considering that the citations

might not be complete and that new techniques are emerging. Still, in producing

this report, our hope is twofold. For the would-be users of ocean-colour products

related to phytoplankton types, we hope that the overview presented here helps

guide choices from among the various options available. These users should be able

to select solutions that best meet their particular requirements, with knowledge of

both the capabilities and limitations of the products that they choose to use. For

the would-be algorithm developers, we hope this report provides a starting point

for identifying gaps and highlighting areas where effort should be focused to move

the field forward.

As detailed in the preceding three chapters, a variety of algorithms are available

for studying dominant phytoplankton functional types or community composition

or size structure from space. They do not all provide the same information, and fur-

thermore, their performance may vary with the criteria against which performance

is evaluated, or it may vary with region or season. Therefore, it is important for

the users to be aware of the principles that underlie the methods, their advantages

and limitations, and the contexts in which a particular algorithm may be deemed

suitable. This monograph is intended to help users choose the right algorithms

or data products for their particular applications. In some instances, it may be

important to exploit the complementarity of algorithms, and use more than one

algorithm to obtain the information needed.

In this final chapter of the report, some issues that cut across chapters, and

some thoughts on future directions are laid out.

125
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6.1 Size and Community Structure

In this monograph, methods designed to retrieve community structure and size

structure have been treated in separate chapters, but it should not be overlooked

that it is often impossible in the ocean to disentangle the two completely: size

change is typically accompanied by community change, since a given phytoplankton

species has limited capacity to change its size. This inter-relationship between

type and size influences the algorithms discussed in this monograph in many ways.

For example, diatoms are mostly large-celled, and are treated as microplankton

(cell size >20 µm), and the absorption spectra used for discrimination of diatoms

from other populations display the flat absorption spectra characteristic of large-

celled populations. But small-celled diatoms do exist, though they may not be

abundant enough to dominate biomass and the optical signals exploited for both

size-based and type-based models. Regional differences in the cell size of the diatom

populations might be one of the reasons why the algorithms for discrimination of

diatoms need regional tuning (Jackson et al., 2011).

6.2 Single-Variable and Multi-Variable Approaches

It has been shown by many authors (e.g., Yentsch and Phinney, 1989; Chisholm,

1992; Bricaud et al., 2004; Irigoien et al., 2004; Sathyendranath et al., 2005) that the

phytoplankton size structure changes with chlorophyll concentration in open-ocean

waters. The modifications in size are accompanied by shifts in community compo-

sition and in absorption properties (Sathyendranath et al., 2005), as summarized

in Table 6.1. The dependence of phytoplankton absorption characteristics on size

(or, concurrently, on community) is implicit in the many non-linear relationships

that have been established between chlorophyll concentration and phytoplankton

absorption (e.g., Bricaud et al., 2004), or between chlorophyll concentration and

backscattering (Ulloa et al., 1994; Loisel and Morel, 1998). It also appears explicitly in

some model-based relationships between absorption and chlorophyll concentration

(e.g., Sathyendranath et al., 2001; Devred et al., 2006; 2011; Brewin et al., 2011a).

Such trends in modulation of the inherent optical characteristics of phytoplankton

with change in chlorophyll concentration is also implicit in the bio-optical algorithms

that are used to retrieve chlorophyll concentration from reflectance ratios derived

from ocean-colour data (see Figure 4.7).

It would be fair to say that abundance-based models for discrimination of size

from satellite data attempt to render explicit and to quantify the general trends in

size associated with changes in chlorophyll concentration. This is an advantage

for abundance-based models (when applied to Case 1 waters) in the sense that

chlorophyll concentration is the best validated of all ocean-colour products, and

abundance-based models are based firmly on chlorophyll algorithms (or on other
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Table 6.1 Typical changes in phytoplankton community structure that accom-
pany changes in chlorophyll concentration in open-ocean waters.

Low Chlorophyll High Chlorophyll

Small cells Large cells

Picoplanktonic cyanobacteria, green algae Diatoms, dinoflagellates, Trichodesmium
and other large-celled cyanobacteria

High specific absorption Low specific absorption

Pronounced peaks in absorption Flat absorption spectrum

High ratio of blue peak to red peak in ab-
sorption spectrum

Low ratio of blue peak to red peak in ab-
sorption spectrum

High ratio of non-photosynthetic
carotenoids to Chl-a

Low ratio of non-photosynthetic
carotenoids to Chl-a

High ratio of Chl-b to Chl-a Low ratio of Chl-b to Chl-a

Low ratio of Chl-c to Chl-a High ratio of Chl-c to Chl-a

High negative slope of size spectrum Low negative slope of size spectrum

related measures of phytoplankton abundance).

But it is important to acknowledge that abundance-based models do not yield

information independent of chlorophyll concentration. As noted elsewhere in this

report, these methods are therefore indirect methods. In fact, in these instances

we are treating the waters very much as Case-1 waters, where a single variable,

say chlorophyll-a concentration, dictates what might be inferred about the bio-

optical characteristics and phytoplankton community structure. The community

composition or size structure is not directly observed, but determined indirectly

from a single measure of abundance, whether it be chlorophyll concentration or

phytoplankton absorption at a single wavelength. The information on community

structure should therefore not be treated as independent additional information,

rather as a statistical derivation that brings to light some natural organization that

underlies variability in the pelagic phytoplankton community. Remote sensing in

this context is an extrapolation tool, to go from sparse in situ measurements to

global-scale maps.

Following points made previously (Bricaud et al., 2004; Devred et al., 2006), we

also have to acknowledge that there are regional differences around the general

trends described above, such that a global model of abundance-based size retrievals

may show systematic biases that are regionally delineated. This may explain at

least partially why the differences between the three abundance-based models

compared in Figure 4.4 show some regional structure, rather than white noise

distributed uniformly across the regions. Even though all three of the models

were parameterized from large databases with a global distribution, the datasets

would have, inevitably, a non-uniform distribution across the different regions. One
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potential solution to such regional biases would be to tune algorithms by season and

by region, for example on the basis of the ecological provinces of the sea (Longhurst,

2006).

Abundance-based algorithms are empirical in nature, and the paucity of ob-

servations dictates that multi-year data be combined to establish the functional

relationships between chlorophyll concentration and size structure. If, due to cli-

mate change, or extreme events, or long-term oscillations, the relationship between

chlorophyll concentration and community structure shifts, abundance-based meth-

ods would be unable to detect those changes, unless there is auxiliary information.

Particularly in the context of climate change, it is important to bear in mind that

the relationships observed in the past may not be a reliable guide for predicting the

future.

Methods based on spectral-inherent optical properties, such as some of the

algorithms discussed in Chapters 3, 4 and 5, are multivariate approaches that use

optical information at multiple wavebands to distinguish one phytoplankton type

from the others, without relying on external information about the relationships

between community structure and phytoplankton abundance. In this sense they

are direct approaches, closer to the in situ methods, in that an optical signal from

the target is used to identify and quantify the target. What sets these approaches

apart from the in situ methods is that remote sensing deals with a highly non-linear

and an especially noisy system, with optical signals from other substances in the

water and in the intervening atmosphere being responsible for the noise. The better

we learn to deal with the noise and the non-linearities in the system, the better the

spectral methods may be expected to perform. But all direct methods require a

unique optical signal that can be used to distinguish one type of phytoplankton

from all other substances. In the absence of any such signal, our only recourse to

their detection would be an indirect method, such as the abundance-based methods

or an ecological approach, along the lines discussed in Chapter 5.

6.3 Uncertainties in Products and Limits of Detection

Many of the methods described in this monograph have been validated against in

situ data, but not much effort has been made to inter-compare algorithms and to

identify best algorithms for a particular application. A notable exception is the work

of Brewin et al. (2011b) (see also Chapter 4) who made a systematic comparison of a

number of algorithms designed to estimate phytoplankton size classes from remote

sensing. Without a doubt, more work is needed along this direction. Furthermore,

quantitative and qualitative criteria have to be used in a scoring system to evaluate

which algorithm might be best suited for a particular application, as was done for

example, in selecting in-water and atmospheric-correction algorithms for use in

climate-change studies (Brewin et al., 2013; Müller et al., 2014).
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With a combination of theoretical analyses and tests based on a practical im-

plementation of the Equivalent Algal Population (EAP) inversion algorithm in the

Benguela upwelling region, Evers-King et al. (2014) have suggested that size re-

trieval is highly dependent on algal biomass and that the error associated with

radiometrically-derived size retrievals increases substantially below chlorophyll

concentrations of around 10 mg m−3. Their conclusions cannot be generalized

for all algorithms and all regions, since many of the other algorithms discussed in

this report are designed for application in open-ocean waters with concentrations

typically much less than 10 mg m−3. But at present, for most algorithms, we do not

have a clear idea on the lowest concentrations at which phytoplankton types may be

detected. Going forward, it would be extremely valuable if the limits of detection

for each algorithm were clearly identified.

It is sometimes suggested that the phytoplankton community structure plays

a secondary role to that of phytoplankton concentration in changing ocean colour.

This is often taken to imply that detection of phytoplankton community struc-

ture is inherently more difficult than that of detecting phytoplankton concentra-

tion. But the problem is a bit more intricate than that. For example, in the ex-

treme case of a picophytoplankton-dominated community changing completely to a

microphytoplankton-dominated community, the phytoplankton specific absorption

coefficient at 440 nm could be reduced by a factor of up to ten, which would be

comparable to the effect of a ten-fold change in concentration. This is by no means a

minor effect, as we can also infer from Figure 4.7. The problem is more that of being

able to identify, unequivocally, whether a change in community or in concentration

is responsible for a particular change in ocean-colour reflectance. Until algorithms

reach that level of sophistication, we may anticipate uncertainties in algorithms for

detection of both concentration and composition arising from our limited ability to

distinguish between the two.

Moreover, it is known that the optical properties of particular types of phyto-

plankton are liable to change according to growth conditions (e.g., Stramski and

Morel, 1990; Fujiki and Tagughi, 2002; Stramski et al., 2002; Nair et al. 2008). Such

plasticity in optical properties of individual phytoplankton species or groups sets a

limit on the precision with which we may be able to retrieve phytoplankton types,

and we have yet to establish these limits.

In general, with the limited number of wavebands available for algorithm devel-

opment from ocean-colour sensors, all algorithms designed for retrieval of multiple

oceanic properties from remote sensing have to contend with the problem of having

more unknown model parameters than the number of wavebands available. Fur-

thermore, similarities in the spectral signatures of some of the other oceanic and

atmospheric constituents (for example, the absorption spectra of detrital particles

and coloured dissolved organic matter, the backscattering spectra of oceanic parti-

cles and aerosols) may limit our ability to distinguish among them, which in turn

could introduce errors in the inferred phytoplankton absorption spectrum. This is
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particularly true when residual errors from the imperfect atmospheric correction

may represent a non-negligible portion of the surface reflectance (Hu et al., 2013).

In the future, ocean-colour sensors with more spectral bands (e.g., Fishman et al.,

2012) that operate over a larger spectral range would be able to help address some

of these challenges.

6.4 Need for an In Situ Database

Comparison exercises would benefit from a concerted effort to collect and collate

relevant in situ data from around the globe. The establishment of such a database

should be a priority for the community. What should be included in such a database?

Chapter 2 outlines the various in situ methods that are currently used to study phy-

toplankton community structure. Because different methods bring complementary

information, and because different satellite algorithms match more or less with

different in situ methods (see Table 2.3), it is important that the database carry

information from a variety of in situ methods, so that each type of satellite algorithm

may be compared against in situ data collected with the method that best matches

the algorithm. Furthermore, we also have to consider the in situ data as bringing

complementary information to what might never be accessible to remote sensing.

Satellite and in situ data, taken together, would allow us to form a more complete

picture of the phytoplankton community in the marine environment than would be

possible by any method in isolation.

For further developments in algorithms for phytoplankton types, we have to rely,

among other things, on improved information on the inherent optical properties

of phytoplankton. We need to catalogue the optical properties of different types

of phytoplankton, as well as to understand better the variability in the optical

properties of particular types of phytoplankton. It is therefore important that

the proposed in situ database also incorporates inherent optical properties of

phytoplankton from the natural environment.

6.5 Harmful Algal Blooms

Harmful algal blooms may be considered as a group of phytoplankton functional

types that are known to have deleterious effects. Some of the phytoplankton types,

especially those discussed in Chapter 3, have a nuisance value, and some are known

to be toxic, both to aquatic life and to humans. But detection of toxic blooms is

particularly complicated, since some species of phytoplankton may be harmful or

toxic only under some growth conditions. For example, Pseudo-nitzchia pungens is

known to have toxic and non-toxic strains, with some strains producing the toxin

only under certain growth conditions, such that remote sensing of such toxic events

is particularly difficult (Sathyendranath et al., 1997). The particular problem of
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detection of harmful algal blooms falls outside the scope of this report and is the

subject of another IOCCG monograph that is currently being prepared.

6.6 Case-2 Waters

Whereas this report has focused on detection of phytoplankton types from ocean-

colour radiometry, a parallel effort in the field is to solve the problem of remote

sensing of ocean colour in the so-called Case-2 waters, where substances other than

phytoplankton (including suspended sediments and coloured dissolved organic

matter) also have a significant and independent effect on the ocean-colour signal.

To the extent that algorithms for Case-2 waters and spectral-signature-based phyto-

plankton functional type algorithms both attempt to retrieve multiple, independent

oceanic components from the satellite data, the problems faced in the two fields are

similar, from a mathematical point of view. There may be opportunities that can

help advance both fields, which are yet to be exploited fully.

On the other hand, it has to be emphasized that most phytoplankton functional

type algorithms currently available are designed largely for use in open-ocean

waters where it might be safely assumed that the influence of substances other

than phytoplankton co-vary in a predictable manner with phytoplankton. In other

words, they are primarily meant for Case-1 waters. An exception is the algal blooms

that float at the surface, which are discussed in Chapter 3, such as the blooms of

Ulva prolifera, Sargassum, Trichodesmium, or other types of cyanobacteria that can

also occur in optically-complex Case-2 waters. These blooms, however, often show

distinctive spectral shapes in the NIR and visible, thus minimizing the impact of

optical complexity on algorithm development and performance.

6.7 Directions for Future Work

The three preceding chapters of this book have outlined the various algorithms

available for detecting phytoplankton types from satellite data, and identified the

advantages and limitations of the various methods. These chapters, along with the

previous sections of this chapter itself, are designed to help identify gaps in our

knowledge, and point the way towards areas where further development is needed.

Some additional points that may not have emerged yet are identified here.

An important point is that the field of detection of phytoplankton types from

space cannot advance in isolation from other aspects of ocean-colour remote sensing.

For example, errors in atmospheric correction or in instrument calibration could

impact retrieval algorithms for phytoplankton types and are likely to add substantial

uncertainty. Thus a prerequisite for improving algorithms for phytoplankton types

is a well-calibrated instrument with high spectral resolution and high precision.
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Undoubtedly, higher spectral resolution would be beneficial for improving algo-

rithms for phytoplankton types. But what criteria could be used to select optimal

wavebands for future sensors? One set of criteria could be provided by the locations

of peaks in the in vivo absorption bands of diagnostic pigments of phytoplankton.

But these may have to be refined on the basis of other criteria, for example aligning

the wavebands with atmospheric transmission “windows” to reduce problems from

atmospheric correction. Sathyendranath et al. (1989) and Lee et al. (2007) have

examined the problem of optimal wavelengths for Case-2 waters, yet similar analyses

for optimising wavebands for the detection of phytoplankton types are still to be

undertaken.

These considerations may become irrelevant when ocean-colour sensors with

hyperspectral capability become the norm, unless onboard spectral binning is re-

quired to increase signal-to-noise. Over time, we anticipate algorithms that exploit

hyperspectral capabilities will become increasingly developed and used (for example

algorithms that are based on derivative spectra, such as described in Section 5.3).

With several missions currently being planned by various space agencies, for exam-

ple, the PACE mission (NASA, 2010) and the GEO-CAPE mission (Fishman, 2012), it

is possible to have hyperspectral sensors in the near future with sufficient spatial

and temporal resolution that are best suited for aquatic applications.

Scientific advances will have to keep pace with such technological advances.

As our understanding of the inherent optical properties of phytoplankton types

improves over time, so will ocean-colour models. But there are other considerations

as well: many of the models on which algorithms are based do not currently include

trans-spectral processes such as Raman scattering or fluorescence by phytoplankton

pigments and by coloured dissolved organic matter (though there are exceptions,

such as the work of Bracher et al. (2009) which incorporates Raman scattering).

Improving ocean-colour models should remain a target for future work.

Some algorithms for phytoplankton types have been developed that are based

on the chlorophyll signal in the red part of the spectrum (e.g., Roy et al., 2013).

However, a recent inter-comparison of in-water algorithms (Brewin et al., 2013)

showed that those algorithms that attempted to provide independent information

on phytoplankton absorption at 670 nm performed poorly. The difficulties likely

arise from the remote-sensing reflectance signal being generally very low at 670 nm

in the open ocean or possibly from fluorescence effects that were unaccounted for.

Certainly, detection of phytoplankton types would benefit from reliable retrieval of

phytoplankton absorption across the entire spectrum, rather than only at parts of

the spectrum.
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6.8 Serving the User Community

As noted in Chapter 1, the development of algorithms for detection of phytoplankton

types parallels the interest in the biogeochemical and climate research communities

to understand the role of different phytoplankton functional types in modulating

and modifying biogeochemical cycles in the ocean as well as air-sea fluxes of climate-

relevant gases. The algorithms and products should therefore be tailored to meet

these research needs in several ways.

For ocean-colour products to be more useful for the biogeochemistry commu-

nities, we need to explore further the properties of the marine ecosystem at the

boundary between biogeochemical models and remote sensing. The typical currency

for measuring phytoplankton biomass in remote sensing is the chlorophyll con-

centration, and there are many practical applications for this measure of biomass,

for example in primary production models. But the typical currency in ecosystem

models is carbon or nitrogen biomass, and it is not straightforward to convert

between these different measures of phytoplankton concentration. For example,

the carbon-to-chlorophyll ratio in phytoplankton is known to vary over one to two

orders of magnitude, and the variability may be related to the phytoplankton types

present and to their growth conditions (e.g., Cloern et al., 1995; Sathyendranath

et al., 2009). Modellers and remote sensing scientists have to work together to

understand the causes of variability in these factors, to allow better comparison

between models and observations.

It is also important to facilitate access to products. Unlike the “standard” ocean-

colour data products such as chlorophyll concentration and diffuse attenuation

that can be obtained and queried from several data portals (e.g., NASA GSFC,

http://oceancolor.gsfc.nasa.gov), most of the products for phytoplankton types

derived from the customized algorithms are often not available to the general user

community. Future efforts should be dedicated to make these products available

in user-friendly format to encourage more applications. In turn, results from appli-

cations of the PFT products in inter-disciplinary studies may serve as independent

checks on the validity of the products, thus providing, feedback to help refine

algorithms and products.

6.9 In Conclusion

Let us recall that it was stated in this report (Chapter 2) that a variety of in situ

observations are needed to describe phytoplankton community structure. Similarly,

it may require multiple algorithms to extract essential information on phytoplankton

community from satellite data. Furthermore, we have to acknowledge that the oceans

will always hide some secrets from a remote device, so that remote sensing by itself

would always be insufficient to meet all our requirements. The challenge for the

http://oceancolor.gsfc.nasa.gov


134 • Phytoplankton Functional Types from Space

oceanographer is to bring together various observation tools, whether they be in situ

or remote, that complement each other, such that the whole picture of the world of

phytoplankton can be pieced together.
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M.A. (Eds.), pp. 31–74, Springer.

Huot, Y., Morel, A., Twardowski, M.S., Stramski, D., Reynolds, R.A. (2008). Particle optical backscattering along a
chlorophyll gradient in the upper layer of the eastern South Pacific Ocean. Biogeosciences 5: 495–507.

Hutchinson, G.E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22: 415–427.
Iglesias-Rodríguez, M.D., Brown, C.W., Doney, S.C., Kleypas, J., Kolber, D., Kolber, Z. (2002). Representing key

phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids. Global Biogeochem.
Cy. 16: doi:10.1029/2001GB001454.

IOCCG (1999). Status and plans for satellite ocean-colour missions: considerations for comeplementary missions.
Reports of the International Ocean-Colour Coordinating Group, No. 2, Yoder, J.A. (Ed.), IOCCG, Dartmouth,
Canada.

IOCCG (2006). Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Appli-
cations. Reports of the International Ocean-Colour Coordinating Group, No. 5, Lee, Z.P. (Ed.), IOCCG,
Dartmouth, Canada.

Irigoien, X., Meyer, B., Harris, R., Harbour, D. (2004). Using HPLC pigment analysis to investigate phytoplankton
taxonomy: the importance of knowing your species. Helgoland Marine Research 58: 77–82.

Irwin, A.J., Finkel, Z.V., Schofield, O.M.E., Falkowski, P.G. (2006). Scaling-up from nutrient physiology to the size-
structure of phytoplankton communities. J. Plank. Res. 28: 459–471.

Jackson, T., Bouman, H.A., Sathyendranath, S., Devred, E. (2011). Regional-scale change in diatom distribution
in the Humboldt Current as revealed by remote sensing: implications for fisheries. ICES J. Mar. Sci. 68:
729–736, doi:10.1093/icesjms/fsq18.

Jeffrey, S.W., Vesk, M. (1997). Introduction to marine phytoplankton and their pigment signatures. In: Phyto-
plankton Pigments in Oceanography, Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (Eds.), UNESCO Publishing,
Paris.

Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (Eds.) (1997). Phytoplankton pigments in oceanography: guidelines to
modern methods, UNESCO, France.

Jin, X., Gruber, N., Dunne, J.P., Sarmiento, J.L., Armstrong, R.A. (2006). Diagnosing the contribution of phytoplank-
ton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from
global nutrient and alkalinity distributions. Global Biogeochem. Cycles 20.
GB2015, doi:10.1029/2005GB002532.

Jochem F.J., Mathot, S., Quéguiner, B. (1995). Size fractionated primary production in the open Southern Ocean in
austral spring. Polar Biol. 15: 381–392.

Johnsen, G., Nelson, N.B., Jovine, R.V.M., Prézelin, B.B. (1994). Chromoprotein- and pigment-dependent modelling
of spectral light absorption in two dinoflagellates, Prorocentrum minimum and Heterocapsa pygmaea. Mar.
Ecol. Prog. Ser. 114: 245–258.

Johnsen, G., Sakshaug, E. (2007). Bio-optical characteristics of PSII and PSI in 33 species (13 pigment groups) of ma-
rine phytoplankton, and the relevance for pulse-amplitude-modulated and fast-repetition-rate fluorometer.
J. Phycol. 43: 1236–1251.

Johnson, Z.I., Zinser, E.R., Coe, A., McNulty, N.P., Woodward, E.M.S., Chisholm, S.W. (2006). Niche partitioning
among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311: 1737–1740.

Johnsen, G., Samset, O., Granskog, L., and Sakshaug, E. (1994). In vivo absorption characteristics in 10 classes of
bloom-forming phytoplankton — Taxonomic characteristics and responses to photoadaptation by means
of discriminant analysis. Mar. Ecol. Prog. Ser. 105: 149–157, 10.3354/meps105149.

Kahru, M., Leppanen, J.-M., Rud, O. (1993). Cyanobacterial blooms cause heating of the sea surface. Mar. Ecol.
Prog. Ser. 191: 1–7.

Kahru, M., Leppanen, J.-M., Rud, O., Savchuk, O.P. (2000). Cyanobacteria blooms in the Gulf of Finland triggered
by saltwater inflow into the Baltic Sea. Mar. Ecol. Prog. Ser. 207: 13–18.

Kameda, T., Ishizaka, J. (2005). Size-fractionated primary production estimated by a two-phytoplankton commu-
nity model applicable to ocean color remote sensing. J. Oceanogr. 61: 663–672.

Karl, D.M., Letelier, R., Tupas, L., Dore, J., Christian, J., Hebel, D. (1997). The role of nitrogen fixation in biogeo-
chemical cycling in the subtropical North Pacific Ocean. Nature 388: 533–538.



144 • Phytoplankton Functional Types from Space

Keller, M.D. (1989). Dimethylsulfide production and marine phytoplankton: The importance of species composi-
tion and cell size. Biolog. Oceanogr. 6: 375–382.

Keller, M., Bellows, W.K., Guillard, R.R.L. (1989). Dimethyl sulfide production in marine phytoplankton. In: Biogenic
Sulfur in the Environment, Saltzman, E.S., Cooper, W.J. (Eds.), American Chemical Society, Washington, D.C.,
pp. 183–200.

Kettle, A.J., Andreae, M.O. (2000). Flux of dimethylsulfide from the oceans: A comparison of updated data seas
and flux models. J. Geophys. 105(D22): 26,793–26,808.

Kiefer, D. A. (1973). Fluorescence properties of natural phytoplankton populations. Mar. Biol. 22: 263–269.
Ki, J.-S., Han, M.-S. (2006). A low-density oligonucleotide array study for parallel detection of harmful algal species

using hybridization of consensus PCR products of LSU rDNA D2 domain. Biosens Bioelectron 21: 1812–
1821.

Kirk, J.T.O. (1975a). A theoretical analysis of the contribution of algal cells to the attenuation of light within
natural waters I. General treatment of suspensions of pigmented cells. New Phytologist 75: 11–20.

Kirk, J.T.O. (1975b). A theoretical analysis of the contribution of algal cells to the attenuation of light within
natural waters II. spherical cells. New Phytologist 75: 21–36.

Kirkpatrick, G.J., Millie, D.F., Moline, M.A., Schofield, O. (2000). Optical discrimination of a phytoplankton species
in natural mixed populations. Limnol. Oceanogr. 45: 467–471.

Kishi, M.J., Kashiwai, M., Ware, D.M., Megrey, B.A., Eslinger, D.L., Werner, F.E. et al. (2007). NEMURO–a lower
trophic level model for the North Pacific marine ecosystem. Ecol. Model. 202(1-2): 12–25.

Kitchen, J.C., Zaneveld, J.R.V. (1992). A 3-layered sphere model of the optical-properties of phytoplankton. Limnol.
Oceanogr. 37: 1680–1690.

Kobayashi, F., Takahashi, K. (2002). Distribution along the equatorial transect in the western and central Pacific
during the 1999 La Niña conditions. Deep Sea Res. II, 49: 2810–2821.

Kohenen, T. (1984). Self Organization and Associative Memory (2nd Ed.). Springer-Verlag Berlin, Heidelberg.
Kosakowska, A., Lewandowska, J., Stoń, J., Burkiewicz, K. (2004). Qualitative and quantitative composition of

pigments in Phaeodactylum tricornutum (Bacillariophyceae) stressed by iron. BioMetals 17: 45–52.
Kostadinov, T.S., Siegel, D.A., Maritorena, S. (2009). Retrieval of the particle size distribution from satellite ocean

color observations. J. Geophys. Res. 114: C09015.
Kostadinov, T.S., Siegel, D.A., Maritorena, S. (2010). Global variability of phytoplankton functional types from

space: assessment via the particle size distribution. Biogeosciences 7: 3239–3257.
Krüger, O., Graßl, H. (2011). Southern Ocean phytoplankton increases cloud albedo and reduces precipitation.

Geophys. Res. Lett. 38: L08809, doi:10.1029/2011GL047116.
Kuchler, D.A., Jupp, D.L.B. (1988). Shuttle photograph captures massive phytoplankton bloom in the Great Barrier

Reef. Int. J. Remote Sens. 9(8): 1299–1301.
Kurekin, A.A., Miller, P.I., Van der Woerd, H.J. (2014). Satellite discrimination of Karenia mikimotoi and Phaeocystis

harmful algal blooms in European coastal waters: Merged classification of ocean colour data. Harmful
Algae, 31: 163–176. doi:10.1016/j.hal.2013.11.003.

Lana, A., Bell, T.G., Simó, R., Vallina, S.M., Ballabrera-Poy, J. Kettle, A.J. et al. (2010). An updated climatology of
surface dimethylsulfide concentrations and emission fluxes in the global oceans. Global Biogeochem. Cy.
25(1): GB1004 doi:10.1029/2010GB003850.

Laney, S.R., Sosik, H.M. (2014). Phytoplankton assemblage structure in and around a massive under-ice bloom in
the Chukchi Sea. Deep-Sea Res. II. http://dx.doi.org/10.1016/j.dsr2.2014.03.012.

Lapointe, B.E. (1995). A comparison of nutrient-limited productivity in Sargassum natans from neritic vs. oceanic
waters of the western North Atlantic Ocean. Limnol. Oceanogr. 40: 625-633.

Laws, E.A., Falkowski, P.G., Smith Jr, W.O., Ducklow, H., McCarth, J.J. (2000). Temperature effects on export
production in the open ocean. Global Biogeochem. Cy. 14: 1231–1246.

Lee, Z.P., Carder, K.L., and Arnone, R.A. (2002). Deriving inherent optical properties from water colour: a multiband
quasi-analytical algorithm for optically deep waters. Appl. Optics 41: 5755–5772.

Lee, Z.P., Carder, K.L., Arnone, R., He, M-X. (2007). Determination of primary spectral bands for remote sensing of
aquatic environments. Sensors, 7: 3428–3441.

Legendre, L., LeFevre, J. (1991). From individual plankton cells to pelagic marine ecosystems and to global biogeo-
chemical cycles. In: Particle Analysis in Oceanography, Demers, S. (Ed.), Berlin, Springer.

Lelong, A., Hégaret, H., Soudant, P., Bates, S.S. (2012). Pseudo-nitzschia (Bacillariophyceae) species, domoic acid
and amnesic shellfish poisoning: revisiting previous paradigms. Phycologia 51: 168–216.

Le Quéré, C., Harrison, S.P., Prentice, C.I., Buitenhuis, E.T., Aumont, O., Bopp, L., Claustre, H., et al. (2005). Ecosys-
tem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change
Biol. 11(11): 2016–2040, doi:10.1111/j.1365-2486.2005.1004.x.

Letelier, R.M., Abbott, M.R. (1996). An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution
Imaging Spectrometer (MODIS). Remote Sens. Environ. 58: 215–223.

Letelier, R.M., Bidigare, R.R., Hebel, D.V., Ondrusek, M.E., Winn, C.D., Karl, D.M. (1993). Temporal variability of
phytoplankton community structure based on pigment analysis. Limnol. Oceanogr. 38: 1420–1437.

Lieberman, O.S., Shilo, M., van Rijn, J. (1994). The physiological ecology of a freshwater dinoflagellate bloom
population: vertical migration, nitrogen limitation, and nutrient uptake kinetics. J. Phycol. 30: 964–971.

http://dx.doi.org/10.1016/j.dsr2.2014.03.012


References • 145

Lima, I.D., Doney, S.C. (2004). A three-dimensional, multinutrient, and size-structured ecosystem model for the
North Atlantic. Global Biogeochemical Cy. 18: GB3019, doi:10.1029/2003GB002146.

Lima, I.D., Olson, D.B., Doney, S.C. (2002). Intrinsic dynamics and stability properties of size-structured pelagic
ecosystem models. J. Plank. Res. 24: 533–556.

Liss, P.S., Hatton, A.D., Malin, G., Nightingale, P.D., Turner, S.M. (1997). Marine sulphur emissions. Phil. Trans. R.
Soc. London, B352: 159–169.

Liu, D., Keesing, J.K., Xing, Q., Shi, P. (2009a). World’s largest macroalgal bloom caused by expansion of seaweed
aquaculture in China. Mar. Sci. Bull. doi:10.1016/j.marpolbul.2009.01.013.

Liu, H., Probert, I., Uitz, J., Claustre, H., Aris-Brossou, S., Frada, M., Not, F., de Vargas, C. (2009b). Haptophyta rule
the waves: extreme oceanic biodiversity in non-calcifying haptophytes explains the 19-Hex paradox. Proc.
Natl. Acad. Sci. USA. 106: 12803–12808.

Llewellyn, C.A., Fishwick, J.R., Blackford, J.C. (2005). Phytoplankton community assemblage in the English Channel:
a comparison using chlorophyll a derived from HPLC-CHEMTAX and carbon derived from microscopy cell
counts. J. Plank. Res. 27: 103–119.

Lohrenz, S.E., Weidemann, A.D., Tuel, M. (2003). Phytoplankton spectral absorption as influenced by community
size structure and pigment composition. J. Plank. Res. 25: 35–61.

Loisel, H., Morel, A. (1998). Light scattering and chlorophyll concentration in case 1 waters: a reexamination.
Limnol. Oceanogr. 43: 847-858.

Loisel, H., Poteau, A. (2006). Inversion of IOP based on Rrs and remotely retrieved Kd. In: Remote Sensing of
Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, Lee, Z.P. (Ed.), Reports
of the International Ocean Colour Coordinating Group, No. 5. IOCCG, Dartmouth, Canada, pp. 35–41.

Loisel, H., Stramski, D. (2000). Estimation of the inherent optical properties of natural waters from the irradiance
attenuation coefficient and reflectance in the presence of Raman scattering. Appl. Optics 30(18): 3001–
3011.

Loisel, H., Lubac, B., Dessailly, D., Duforêt-Gaurier, L., Vantrepotte, V. (2010). Effect of inherent optical properties
variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach. Opt. Express
18(20): 20,949–20,959.

Loisel, H., Nicolas, J.-M., Deschamps, P.-Y., Frouin, R. (2002). Seasonal and inter-annual variability of particulate
organic matter in the global ocean. Geophys. Res. Lett. 29: 49–52.

Loisel, H., Nicolas, J-M., Sciandra, A., Stramski, D., Poteau, A. (2006). Spectral dependency of optical backscattering
by marine particles from satellite remote sensing of the global ocean. J. Geophys. Res. 111: C09024.

Longhurst, A. (2006). Ecological Geography of the Sea (2nd Edition). Elsevier, Amsterdam 543 p.
Longhurst, A.R., Sathyendranath, S., Platt, T., Caverhill, C. (1995). An estimate of global primary production in the

ocean from satellite radiometer data. J. Plank. Res. 17: 1245–1271.
Lovelock, J. (2007). The Revenge of Gaia. Penguin Books Ltd. ISBN 0141025972.
Lü, X., Qiao, F. (2008). Distribution of sunken macroalgae against the background of tidal circulation in the coastal

waters of Qingdao, China, in summer 2008. Geophys. Res. Lett., 35: L23614, doi:10.1029/2008GL036084.
Lubac, B., Loisel, H., Guiselin, N., Astoreca, R., Artigas, L.F., Mériaux, X. (2008). Hyperspectral versus multispectral

remote sensing approach to detect phytoplankton blooms in coastal waters: application to a Phaeocystis
globosa bloom. J. Geophys. Res. 113: C06026.

Lutz, V.A., Sathyendranath, S., Head, E.J., Li, W.K.W. (2001). Changes in the in vivo absorption and fluorescence
excitation spectra with growth irradiance in three species of phytoplankton. J. Plankton Res. 23(6): 555–
569.

MacIntyre, H.L., Lawrenz, E., Richardson, T.L. (2010). Taxonomic discrimination of phytoplankton by spectral
fluorescence. In: Chlorophyll a fluorescence in aquatic sciences: Methods and applications, Suggett, D.J.,
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Acronyms and Abbreviations

AMT Atlantic Meridional Transect

ANN Artificial Neural Network

AVHRR Advanced Very High Resolution Radiometer

BMAA Beta Methyl Amino Alanine

CaCO3 Calcium Carbonate

CCD Charge-Coupled Device

CDOM Coloured Dissolved Organic Matter

CO2 Carbon Dioxide

CPR Continuous Plankton Recorder

CTD Conductivity, Temperature and Depth

CZCS Coastal Zone Color Scanner

DMS Dimethyl Sulphide

DMSP Dimethyl Sulfoniopropionate

DOAS Differential Optical Absorption Spectroscopy

EAP Equivalent Algal Population

ENVISAT Environmental Satellite (ESA)

EO Earth Observation

ERBG Enhanced RGB

ESA European Space Agency

ETM Enhanced Thematic Mapper

FAI Floating Algae Index

FISH Fluorescent In Situ Hybridization

FLH Fluorescence Line Height

GEO-CAPE GEOstationary Coastal and Air Pollution Events

GeP&CO Geochemistry, Phytoplankton and Colour of the Ocean

GOCI Geostationary Ocean Color Imager

GOM Gulf of Mexico

HAB Harmful Algal Bloom

HNLC High-Nitrate, Low-Chlorophyll

HPLC High Performance Liquid Chromatography

IOCCG International Ocean-Colour Coordinating Group

IOP Inherent Optical Properties

KBBI K. brevis Bloom Index

LwN Normalised Water-leaving Radiance

LUT Look-up Table

155



156 • Phytoplankton Functional Types from Space

MCI Maximum Chlorophyll Index

MERIS Medium Resolution Imaging Spectrometer (ESA)

MODIS Moderate Resolution Imaging Spectroradiometer (NASA)

NASA National Aeronautics and Space Administration

NDVI Normalized Difference Vegetation Index

NIR Near-Infrared

NOAA National Oceanic and Atmospheric Administration

NOBM NASA Ocean Biogeochemical Model

NOMAD NASA bio-Optical Marine Algorithm Data set

NPP National Polar-orbiting Partnership

NPZ Nitrogen-Phytoplankton-Zooplankton

OWT Optical Water Type

PAR Photosynthetically Available Radiation

PC Phycocyanin

PEB Phycoeryrthin

PFT Phytoplankton Functional Type

PIC Particulate Inorganic Carbon

PNN Probabilistic Neural Network

PPC Photoprotective Carotenoids

PSC Photosynthetic Carotenoids

PSD Particle Size Distribution

PUB Phycourobilin

qPCR Quantitative Polymerase Chain Reaction

RBD Red Band Difference

RGB Red, Green, Blue

SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Chartography

SeaBASS SeaWiFS Bio-optical Archive and Storage System

SeaDAS SeaWiFS Data Analysis System

SeaWiFS Sea-viewing Wide Field-of-view Sensor

SI Similarity Index

SLC Synechococcus-Like Cyanobacteria

SNR Signal-to-Noise Ratio

SOM Self Organizing Maps

SST Sea-Surface Temperature

TM Thematic Mapper

UV Ultra Violet

VIIRS Visible Infrared Imaging Radiometer Suite

VIS Visible

WFS West Florida Shelf

WHO World Health Organization


