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In order to study the modern sea surface characteristics of the sub-polar North Pacific and the Bering Sea,
i.e. sea surface temperature (SST) and sea ice cover, surface sediments recovered during the RV Sonne
Expedition 202 in 2009 were analysed. To distinguish between marine and terrestrial organic carbon,
hydrogen index values, long chain n-alkanes and specific sterols have been determined. The results show
that in the Bering Sea, especially on the sea slope, the organic carbon source is mainly caused by high
primary production. In the North Pacific, on the other hand, the organic material originates predomi-
nantly from terrestrial higher plants, probably related to dust input from Asia. SST has been reconstructed
using the modified alkenone unsaturation index. Calibration from Müller et al. (1998) offers the most
reliable estimate of mean annual temperature in the central North Pacific but does not correlate with
mean annual temperature throughout the study area. In the eastern North Pacific and the Bering Sea,
the Sikes et al. (1997) calibration seems to be more accurate and matches summer SST. The distribution
of the novel sea ice proxy IP25 (highly branched C25 isoprenoid alkene) in surface sediments is in accord
with the modern spring sea ice edge and shows the potential of this proxy to track past variation in sea
ice cover in the study area.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The Bering Sea, a semi-enclosed sea between the Arctic and
North Pacific oceans, is one of the most productive ecosystems,
representing 1.5% of the total primary productivity in the oceans
(Tsyban, 1999). Recent climate change has had a strong impact
on the ecosystem of the area and, since the mid-1970s, important
changes in the abundance of phytoplankton, zooplankton and fish
have been observed (Hunt et al., 2002). Furthermore, the most
drastic future temperature changes are expected at high latitude.
Over the last few decades, sea surface temperature (SST) increased
by about 3 �C in the Bering Sea (Stabeno et al., 2007, 2010). Sea ice,
with its strong seasonal variability, is a critical component of the
Bering Sea system and is extremely sensitive to changes in weather
and climate (Overland, 1981). In November, the ice spreads
through the Bering Strait and reaches its maximum extent in early
spring (March–April), to as far south as 54.5�N in years character-
ised by high ice extent (Stabeno et al., 2007). Between July and Sep-
tember, the Bering Sea is ice-free (Niebauer, 1980, 1983). Over the
last 30 years, the sea ice cover has been decreasing in terms of con-
centration and duration, and a significant extension of the ice-free
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season has been observed (Stabeno et al., 2007; Danielson et al.,
2011).

The surface water circulation in the western North Pacific is
dominated by the Kuroshio Current (KC), which flows along the
Japanese coast. Entering the central North Pacific the KC is re-
named the Kuroshio Extension (KuE). Flowing eastward, this cur-
rent becomes wider and forms the North Pacific Current (NPC)
around 171�E (Fig. 1; Qiu, 2000). Two currents originating from
the NPC dominate the circulation in the Gulf of Alaska (Stabeno
et al., 2004) – the Alaskan Current (AC) and the Alaskan Coastal
Current (ACC). These two currents, flowing through the Aleutian
passes, form the cyclonic circulation found in the Bering Sea. In
the eastern Bering Sea basin, the two principal currents are the
Aleutian North Slope Current (ANSC; Stabeno and Reed, 1994),
which flows eastward along the north side of the Aleutian Islands,
and the Bering Slope Current (BSC; Schumacher and Reed, 1992),
which is an extension of the Aleutian North Slope Current (ANSC)
and flows northward along the continental slope (Fig. 1). Two
currents leave the Bering Sea through the Bering Strait, the West
Alaska Current (WAC) originating from the ACC, and the Anadyr
Current, a northern branch originating from the BSC. The Kam-
chatka Current (KC) is the second branch originating from the
division of the BSC, flowing southward along the Siberia-Kam-
chatka Peninsula coast and then forming the Oyashio Current
(Fig. 1).
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Fig. 1. Map showing cruise track and location of sampling sites (black dots) of the INOPEX RV Sonne Expedition SO202 (Gersonde, 2012) and oceanographic setting in the
North Pacific and Bering Sea. Oceanic surface currents (arrows) and typical spring and fall ice extent boundaries are indicated (after Danielson et al., 2011). The positions of
the main path of the westerly jet stream and the latitudinal extension of the Asian deserts are also highlighted (after Bao et al., 2012).
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In this study, we report results of the analysis of surface sedi-
ment samples (0–1 cm) from the sub-polar North Pacific and Ber-
ing Sea. The main objectives were to (i) determine the organic
carbon distribution and distinguish between terrigenous and mar-
ine sources, (ii) reconstruct the SST and (iii) reconstruct modern
sea ice distribution from proxy data. Furthermore, the data should
be useful for a better interpretation of data from sediment cores
representing past climate change in the area.

2. Biomarkers as proxies for environmental reconstruction

In order to interpret organic matter (OM) input in terms of envi-
ronmental conditions, information on its quantity and quality is
needed. In this context, the distinction between marine and terrig-
enous OM sources is of overall interest. This goal can be reached by
studying different organic geochemical proxies, such as total or-
ganic carbon (TOC) content, hydrogen index (HI) values and C/N ra-
tio (e.g. Tissot and Welte, 1984; Birgel et al., 2004; Stein and
Macdonald, 2004; Stein, 2008 and references therein). More
precise information about OM sources can be obtained by using
specific biomarkers. To identify marine sources, dinosterol (4a-
23,24-trimethyl-5a-cholest-22E-en-3b-ol), synthesised by dino-
flagellates (Boon et al., 1979) and a diatom (Volkman, 2006), and
brassicasterol (and/or epi-brassicasterol depending on the stereo-
chemistry at C-24; 24-methylcholesta-5,22-E-dien-3b-ol) synthes-
ised by diatoms and haptophytes (Volkman, 2006), are often
applied as proxies. On the other hand, b-sitosterol (24-ethylcho-
lest-5-en-3b-ol) and campesterol (24-methylcholest-5-en-3b-ol)
are typical sterols of terrestrial higher plant origin (Huang and
Meinschein, 1976; Volkman, 1986). Together with odd numbered
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long chain n-alkanes, derived from higher plant leaf wax (Eglinton
and Hamilton, 1963, 1967), we used these biomarkers to recon-
struct the terrestrial input.

SST can be estimated from specific long chain alkenones synthes-
ised mainly by haptophyte algae, i.e. coccolithophores such as Emil-
iania huxleyi and Gephyrocapsa oceanica (Volkman et al., 1980;
Marlowe et al., 1984). In this approach, the modified alkenone unsat-
uration index UK 0

37 is used (Brassell et al., 1986). UK 0

37 (Prahl and Wake-
ham, 1987) corresponds to the relative abundance of methyl
alkenones with 37 carbons and two or three double bonds. Its cali-
bration vs. SST was initially derived from phytoplankton cultures
(Prahl et al., 1988). The most commonly used calibration (Müller
et al., 1998) is derived from UK 0

37 data determined from core top sed-
iments from the global ocean between 60�S and 60�N.

Reconstruction of sea ice conditions is often based on sea ice-
associated organisms such as diatoms (e.g. Katsuki and Takahashi,
2005) and dinocysts (e.g. Bonnet et al., 2012). Very recently, a novel
biomarker proxy, IP25, was developed for reconstruction of sea ice
cover (Belt et al., 2007). It is based on a monounsaturated highly
branched isoprenoid (HBI) lipid produced by sea ice diatoms during
the spring bloom period and present in the underlying sediment
after ice melting (Belt et al., 2010). When using IP25 as sea ice proxy
one has to consider that its absence may refer to either a lack of sea
Table 1
Information and data on samples (n.d., not determined).

Station Latitude Longitude WD (m) TOC (wt.%) HI
(mg HC/g OC)

Western North Pacific
SO202-01-3 44.03 152.92 5282 0.78 143
SO202-02-4 46.97 156.98 4822 0.35 147
SO202-03-4 49.61 160.38 5429 0.63 112
SO202-04-3 51.86 163.16 5273 0.45 142
SO202-05-3 52.70 164.92 3362 0.49 120
SO202-06-2 51.90 166.49 3422 0.26 91
SO202-07-2 51.27 167.70 2349 0.37 120
SO202-08-1 50.54 170.82 3630 0.42 120
SO202-09-2 49.66 175.16 5028 0.52 118

Bering Sea
SO202-10-2 52.74 179.85 1488 1.18 296
SO202-11-1 53.11 178.90 2704 0.45 141
SO202-12-2 54.05 179.09 2108 0.71 203
SO202-13-4 54.98 177.96 1383 0.37 114
SO202-14-5 56.79 178.82 3822 0.63 149
SO202-15-4 59.51 �179.85 3137 1.16 212
SO202-16-1 60.40 �179.11 548 0.40 45
SO202-18-1 60.13 �179.44 1108 0.62 234
SO202-21-2 54.79 �170.33 1911 1.51 259
SO202-22-1 54.57 �168.81 1478 1.39 253

Eastern North Pacific
SO202-23-4 52.17 �160.50 4613 0.53 129
SO202-24-2 53.00 �157.19 4565 0.45 124
SO202-25-1 54.10 �152.69 4588 0.47 104
SO202-26-1 54.64 �150.38 742 0.30 140
SO202-27-1 54.30 �149.60 2916 0.32 100
SO202-28-1 54.42 �148.88 3710 0.52 100
SO202-29-5 52.03 �148.89 3984 0.35 89
SO202-31-5 49.68 �152.55 3744 0.18 101
SO202-32-5 45.50 �158.50 5302 0.43 109
SO202-33-5 45.08 �174.14 6159 0.43 129

Central North Pacific
SO202-34-2 40.89 �177.68 5713 0.46 150
SO202-36-6 38.19 176.70 4522 0.51 103
SO202-38-1 38.04 169.28 5503 0.50 115
SO202-39-2 38.01 164.45 5096 0.64 124
SO202-40-2 38.00 162.68 3462 0.34 95
SO202-41-3 38.41 160.33 5408 0.71 122
SO202-42-3 38.89 157.63 5535 0.68 120
SO202-45-2 40.29 149.49 5476 0.93 132
ice or, in contrast, a permanent and thick ice cover limiting any algal
growth. In this context, the combination of IP25 with a phytoplank-
ton marker proves valuable for properly interpreting the sea ice
proxy signal (Müller et al., 2009, 2011, 2012). Meanwhile, the ap-
proach has been used successfully for reconstructing paleo-sea ice
distributions from marine sediment cores recovered from the Fram
Strait/Yermak Plateau (Müller et al., 2009, 2011, 2012; Stein and
Fahl, 2012), North Iceland Shelf (Massé et al., 2008; Andrews et al.,
2009), Canadian Arctic Archipelago (Vare et al., 2009; Belt et al.,
2010; Brown et al., 2011) and Lomonosov Ridge/central Arctic Ocean
areas (Fahl and Stein, 2012; Stein et al., 2012).

3. Material and methods

Surface sediment samples were collected during the INOPEX RV
Sonne Expedition 202 in 2009 using a multicorer (Gersonde, 2012;
Fig. 1). The short cores were sampled in 1 cm sections, and the upper
part (0–1 cm) was used for bulk parameter and biomarker analyses.
All samples were stored at �30 �C in glass bottles until further pro-
cessing. For bulk analysis the sediment was freeze dried and homog-
enised. The TOC content was measured by means of a LECO CS-125
elemental analyser. The hydrogen index (HI in mg HC/g TOC) was
determined via Rock–Eval pyrolysis, as described by Espitalié et al.
C/N Brassicasterol
(lg/g OC)

Dinosterol
(lg/g OC)

RCampesterol,
b-sitosterol
(lg/g OC)

Rn-C27, n-C29,
n-C31 (lg/g OC)

5.7 50 7.7 161 106
4.6 54 20 190 142
5.4 71 24 372 91
5.1 55 21 250 119
8.6 75 13 250 120

27.1 26 8.1 108 126
30.6 110 27 365 75

5.1 58 18 180 91
5.8 21 5.3 64 86

8.8 100 63 262 44
6.0 121 25 336 65
7.3 106 1.7 247 68

20.0 n.d n.d. n.d. 51
5.8 n.d n.d n.d. 106
6.6 51 42 224 129
5.4 12 4.6 38 62
7.4 281 109 992 139
6.5 229 87 360 32
6.3 100 47 140 37

3.7 129 26 241 46
2.9 86 9.7 123 40
2.4 26 9.7 853 64

33.6 131 21 140 37
30.7 65 17 205 78
10.5 25 7.6 90 61
19.8 24 8.1 116 90

101.1 62 5.7 180 101
5.6 20 5.3 72 137
5.2 31 6.7 98 216

5.0 69 12 227 355
5.8 69 12 230 120
5.8 6.7 3.4 26 172
6.7 31 22 154 130

124.8 30 11 140 83
6.7 n.d n.d. n.d. 158
7.1 12 17 57 106
7.3 n.d. n.d. n.d. 105
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(1977). When using Rock–Eval data derived from TOC-poor (< 0.5%)
sediment samples, HI values should be interpreted with caution. For
lipid analysis, 1–5 g of freeze dried and homogenised sediment were
extracted using accelerator solvent extraction (DIONEX-ASE 200;
100 �C, 5 min, 1000 psi) using CH2Cl2/MeOH (2:1, v/v). For quantifi-
cation, the following internal standards were added before any
analytical step: squalane (0.48 lg/sample), 7-hexylnonadecane
(0.0766 lg/sample), and cholesterol-d6 (2H6_cholesterol-5-en-3b-
ol; 2.2 lg/sample). An aliquot of the total extract was used for ana-
lysing n-alkanes, IP25, alkenones and sterols.

The n-alkanes and IP25 were separated from the other fractions
via column chromatography (SiO2) using n-hexane (5 ml) as
eluent. Due to coelution with unknown compounds, an additional
Fig. 2. TOC (wt.%) (a), concentration of phytoplankton-derived biomarker, brassicaste
sediments from the North Pacific and Bering Sea. Black dots indicate sites of sediment s
fractionation step using CH2Cl2/hexane (1:1 v/v, 5 ml) was re-
quired. The alkenones were separated from the other fractions
using CH2Cl2 (5 ml) as eluent. After extraction with EtOAc/hexane
(5 ml, 20:80 v/v), the sterols were silylated with 500 ll BSTFA
(bistrimethylsilyltrifluoroacetamide; 60 �C, 2 h).

IP25 and sterols were analysed using gas chromatography–mass
spectrometry (GC–MS; Agilent 6850; 30 m HP-5 ms column,
0.25 mm i.d., 0.25 lm film thickness; coupled to an Agilent
5975C VL mass selective detector). For further details see Müller
et al. (2011) and Fahl and Stein (2012). The n-alkanes and alkenon-
es were analysed using GC (HP6890) as described by Fahl and Stein
(1997). Assignment was achieved from GC retention time and
quantification by means of the internal standards. In order to com-
rol (lg/g OC) (b) and terrigenous long chain n-alkanes (lg/g OC) (c), for surface
amples.



Fig. 3. (a) Correlation between concentration of phytoplankton-derived brassicas-
terol vs. dinosterol (lg/g OC) and (b) HI (mg/g OC) vs. brassicasterol (lg/g OC) in
surface sediments from the North Pacific and Bering Sea.

58 M. Méheust et al. / Organic Geochemistry 57 (2013) 54–64
pensate for variation in sedimentation rate, absolute biomarker
concentrations were normalised to TOC.
4. Results and discussion

4.1. OM sources

TOC content, HI values and biomarker concentrations were used
to distinguish between marine and terrigenous sources of OM and
to interpret the data in relation to primary productivity and terrig-
enous input, respectively (Fahl and Stein, 1997, 1999; Schubert and
Stein, 1997; Sicre et al., 2000; Amo and Minagawa, 2003; Birgel
et al., 2004; Yunker et al., 2005; Walinsky et al., 2009).

The TOC content of surface sediment samples varies between
0.18 and 1.51 wt.% (Table 1, Fig. 2a). The highest values are re-
stricted to the westernmost part of the North Pacific and to the
continental slope of the Bering Sea. In order to obtain preliminary
information about the origin of the OM, i.e. the terrigenous vs. mar-
ine proportion, HI was determined. The values, ranging between 92
and 235 mg HC/g C (Table 1), point to different OC sources. At the
Bering Sea slope, high TOC values correlate with high HI
values (> 200 mg HC/g C), suggesting a marine source of the OM.
The marine origin is supported by biomarker data. The concentra-
tion of brassicasterol and dinosterol, both indicative for marine
phytoplankton (Boon et al., 1979; Nichols et al., 1984; Volkman,
2006), varies between 6.7–281 lg/g TOC and 1.7–109 lg/g TOC,
respectively, with the maximum concentration occurring along
the Bering Sea slope (Table 1, Fig. 2c). The good to fair correlation
(Fig. 3a) between brassicasterol and dinosterol (r2 0.69) and
between brassicasterol and HI values (r2 0.42; Fig. 3b), underline
the dominance of marine-derived OM in the area.

The data are in agreement with the Bering Sea ‘‘Green Belt’’, a
region of enhanced nutrient supply to the shelf edge euphotic zone
introduced via physical processes, such as intensive tidal mixing,
transverse circulation and eddies in the Bering Slope Current
(Springer et al., 1996). Due to these processes, it is the most pro-
ductive area in the Bering Sea. This high productivity realm is also
reflected in elevated sea surface chlorophyll a concentration, deter-
mined from satellite ocean colour observations (e.g. Mizobata
et al., 2002; Mizobata and Saitoh, 2004; Okkonen et al., 2004; Iida
and Saitoh, 2007). Based on chlorophyll a data, the Bering Sea can
be divided into two regions: The shelf region (including shelf
break) is characterised by a large phytoplankton bloom in May
and high chlorophyll a concentration (> 2 mg/m�3) during sum-
mer, while the basin area is characterised by a low concentration
(< 1 mg/m�3) throughout the year (Iida and Saitoh, 2007). Further-
more, the enrichment in marine OM may also be related to in-
creased primary productivity along the ice edge, as described for
the Laptev Sea (Fahl and Stein, 1997; Boetius and Damm, 1998).
In the Bering Sea, a similar intense and short lived phytoplankton
bloom occurs at the marginal ice zone in spring when the sea ice
retreats (Niebauer et al., 1990, 1995), leading to an enrichment
in marine OM.

For the central North Pacific, low HI values (< 150 mg HC/g C;
Table 1) point to a predominance of terrigenous OM input. This
interpretation is supported by the distribution of odd long chain
n-alkanes (C27, C29 and C31), a reliable proxy for the input from
higher plants (e.g. Yunker et al., 1995; Fahl and Stein, 1997). The
concentration of these long chain n-alkanes varies between 32.4
and 355 lg/g TOC with higher values occurring in the eastern
and central North Pacific (Table 1; Fig. 2c). In addition, specific
sterols, i.e. campesterol and b-sitosterol, both often used as proxies
for terrestrial OM (Huang and Meinschein, 1976; Volkman, 1986),
were also measured. The summed concentration of the two varies
generally between 40 and 400 lg/g TOC, with higher values in the
Bering Sea and eastern North Pacific (Table 1). In our samples,
however, these sterols do not show any (negative or positive) cor-
relation with HI (r2 0.11) and the long chain n-alkanes (r2 0.003),
respectively. Thus, here the sterols seem to provide ambiguous evi-
dence for terrigenous OM as they may also be synthesised by phy-
toplankton (Volkman, 1986).

Two different transport processes may be responsible for the
presence of terrestrial OM in the open ocean, away from coastal
zones more influenced by direct riverine input (cf., Stein and Mac-
donald, 2004): (i) wind transport and (ii) ocean current transport.
The wind transported mineral fraction is certainly an important
source of sediments in the central North Pacific. Kawahata et al.
(2000) analysed sediments from a site close to our study area, i.e.
core H3571 from the Hess Rise (34�54.250N and 179�42.180E),
and identified aeolian quartz grains. The sources of mineral dust
on the Asian continent are widespread and include the Gobi and
the Takla Makan deserts and the immense loess deposits in China
(Prospero et al., 1989). Our sampling site in the North Pacific, char-
acterised by low HI values, is located below the Northern Hemi-
sphere westerly winds, the main pathway for dust input from
Asia (Fig. 1). This atmospheric transport is responsible for > 6–
12 � 106 tonnes of annual dust deposition over the North Pacific
(Uematsu et al., 1983) and is probably the source of the high terres-
trial OM content of the surface sediments. In addition, ocean cur-
rents may also play an important role in the transportation of
the OM. Kawahata and Ohshima (2002) showed that pollen and
spores, both terrigenous sources of OM found in core H3571 on
Hess Rise, originated from the Asian continent and from Japan,
and were transported by the Kuroshio Current and Kuroshio Exten-
sion between 42� and 30�N.



Table 2
Location of samples and data.

Station Latitude Longitude WD (m) IP25

(lg/g OC)
UK 0

37
SST-alkenone temperature (�C) Residuals (�C)

Müller
et al. (1998)

Sikes
et al. (1997)

Estimated SST
�WOA01 ma SST
(Müller et al., 1998)

Estimated SST
�WOA01 summer SST
(Sikes et al., 1997)

Western North Pacific
SO202-01-3 44.03 152.92 5282 0.000 0.427 11.6 13.4 5.1 1.5
SO202-02-4 46.97 156.98 4822 0.000 0.333 8.8 10.9 3.4 0.4
SO202-03-4 49.61 160.38 5429 0.000 0.386 10.4 12.3 5.2 2.2
SO202-04-3 51.86 163.16 5273 0.000 0.372 9.9 12.0 4.6 2.1
SO202-05-3 52.70 164.92 3362 0.000 0.277 7.1 9.4 1.7 -0.3
SO202-06-2 51.90 166.49 3422 0.000 0.358 9.5 11.6 4.0 2.1
SO202-07-2 51.27 167.70 2349 0.000 0.317 8.3 10.5 2.8 1.2
SO202-08-1 50.54 170.82 3630 0.000 0.334 8.8 11.0 3.2 1.7
SO202-09-2 49.66 175.16 5028 0.000 0.407 11.0 12.9 5.0 3.4

Bering Sea
SO202-10-2 52.74 179.85 1488 0.000 0.310 8.1 10.3 2.8 2.0
SO202-11-1 53.11 178.90 2704 0.000 0.318 8.3 10.5 2.9 2.0
SO202-12-2 54.05 179.09 2108 0.000 0.284 7.3 9.6 1.9 1.1
SO202-13-4 54.98 177.96 1383 0.000 0.313 8.2 10.4 2.8 1.7
SO202-14-5 56.79 178.82 3822 0.000 0.266 6.7 9.2 1.9 0.4
SO202-15-4 59.51 �179.85 3137 0.197 0.243 6.0 8.6 1.5 0.0
SO202-16-1 60.40 �179.11 548 0.079 0.213 5.1 7.8 0.9 -0.7
SO202-18-1 60.13 �179.44 1108 0.567 0.256 6.4 8.9 2.3 0.4
SO202-19-1 57.65 �175.68 1751 0.000 0.225 5.5 8.1 0.4 -0.7
SO202-21-2 54.79 �170.33 1911 0.000 0.257 6.5 8.9 1.4 0.4
SO202-22-1 54.57 �168.81 1478 0.000 0.285 7.3 9.7 1.7 1.2

Eastern North Pacific
SO202-23-4 52.17 �160.50 4613 0.000 0.325 8.5 10.7 1.7 0.0
SO202-24-2 53.00 �157.19 4565 0.000 0.320 8.4 10.6 1.5 -0.3
SO202-25-1 54.10 �152.69 4588 0.000 0.368 9.8 11.8 2.8 0.5
SO202-26-1 54.64 �150.38 742 0.000 0.379 10.2 12.1 3.1 0.7
SO202-27-1 54.30 �149.60 2916 0.000 0.400 10.8 12.7 3.7 1.2
SO202-28-1 54.42 �148.88 3710 0.000 0.372 9.9 11.9 2.8 0.4
SO202-29-5 52.03 �148.89 3984 0.000 0.320 8.4 10.6 0.8 -1.0
SO202-31-5 49.68 �152.55 3744 0.000 0.345 9.1 11.3 1.3 -0.3
SO202-32-5 45.50 �158.50 5302 0.000 0.369 9.9 11.9 0.2 -1.6
SO202-33-5 45.08 �174.14 6159 0.000 0.383 10.3 12.2 1.8 0.0

Central North Pacific
SO202-34-2 40.89 �177.68 5713 0.000 0.507 14.0 15.5 1.0 �2.7
SO202-36-6 38.19 176.70 4522 0.000 0.565 15.8 17.0 �0.2 �3.6
SO202-37-1 37.77 176.27 3573 0.000 0.584 16.4 17.5 �0.3 �4.1
SO202-38-1 38.04 169.28 5503 0.000 0.573 16.0 17.2 �0.4 �3.2
SO202-39-2 38.01 164.45 5096 0.000 0.617 17.4 18.4 1.1 �2.1
SO202-40-2 38.00 162.68 3462 0.000 0.566 15.8 17.1 �0.6 �3.7
SO202-41-3 38.41 160.33 5408 0.000 0.643 18.2 19.1 1.8 �1.7
SO202-42-3 38.89 157.63 5535 0.000 0.641 18.1 19.0 2.6 �1.8
SO202-45-2 40.29 149.49 5476 0.000 0.547 15.2 16.6 1.4 �2.7
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4.2. SST

Alkenone-based UK 0

37 SST values were determined for all surface
sediment samples. UK 0

37 was converted to SST according to the Mül-
ler et al. (1998) calibration ðUK 0

37 ¼ 0:033T þ 0:044Þ. This calibration
was established using UK 0

37 data from core-top sediments between
60�S and 60�N in the Atlantic, Indian and Pacific oceans and is
applicable to a temperature range from 0 to 29 �C, with an error
of ca. ± 1.4 �C (Herbert, 2003). The UK 0

37-based SST values vary be-
tween 5.1 and 18.5 �C (Table 2) and decrease northwards, follow-
ing an expected latitudinal trend (Fig. 4a). Based on the
correlation between UK 0

37 in surface sediments and mean annual
SST values extracted from World Ocean Atlas 2001 (WOA01), four
regions were distinguished (Fig. 4). For the central North Pacific,
the WOA01 mean annual SST shows the best agreement with the
UK 0

37-based SST, whereas the rest of the data set significantly di-
verges from the mean annual SST (Fig. 4b). In order to emphasise
this observation, residuals have been calculated (Table 2; Fig. 4c)
by subtracting the WOA01 SST from the respective UK 0

37-based
SST. The mean residual for all data points is about +2 �C, indicating
an overestimation of the mean annual SST by the Müller et al.
(1998) calibration. The residuals show, however, significant differ-
ences for the different regions. In the central North Pacific charac-
terised by SST > 12 �C, the residuals display relatively low values,
with an average deviation of +0.7 �C (Table 2, Fig. 4c). For the other
three areas characterised by lower SST of 4–9 �C, the residuals
show that the UK 0

37-based SST significantly overestimates the
WOA01 mean annual SST, with an average deviation of +3.9 �C in
the Western North Pacific, +1.9 �C in the Bering Sea, and +2 �C in
the eastern North Pacific (Table 2, Fig. 4c).

The observations indicate that the calibration from Müller et al.
(1998) offers acceptable SST estimates for the central North Pacific
but may not be suitable for the colder water areas as it overesti-
mates the mean annual SST. As suggested by Herbert (2003), the



Fig. 4. (a) UK 0

37-based SST calculated using the calibration of Müller et al. (1998), (b) UK 0

37-based SST vs. mean annual SST extracted from the World Ocean Atlas 2001 (http://
www.nodc.noaa.gov/OC5/WOA01/woa01dat.html) and (c) ‘‘residuals’’ calculated as difference between UK 0

37-based SST and measured WOA01 SST vs. WOA01 SST. Black dots
in (a) denote sites of sediment samples.
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UK 0

37 deviation should not be quantitatively interpreted for values
< 0.2 and > 0.96 which, in terms of temperature, corresponds to
5 �C and 27 �C, respectively (according to Müller et al. (1998)).

Therefore, we also used the Sikes et al. (1997) calibration devel-
oped for cold water regions. This means that UK 0

37 was converted to
SST using their calibration ðUK 0

37 ¼ 0:038T � 0:082Þ, which was ob-
tained from core top sediments underlying Southern Ocean waters
with summer temperature > 4 �C. Using this equation, the UK 0

37-
based SST values range from 8.5 to 21.6 �C, with a decreasing
latitudinal trend towards the north (Fig. 5a; Table 2).

Using the Sikes et al. (1997) calibration, the Western and East-
ern North Pacific, as well as the Bering Sea data, seem to correlate
quite well with the WOA01 summer SST (Fig. 5b). Model residuals
provide further evidence, with a standard deviation of the UK 0

37-
based SST relative to WOA01 summer SST averaging 0.71 �C in
the Bering Sea and 0 �C in the Eastern North Pacific (Table 2,
Fig. 5c). However, the deviation is +1.58 �C in the Western North
Pacific, suggesting that the Sikes et al. (1997) calibration overesti-
mates the summer SST, whereas in the central North Pacific this
calibration underestimates the SST, as shown by the very negative
residuals averaging �2.8 �C (Table 2; Fig. 5c).

According to Sikes et al. (2005), the alkenone-based SST repro-
duces the SST values when alkenone flux is high, i.e., during the
bloom of haptophyte algae. Our results assume that the alkenones
were probably synthesised during different periods in different
areas. In the Bering Sea, the alkenone producers seem to grow dur-
ing a limited period, probably summer, when the most favourable
conditions occur for a E. huxleyi bloom (i.e. strong stratification of
the water column as a result of surface warming, low salinity and
high light conditions; Iida et al., 2012). In the eastern Bering Sea, E.
huxleyi blooms show interannual and seasonal variability (Iida
et al., 2012), but within the last few decades, massive blooms have
occurred in June and/or September. Little is known about blooms
in the western North Pacific, but all the favourable bloom condi-
tions are observed in summer in the area (Stabeno et al., 2004)
and control the phytoplankton community bloom, including most
probably the E. huxleyi bloom (Prahl et al., 2010). In the central
North Pacific, the phytoplankton bloom, including coccolitho-
phores, was probably spread over a longer period, which would ex-
plain why the Müller et al. (1998) calibration offers a better
estimate of mean annual SST in the area.

In general, our results are in line with several studies of alke-
none-based SST reconstructions. Sikes et al. (1997) showed that
the UK 0

37-based SST for the water column and surface sediments
from the Southern Ocean reflects the SST of times characterised
by maximum productivity and thus the flux of biomarkers to the
sediment, i.e. during spring–summer accompanied by the phyto-
plankton blooms. Harada et al. (2003) published similar conclu-
sions for the eastern Bering Sea. The calculated SST from the
surface sediments corresponds to the September SST, and this

http://www.nodc.noaa.gov/OC5/WOA01/woa01dat.html
http://www.nodc.noaa.gov/OC5/WOA01/woa01dat.html


Fig. 5. (a) UK 0

37-based SST calculated using the calibration of Sikes et al. (1997), (b) UK 0

37-based SST vs. mean annual SST extracted from the World Ocean Atlas 2001 (http://
www.nodc.noaa.gov/OC5/WOA01/woa01dat.html) and (c) ‘‘residuals’’ calculated as difference between UK 0

37-based SST and measured WOA01 SST vs. WOA01 SST. Black dots
in (a) denote sites of sediment samples.
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period was proposed to be the most productive time interval for
the alkenone-synthesising organisms in the area. Finally, the re-
sults are supported by the studies by Prahl et al. (2010) to explain
warmer estimated SST vs. measured mean annual SST for surface
sediments from southeast Alaska, the North Atlantic and along
the Southern Chilean margin.

4.3. Sea ice distribution

The distribution of the sea ice biomarker IP25 in the Bering Sea
and the North Pacific (Fig. 6b) is compared with the maximum
(March) sea ice distribution pattern in Fig. 6a. Low IP25 concentra-
tion (0.08–0.57 lg/g TOC) was found in three sediment samples
from the northern Bering Sea, northwards of the 20% sea ice exten-
sion in March (Fig. 6a). The occurrence of IP25 in these samples is
indicative of the presence of sea ice at the Bering Sea shelf break.
The accompanying growth of phytoplankton is reflected in the rel-
atively high concentration of phytoplankton-derived brassicasterol
and dinosterol (12–281 lg/g TOC and 5–109 lg/g TOC, respec-
tively) in these samples. The co-occurrence of IP25 and phytoplank-
ton-derived biomarkers suggest a seasonal (spring) sea ice cover at
the Bering Sea shelf break (cf. Müller et al., 2009, 2011).

IP25 was absent from all the other samples from the Bering Sea
and North Pacific, whereas the phytoplankton-produced biomark-
ers, brassicasterol and dinosterol, were present in most of them
(7–281 lg/g TOC and 1.7–109 lg/g TOC, respectively). The good
correlation between brassicasterol and dinosterol (correlation
coefficient of r2 0.69) and absence of IP25 underline an open water
phytoplankton origin for both sterols in these areas (cf. Müller
et al., 2011; Fahl and Stein, 2012; Stein et al., 2012). Brown et al.
(2011) also determined only a very minor concentration of brassi-
casterol in sea ice samples from the Canadian Beaufort Sea (< 3% of
total sterols). This is in contrast to Yunker et al. (1995) who found a
significant concentration of brassicasterol in sediment trap sam-
ples from the Beaufort Sea at spring times when there was still
a100% ice cover, and thus interpreted brassicasterol as being pro-
duced by ice algae. Our results are consistent with the maximum
and minimum sea ice extent in the Bering Sea as highlighted in
Figs. 1 and 6 (Danielson et al., 2011). Furthermore, the results indi-
cate that IP25 seems to be a reliable sea ice proxy in the Bering Sea
and the North Pacific, reinforcing its use in future palaeo-sea ice
reconstructions in these areas.
5. Conclusions

On the Bering slope, the ‘‘Green Belt’’ area, the OM is mainly of
marine origin, as shown by the good correlation between high HI
values and the maximum dinosterol and brassicasterol concentra-
tion in the area. In the North Pacific, low HI values and high con-
centration of long chain n-alkanes indicate a predominantly
higher plant origin for the OM. This terrigenous input is probably
caused by dust supply from the Asian continent to the North Pacific
via westerly winds and ocean currents.

http://www.nodc.noaa.gov/OC5/WOA01/woa01dat.html
http://www.nodc.noaa.gov/OC5/WOA01/woa01dat.html


Fig. 6. (a) Map of March sea ice extent (%) based on data from the National Snow and Ice Data Center (NSIDC), averaged over the period from 1978 to 2007 (http://nsidc.org/)
and (b) concentration of IP25 (lg/g OC) in surface sediments from the North Pacific and Bering Sea. Black dots indicate sites where sediments were collected.
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The alkenone unsaturation index ðUK 0

37Þ was converted to SST
using two different calibrations (Müller et al., 1998 and Sikes
et al., 1997). The Müller et al. (1998) calibration probably offers a
more accurate estimate of mean annual SST in the central North
Pacific, whereas the Sikes et al. (1997) calibration seems to be more
accurate for the eastern North Pacific and the Bering Sea, charac-
terised by colder SST < 9 �C, and provides reasonable summer
SST estimates. However, it overestimates summer SST in the wes-
tern North Pacific.

The sea ice proxy, IP25, was only found in samples from north of
the March ice edge. Its absence from the rest of the investigated
area is, on the other hand, in agreement with the open water con-
ditions observed in the North Pacific and the southern part of the
Bering Sea.
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