Atypical properties of a conventional calcium channel β subunit from the platyhelminth Schistosoma mansoni

Thumbnail Image
Date
2008-03-26
Authors
Salvador-Recatala, Vicenta
Schneider, Toni
Greenberg, Robert M.
Alternative Title
Date Created
Location
DOI
10.1186/1472-6793-8-6
Related Materials
Replaces
Replaced By
Keywords
Abstract
The function of voltage-gated calcium (Cav) channels greatly depends on coupling to cytoplasmic accessory β subunits, which not only promote surface expression, but also modulate gating and kinetic properties of the α1 subunit. Schistosomes, parasitic platyhelminths that cause schistosomiasis, express two β subunit subtypes: a structurally conventional β subunit and a variant β subunit with unusual functional properties. We have previously characterized the functional properties of the variant Cavβ subunit. Here, we focus on the modulatory phenotype of the conventional Cavβ subunit (SmCavβ) using the human Cav2.3 channel as the substrate for SmCavβ and the whole-cell patch-clamp technique. The conventional Schistosoma mansoni Cavβ subunit markedly increases Cav2.3 currents, slows macroscopic inactivation and shifts steady state inactivation in the hyperpolarizing direction. However, currents produced by Cav2.3 in the presence of SmCavβ run-down to approximately 75% of their initial amplitudes within two minutes of establishing the whole-cell configuration. This suppressive effect was independent of Ca2+, but dependent on intracellular Mg2+-ATP. Additional experiments revealed that SmCavβ lends the Cav2.3/SmCavβ complex sensitivity to Na+ ions. A mutant version of the Cavβ subunit lacking the first forty-six amino acids, including a string of twenty-two acidic residues, no longer conferred sensitivity to intracellular Mg2+-ATP and Na+ ions, while continuing to show wild type modulation of current amplitude and inactivation of Cav2.3. The data presented in this article provide insights into novel mechanisms employed by platyhelminth Cavβ subunits to modulate voltage-gated Ca2+ currents that indicate interactions between the Ca2+ channel complex and chelated forms of ATP as well as Na+ ions. These results have potentially important implications for understanding previously unknown mechanisms by which platyhelminths and perhaps other organisms modulate Ca2+ currents in excitable cells.
Description
© 2008 Salvador-Recatalà et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Physiology 8 (2008): 6, doi:10.1186/1472-6793-8-6.
Embargo Date
Citation
BMC Physiology 8 (2008): 6
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution 2.0 Generic