Skip to main content
Log in

Soil evolution and subalpine ecosystem changes in the French Alps inferred from geochemical analysis of lacustrine sediments

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

This study aimed to reconstruct the history of soil development, ecosystem changes and associated erosional processes in a small mountain lacustrine basin at the decennial to millennial scale. Geochemical proxies of soil evolution were analysed in the Holocene lacustrine sediments and peats from Thyl Lake, Maurienne Valley, French Alps. Podzolization and chemical weathering processes were assessed using secondary Al- and Fe-bearing phases together with major and Rare Earth Elements (REE). The resulting proxy records, spanning ca. 4,400 years between 8.6 and 4.2 cal ka BP, indicate that progressive pedogenesis occurred after deglaciation in a relatively stable subalpine ecosystem. As shown by the associated increase in Al- and Fe-bearing phases and some REE fractions, the establishment of a mixed cembra pine ecosystem from ca. 7.2–6.5 ka BP was associated with enhanced podzolisation processes in the catchment. The progressive soil development was followed by a rapid transformation of the local environment and plant cover (the open waters of the lake were replaced by a confined peat environment) together with changes in forest fire regimes from ca. 6.8 ka BP. Depleted REE patterns, associated with low contents of secondary Al and Fe, suggest a decrease in chemical weathering and podzolization in the catchment at that time, possibly associated with local intensification of weathering and drainage processes in a relatively acidic peat environment. The higher variability of cembra pine and the increased abundance of sedge and other herbaceous plant remains in the lake sediment indicate semi-open vegetation environments from 5.7 cal ka BP onwards. Whereas fire events and plant cover appear to be significantly related, the soil processes seem primarily linked to vegetation composition, and secondarily to changes in fire regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aide M, Smith-Aide C (2003) Assessing soil genesis by rare-earth elemental analysis. Soil Sci Soc Am J 67:1470–1476

    Article  Google Scholar 

  • Ailleres L, Bertrand JM, Macaudière J, Champenois M (1995) New structural data from the “Zone Houillère Briançonnaise” (French Alps), neoalpine tectonics and consequences for the interpretation of the pennine front. CR Acad Sci 3:247–254

    Google Scholar 

  • Andersson K, Dahlqvist R, Turner D, Stolpe B, Larsson T, Ingri J et al (2006) Colloidal rare earth elements in a boreal river: changing sources and distributions during the spring flood. Geochim Cosmochim Acta 70:3261–3274. doi:10.1016/j.gca.2006.04.021

    Article  Google Scholar 

  • Barrett LR, Schaetzl RJ (1998) Regressive pedogenesis following a century of deforestation: evidence for depodzolization. Soil Sci 163:482–497. doi:10.1097/00010694-199806000-00006

    Article  Google Scholar 

  • Birkeland PW (1999) Soils and geomorphology. Oxford University Press, New York

    Google Scholar 

  • Birks HH, Birks HJB (2000) Future uses of pollen analysis must include plant macrofossils. J Biogeogr 27:31–35. doi:10.1046/j.1365-2699.2000.00375.x

    Article  Google Scholar 

  • Birks HH, Birks HJB (2006) Multi-proxy studies in palaeolimnology. Veg Hist Archaeobot 15:235–251. doi:10.1007/s00334-006-0066-6

    Article  Google Scholar 

  • Blarquez O, Carcaillet C, Bremond L, Mourier B, Radakovitch O (2010) Trees in the subalpine belt since 11 700 cal. BP: origin, expansion and alteration of the modern forest. Holocene 20:139–146. doi:10.1177/0959683609348857

    Article  Google Scholar 

  • Bocquet A (1997) Archéologie et peuplement des Alpes françaises du Nord au Néolithique et aux âges des métaux. L’Anthropologie 101:291–393

    Google Scholar 

  • Bolt GH, Bruggenwert MGM (1976) Soil chemistry A. Basic elements, Amsterdam

  • Carcaillet C, Ali AA, Blarquez O, Genries A, Mourier B, Bremond L (2009) Spatial variability of fire history in subalpine forests: from natural to cultural regimes. Ecoscience 16:1–12. doi:10.2980/16-1-3189

    Article  Google Scholar 

  • Caspari T, Baumler R, Norbu C, Tshering K, Baillie I (2006) Geochemical investigation of soils developed in different lithologies in Bhutan, Eastern Himalayas. Geoderma 136:436–458. doi:10.1016/j.geoderma.2006.04.017

    Article  Google Scholar 

  • Chapin FS, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175. doi:10.2307/2937039

    Article  Google Scholar 

  • David F, Barbero M (2001) Les érables dans l’étage subalpin : une longue histoire. C R Acad Sci Serie III Sci Vie 324:159–164. doi:10.1016/S0764-4469(00)01282-8

    Google Scholar 

  • Davis BAS, Brewer S, Stevenson AC, Guiot J (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev 22:1701–1716. doi:10.1016/S0277-3791(03)00173-2

    Article  Google Scholar 

  • Delcros P (1993) Ecologie du paysage et dynamique post-culturale en zone de montagne. PhD thesis, University of Joseph Fourier, Grenoble, France

  • Dokuchaev VV (1883) Russian Chernozem. In Selected Works of V.V. Dokuchaev, vol. 1, pp 14–419, Moscow, 1948. Israel Program for Scientific Translations Ltd. (for USDA-NSF), S. Monson, Jerusalem, 1967

  • Egli M, Sartori G, Mirabella A, Favilli F, Giaccai D, Delbos E (2009) Effect of north and south exposure on organic matter in high Alpine soils. Geoderma 149:124–136. doi:10.1016/j.geoderma.2008.11.027

    Article  Google Scholar 

  • Engstrom DR, Hansen BCS (1985) Postglacial vegetation change and soil development in southeastern Labrador as inferred from pollen and chemical stratigraphy. Can J Bot 63:543–561. doi:10.1139/b85-070

    Article  Google Scholar 

  • Ewing HA (2002) The influence of substrate on vegetation history and ecosystem development. Ecology 83:2766–2781. doi:10.1890/0012-9658(2002)083[2766:TIOSOV]2.0.CO;2

    Article  Google Scholar 

  • Ewing HA, Nater EA (2002) Holocene soil development on till and outwash inferred from lake-sediment geochemistry in michigan and wisconsin. Quat Res 57:234–243. doi:10.1006/qres.2001.2303

    Article  Google Scholar 

  • Favre J (1958) Contribution à l’étude la zone houillère en Maurienne et en Tarentaise. PhD thesis, Université de Paris, France

  • Ford MSJ (1990) A 10 000-year history of natural ecosystem acidification. Ecol Monogr 60:57–89. doi:10.2307/1943026

    Article  Google Scholar 

  • Garcin Y, Williamson D, Bergonzini L, Radakovitch O, Vincens A, Buchet G, Guiot J, Brewer S, Mathé P-E, Majule A (2007) Solar and anthropogenic imprints on Lake Masoko (southern Tanzania) during the last 500 years. J Paleolimnol 37:475–490. doi:10.1007/s10933-006-9033-6

    Article  Google Scholar 

  • Genries A, Mercier L, Lavoie M, Muller SD, Radakovitch O, Carcaillet C (2009) The effect of fire frequency on local cembra pine populations. Ecology 90:476–486. doi:10.1890/07-1740.1

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110. doi:10.1023/A:1008119611481

    Article  Google Scholar 

  • Henderson P (1984) General geochemical properties and abundances of the rare earth elements. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, New York, pp 1–29

    Google Scholar 

  • Higuera PE, Sprugel DG, Brubaker LB (2005) Reconstructing fire regimes with charcoal from small-hollow sediments: a calibration with tree-ring records of fire. Holocene 15:238–251. doi:10.1191/0959683605hl789rp

    Article  Google Scholar 

  • Hu FS, Brubaker LB, Anderson PM (1993) A 12 000 year record of vegetation change and soil development form Wien Lake, central Alaska. Can J Bot 71:1133–1142. doi:10.1139/b93-133

    Google Scholar 

  • Hu FS, Brubakr LB, Anderson PM (1996) Boreal ecosystem development in northwestern Alaska Range since 11,000 years B.P. Quat Res 45:188–201. doi:10.1006/qres.1996.0019

    Article  Google Scholar 

  • Ingri J, Widerlund A, Land M, Gustafsson O, Andersson P, Ohlander B (2000) Temporal variations in the fractionation of the rare earth elements in a boreal river; the role of colloidal particles. Chem Geol 166:23–45. doi:10.1016/S0009-2541(99)00178-3

    Article  Google Scholar 

  • Jacobson JR, Bradshaw RHW (1981) The selection of sites for paleovegetational studies. Quat Res 16:80–96. doi:10.1016/0033-5894(81)90129-0

    Article  Google Scholar 

  • Jenny H (1941) Factors of soil formation. A system of quantitative pedology. McGraw-Hill Book, New York

    Google Scholar 

  • Johnson DL, Watson-Stegner D (1987) Evolution model of pedogenesis. Soil Sci 143:349–366

    Article  Google Scholar 

  • Jowsey PC (1966) An improved peat sampler. New Phytol 65:245–249

    Article  Google Scholar 

  • Land M, Ohlander B, Ingri J, Thunberg J (1999) Solid speciation and fractionation of rare earth elements in a spodosol profile from northern Sweden as revealed by sequential extraction. Chem Geol 160:121–138. doi:10.1016/S0009-2541(99)00064-9

    Article  Google Scholar 

  • Legros JP (1992) Soils of Alpine mountains. In: Martini IP, Chesworth W (eds) Weathering, soils and paleosols. Elsevier, Amsterdam, Netherlands, pp 155–181

    Google Scholar 

  • Legros JP (2007) Les grands sols du monde. EPFL press, Lausanne, p 574

    Google Scholar 

  • Lundstrom US, van Breemen N, Bain D (2000) The podzolization process. A review. Geoderma 94:91–107. doi:10.1016/S0016-7061(99)00036-1

    Article  Google Scholar 

  • Mackereth FJH (1966) Some chemical observations on post-glacial lake sediments. Phil Trans R Soc Lond B 250:165–213

    Article  Google Scholar 

  • Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quat Int 113:65–79. doi:10.1016/S1040-6182(03)00080-6

    Article  Google Scholar 

  • Marcenko E, Srdoc D, Golubic S, Pezdic J, Head MJ (1989) Carbon uptake in aquatic plants deduced from their natural 13C and 14C content. Radiocarbon 31:785–794

    Google Scholar 

  • McKeague JA, Brydon JE, Miles NM (1971) Differentiation of forms of extractable iron and aluminum in soils. Soil Sci Soc Am Proc 35:33–38

    Article  Google Scholar 

  • Middelburg JJ, van der Weijden CH, Woittiez JRW (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem Geol 68:253–273. doi:10.1016/0009-2541(88)90025-3

    Article  Google Scholar 

  • Mourier B, Poulenard J, Chauvel C, Faivre P, Carcaillet C (2008) Distinguishing subalpine soil types using extractible Al and Fe fractions and REE geochemistry. Geoderma 145:107–120. doi:10.1016/j.geoderma.2008.03.001

    Article  Google Scholar 

  • Muller SD, Nakagawa T, de Beaulieu J-L, Court-Picon M, Fauquette S, Genries A (2006) Paléostructures de végétation à la limite supérieure des forêts dans les Alpes françaises internes. C R Biol 329:502–511. doi:10.1016/j.crvi.2006.05.002

    Article  Google Scholar 

  • Nesbitt HW (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279:206–210. doi:10.1038/279206a0

    Article  Google Scholar 

  • Öhlander B, Land M, Ingri J, Widerlund A (1996) Mobility of rare earth elements during weathering of till in northern Sweden. Appl Geochem 11:93–99. doi:10.1016/0883-2927(95)00044-5

    Article  Google Scholar 

  • Peinerud EK, Ingri J, Ponter C (2001) Non-detrital Si concentrations as an estimate of diatom concentrations in lake sediments and suspended material. Chem Geol 177:229–239. doi:10.1016/S0009-2541(00)00378-8

    Article  Google Scholar 

  • Pennington W (1986) Lags in adjustment of vegetation to climate caused by the pace of soil development. Evidence from Britain. Plant Ecol 67:105–118. doi:10.1007/BF00037361

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand C et al (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 Cal Kyr BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, London

    Google Scholar 

  • Schaetzl RJ, Anderson S (2007) Soils: genesis and geomorphology. Cambridge University Press, Cambridge

    Google Scholar 

  • Slaymaker O, Souch C, Menounos B, Filippelli C (2003) Advances in Holocene mountain geomorphology inspired by sediment budget methodology. Geomorphology 55:305–316. doi:10.1016/S0169-555X(03)00146-6

    Article  Google Scholar 

  • Soil Survey Staff (2006) Keys to soil taxonomy, Washington, DC

  • Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA et al (1998) INTCAL98 radiocarbon age calibration, 24, 000–0 cal BP. Radiocarbon 40:1041–1083

    Google Scholar 

  • Thirault E (2006) Bessans/La Teha (Savoie): présence néolithique à haute altitude (2250 m) sur les itinéraires transalpins. Bull Soc Préhistor Fr 103:797–799

    Article  Google Scholar 

  • Törnqvist TE, de Jong AFM, Oosterbaan WA, van der Borg K (1992) Accurate dating of organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34:566–577

    Google Scholar 

  • von Grafenstein U, Erlenkeuser H, Brauer A, Jouzel J, Jonhsen SJ (1999) A Mid-European decadal isotope-climate record from 15500 to 5000 years BP. Science 284:1654–1657. doi:10.1126/science.284.5420.1654

    Article  Google Scholar 

  • Willis KJ, Braun M, Sümegi P, Toth A (1997) Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology 78:740–750. doi:10.1890/0012-9658(1997)078[0740:DSCCVC]2.0.CO;2

    Article  Google Scholar 

  • WRB (2006) World reference base for soil resources, vol 103. FAO, Rome

    Google Scholar 

Download references

Acknowledgments

Financial support to C.C. was provided by the Institut National des Sciences de l’Univers (INSU-CNRS, France), through the national programme ECCO, and by grants to B.M. from the Ministère de l’Enseignement Supérieur et de la Recherche, France. We acknowledge Aurélie Genries, Pierre Faivre and Aurélien Van Welden for many valuable ideas and comments on this work and thank two anonymous reviewers. We thank Jean-Claude Druart (INRA Thônon) for analysing the diatoms. We are also indebted to Adam Ali, Sarah Ivorra and Boris Vannière for their field assistance. M.S.N. Carpenter edited the English style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brice Mourier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mourier, B., Poulenard, J., Carcaillet, C. et al. Soil evolution and subalpine ecosystem changes in the French Alps inferred from geochemical analysis of lacustrine sediments. J Paleolimnol 44, 571–587 (2010). https://doi.org/10.1007/s10933-010-9438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-010-9438-0

Keywords

Navigation