Skip to main content
Log in

Molecular modeling of immersion optical clearing of biological tissues

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The interaction of six low-molecular tissue-clearing agents (1,2 and 1,3-propanediol, ethylene glycol, glycerol, xylitol, sorbitol) with the collagen mimetic peptide (GPH)3 was studied by applying the methods of classical molecular dynamics (GROMACS), molecular docking (AutoDock Vina) and quantum chemistry (PM6 and B3LYP). The spatial configurations of intermolecular complexes were determined and interaction energies calculated. The dependence of the volume occupied by the collagen peptide on the clearing agent concentration in an aqueous solution was calculated. This dependence is not linear, and has a maximum for almost all the agents in the study. The correlations between the optical clearing potential and intermolecular interactions parameters, such as the time of an agent being in a hydrogen-bonded state, and the relative probability of formation of double hydrogen bonds and interaction energies, were determined. Using the correlations determined, we predicted the numeric value of the optical clearing potential of dextrose molecules in rat skin, which correlates with experimental data. A molecular mechanism of tissue optical clearing within the post-diffusion stage is suggested.

The molecular modeling of the interaction between clearing agents and collagen

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7a–f
Fig. 8

Similar content being viewed by others

References

  1. Hirshburg JM (2009) Chemical agent induced reduction of skin light scattering. Dissertation, Texas A&M University

  2. Tuchin VV (ed) (2009) Handbook of optical sensing of glucose in biological fluids and tissues. CRC, London

    Google Scholar 

  3. Tuchin VV (2006) Optical clearing of tissues and blood. PM 154. SPIE, Bellingham

    Google Scholar 

  4. Zhu D, Larin KV, Luo Q, Tuchin VV (2013) Recent progress in tissue optical clearing. Laser Photonics Rev 7:732–757. https://doi.org/10.1002/lpor.201200056

    Article  CAS  Google Scholar 

  5. Genina EA, Bashkatov AN, Sinichkin YP, Yanina IY, Tuchin VV (2015) Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy. J Biomed Photonics Eng 1:22–58

    Article  Google Scholar 

  6. Genina EA, Bashkatov AN, Kochubey VI, Tuchin VV (2005) Optical clearing of human dura mater. Opt Spectrosc 98:470–476. https://doi.org/10.1134/1.1890530

    Article  CAS  Google Scholar 

  7. Genina EA, Bashkatov AN, Sinichkin YP, Tuchin VV (2006) Optical clearing of the eye sclera in vivo caused by glucose. Quantum Electron 36:1119–1124. https://doi.org/10.1070/QE2006v036n12ABEH013337

    Article  CAS  Google Scholar 

  8. Bashkatov AN, Korolevich AN, Tuchin VV, Sinichkin YP, Genina EA, Stolnitz MM, Dubina NS, Vecherinski SI, Belsley MS (2006) In vivo investigation of human skin optical clearing and blood microcirculation under the action of glucose solution. Asian J Phys 15:1–14

    CAS  Google Scholar 

  9. Genina EA, Bashkatov AN, Tuchin VV (2008) Optical clearing of cranial bone. Adv Opt Technol 2008:267867. https://doi.org/10.1155/2008/267867

    Article  Google Scholar 

  10. Bashkatov AN, Genina EA, Tuchin VV, Altshuler GB (2009) Skin optical clearing for improvement of laser tattoo removal. Laser Phys 19:1312–1322. https://doi.org/10.1134/S1054660X09060231

    Article  CAS  Google Scholar 

  11. Wen X, Tuchin VV, Luo Q, Zhu D (2009) Controling the scattering of intralipid by using optical clearing agents. Phys Med Biol 54:6917–6930. https://doi.org/10.1088/0031-9155/54/22/011

    Article  CAS  Google Scholar 

  12. Sudheendran N, Mohamed M, Ghosn MG, Tuchin VV, Larin KV (2010) Assessment of tissue optical clearing as a function of glucose concentration using optical coherence tomography. J Innov Opt Health Sci 3:169–176. https://doi.org/10.1142/S1793545810001039

    Article  Google Scholar 

  13. Choi B, Tsu L, Chen E, Ishak TS, Iskandar SM, Chess S, Nelson JS (2005) Determination of chemical agent optical clearing potential using in vitro human skin. Lasers Surg Med 36(2):72–75. https://doi.org/10.1002/lsm.20116

    Article  Google Scholar 

  14. Vargas G, Barton JK, Welch AJ (2008) Use of hyperosmotic chemical agent to improve the laser treatment of cutaneous vascular lesions. J Biomed Opt 13(2):021114. https://doi.org/10.1117/1.2907327

    Article  Google Scholar 

  15. Bashkatov AN, Genina EA, Tuchin VV (2002) Optical immersion as a tool for tissue scattering properties control. In: Singh K, Rastogi VK (eds) Perspectives in engineering optics. Anita, New Delhi, pp 313–334

    Google Scholar 

  16. Tuchina DK, Shi R, Bashkatov AN, Genina EA, Zhu D, Luo Q, Tuchin VV (2015) Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin. J Biophotonics 8:332–346. https://doi.org/10.1002/jbio.201400138

    Article  CAS  Google Scholar 

  17. Wen X, Mao Z, Han Z, Tuchin VV, Zhu D (2010) In vivo skin optical clearing by glycerol solutions: mechanism. J Biophotonics 3:44–52. https://doi.org/10.1002/jbio.200910080

    Article  CAS  Google Scholar 

  18. Leikin S, Rau DC, Parsegian VA (1995) Temperature-favoured assembly of collagen is driven by hydrophilic not hydrophobic interactions. Nat Struct Biol 2(3):205–210. https://doi.org/10.1038/nsb0395-205

    Article  CAS  Google Scholar 

  19. Kuznetsova N, Chi SL, Leikin S (1998) Sugars and polyols inhibit fibrillogenesis of type i collagen by disrupting hydrogen-bonded water bridges between the helices. Biochemistry 37(34):11888–11895. https://doi.org/10.1021/bi980089+

    Article  CAS  Google Scholar 

  20. Hirshburg JM, Ravikumar KM, Hwang W, Yeh AT (2010) Molecular basis for optical clearing of collagenous tissues. J Biomed Opt 15:055002. https://doi.org/10.1117/1.3484748

    Article  Google Scholar 

  21. Feng W, Shi R, Ma N, Tuchina DK, Tuchin VV, Zhu D (2016) Skin optical clearing potential of disaccharides. J Biomed Opt 21:081207. https://doi.org/10.1117/1.JBO.21.8.081207

    Article  Google Scholar 

  22. Wang J, Ma N, Shi R, Zhang Y, Yu T, Zhu D (2014) Sugar-induced skin optical clearing: from molecular dynamics simulation to experimental demonstration. IEEE J Sel Tops Quant Electr 20(2):7101007. https://doi.org/10.1109/JSTQE.2013.2289966

    Google Scholar 

  23. Yeh AT, Hirshburg J (2006) Molecular interactions of exogenous chemical agents with collagen-implications for tissue optical clearing. J Biomed Opt 11(1):014003. https://doi.org/10.1117/1.2166381

    Article  Google Scholar 

  24. Hirshburg J, Choi B, Nelson JS, Yeh AT (2006) Collagen solubility correlates with skin optical clearing. J Biomed Opt 11(4):040501. https://doi.org/10.1117/1.2220527

    Article  Google Scholar 

  25. Hirshburg J, Nelson JS, Choi B, Yeh AT (2007) Correlation between collagen solubility and skin optical clearing using sugars. Lasers Surg Med 39(2):140–144. https://doi.org/10.1002/lsm.20417

    Article  Google Scholar 

  26. Mao Z, Zhu D, Hu Y, Wen X, Han Z (2008) Influence of alcohols on the optical clearing effect of skin in vitro. J Biomed Opt 13(2):021104. https://doi.org/10.1117/1.2892684

    Article  Google Scholar 

  27. Yu T, Wen X, Tuchin VV, Luo Q, Zhu D (2011) Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing. J Biomed Opt 16(9):095002. https://doi.org/10.1117/1.3621515

    Article  Google Scholar 

  28. Tuchin VV (2015) Tissue optics and photonics: biological tissue structures. J Biomed Photonics Eng 1:3–21. https://doi.org/10.18287/jbpe-2015-1-1-3

    Article  Google Scholar 

  29. Li Y, Liu Y, Xia W, Lei D, Voorhees JJ, Fisher GJ (2013) Age-dependent alterations of decorin glycosaminoglycans in human skin. Sci Rep 3:2422. https://doi.org/10.1038/srep02422

    Article  Google Scholar 

  30. Abd E, Yousef SA, Pastore MN, Telaprolu K, Mohammed YH, Namjoshi S, Grice JE, Roberts MS (2016) Skin models for the testing of transdermal drugs. Clin Pharmacol 8:163–176. https://doi.org/10.2147/CPAA.S64788

    Google Scholar 

  31. Fleischmajer R, Perlish JS, Gaisin A (1973) Comparative study of dermal glycosaminoglycans. J Investig Dermatol 61:1–6. https://doi.org/10.1111/1523-1747.ep12673877

    Article  CAS  Google Scholar 

  32. Okuyama K, Miyama K, Mizuno K, Bachinger HP (2012) Crystal structure of (Gly-pro-Hyp)9: implications for the collagen molecular model. Biopolymers 97:607–616. https://doi.org/10.1002/bip.22048

    Article  CAS  Google Scholar 

  33. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz Jr KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197. https://doi.org/10.1021/ja00124a002

    Article  CAS  Google Scholar 

  34. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev 37B:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken J, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09 (Revision A.02). Gaussian Inc, Wallingford, CT

  37. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark EA, HJC B (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  Google Scholar 

  38. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012. https://doi.org/10.1002/jcc.10349

    Article  CAS  Google Scholar 

  39. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  40. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  41. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271. https://doi.org/10.1021/j100308a038

    Article  CAS  Google Scholar 

  42. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213. https://doi.org/10.1007/s00894-007-0233-4

    Article  CAS  Google Scholar 

  43. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    CAS  Google Scholar 

  44. Loof HD, Nilsson L, Rigler R (1992) Molecular dynamics simulation of galanin in aqueous and nonaqueous solution. J Am Chem Soc 114:4028–4035. https://doi.org/10.1021/ja00037a002

    Article  Google Scholar 

  45. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451. https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Russian Federation grants: 17.1223.2017/AP of the Ministry of Education and Science, 3.9128.2017/BCh of the Government, 17-02-00358 of RFBR, and the Tomsk State University Competitiveness Improvement Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin N. Dvoretski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezin, K.V., Dvoretski, K.N., Chernavina, M.L. et al. Molecular modeling of immersion optical clearing of biological tissues. J Mol Model 24, 45 (2018). https://doi.org/10.1007/s00894-018-3584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3584-0

Keywords

Navigation