Skip to main content

Advertisement

Log in

Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

δ13C of nematode communities in 27 sites was analyzed, spanning a large depth range (from 130 to 2,021 m) in five Antarctic regions, and compared to isotopic signatures of sediment organic matter. Sediment organic matter δ13C ranged from −24.4 to −21.9‰ without significant differences between regions, substrate types or depths. Nematode δ13C showed a larger range, from −34.6 to −19.3‰, and was more depleted than sediment organic matter typically by 1‰ and by up to 3‰ in silty substrata. These, and the isotopically heavy meiofauna at some stations, suggest substantial selectivity of some meiofauna for specific components of the sedimenting plankton. However, 13C-depletion in lipids and a potential contribution of chemoautotrophic carbon in the diet of the abundant genus Sabatieria may confound this interpretation. Carbon sources for Antarctic nematodes were also explored by means of an experiment in which the fate of a fresh pulse of labile carbon to the benthos was followed. This organic carbon was remineralized at a rate (11–20 mg C m−2 day−1) comparable to mineralization rates in continental slope sediments. There was no lag between sedimentation and mineralization; uptake by nematodes, however, did show such a lag. Nematodes contributed negligibly to benthic carbon mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abelmann A, Gersonde R (1991) Biosiliceous flux in the Southern Ocean. Mar Chem 35:503–536

    Article  CAS  Google Scholar 

  • Andrassy I (1956) Die Rauminhalts- und Gewichtsbestimmung der Fadenwürmer (Nematoden). Acta Zool Acad Scient Hung 2:1–15

    Google Scholar 

  • Arntz W, Brey T (2001) The expedition ANTARKTIS XVII/3 (EASIZ III) of RV “Polarstern” in 2000. Reports on Polar and Marine Research 402

  • Arntz W, Gutt J (1999) The expedition ANTARKTIS XV/3 (EASIZ II) of RV “Polarstern” in 1998. Reports on Polar and Marine Research 301

  • Bathmann UV, Fischer G, Müller PJ, Gerdes G (1991) Short term variation in particulate matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol 11:185–195

    Article  Google Scholar 

  • Beaulieu SE (2002) Accumulation and fate of phytodetritus on the sea floor. Oceanogr Mar Biol Annu Rev 40:171–232

    Google Scholar 

  • Bett BJ, Vanreusel A, Vincx M, Soltwedel T, Pfannkuche O, Lambshead PJD, Gooday AJ, Ferrero T, Dinet A (1994) Sampler bias in the quantitative study of deep-sea meiobenthos. Mar Ecol Prog Ser 104:197–203

    Article  Google Scholar 

  • Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth, 144 pp

    Google Scholar 

  • Conover WJ (1971) Practical non-parametric statistics. Wiley, New York

    Google Scholar 

  • Corbisier TN, Petti MAV, Skowronski RSP, Brito TAS (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol 27:75–82

    Article  Google Scholar 

  • Coull BC (1999) Role of meiofauna in estuarine soft-bottom habitats. Aust J Ecol 24:327–343

    Article  Google Scholar 

  • Dando PR, Fenchel T, Jensen P, Ohara SCM, Niven SJ, Schuster U (1993) Ecology of gassy, organic-rich sediment in a shallow subtidal area on the Kattegat coast of Denmark. Mar Ecol Prog Ser 100:265–271

    Article  Google Scholar 

  • Danovaro R, Dell’Anno A, Martorano D, Parodi P, Marrale ND, Fabiano M (1999) Seasonal variation in the biochemical composition of deep-sea nematodes: bioenergetic and methodological considerations. Mar Ecol Prog Ser 179:273–283

    Article  CAS  Google Scholar 

  • Dehairs F, Kopczynska E, Nielsen P, Lancelot C, Bakker DCE, Koeve W, Goeyens L (1997) δ13C of Southern Ocean suspended organic matter during spring and early summer: regional and temporal variability. Deep Sea Res II 44:129–142

    Article  CAS  Google Scholar 

  • De Mesel I, Lee HJ, Vanhove S, Vincx M, Vanreusel A (2006) Species diversity and distribution within the deep-sea nematode genus Acantholaimus on the continental shelf and slope in Antarctica. Polar Biol 29:860–871

    Article  Google Scholar 

  • Fischer GR, Fütterer D, Gersonde R, Honjo S, Ostermann D, Wefer G (1988) Seasonal variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335:426–428

    Article  Google Scholar 

  • Fontugne M, Descolas-Gros C, de Billy G (1991) The dynamics of CO2 fixation in the Southern Ocean as indicated by carboxylase activities and organic carbon ratios. Mar Chem 35:371–380

    CAS  Google Scholar 

  • Goering J, Alexander V, Haubenstock N (1990) Seasonal variability of stable carbon and nitrogen isotope ratios of organisms in a north Pacific bay. Est Coast Shelf Sci 30:239–260

    Article  CAS  Google Scholar 

  • Gooday AJ (1988) A response by benthic foraminifera to the deposition of phytodetritus in the deep-sea. Nature 332:70–73

    Article  Google Scholar 

  • Gooday AJ, Pfannkuche O, Lambshead PJD (1996) An apparent lack of response by metazoan meiofauna to phytodetritus deposition in the bathyal north-eastern Atlantic. J Mar Biol Assoc UK 76:297–310

    Article  Google Scholar 

  • Gooday AJ, Turley CM, Allen JA (1990) Responses by benthic organisms to inputs of organic material to the ocean floor—a review. Philos Trans R Soc Lond A 331:119–138

    Article  CAS  Google Scholar 

  • Graf G (1992) Benthic–pelagic coupling: a benthic view. Oceanogr Mar Biol Annu Rev 30:239–260

    Google Scholar 

  • Gutt J, Starmans A, Dieckmann G (1998) Phytodetritus deposited on the Antarctic shelf and upper slope: its relevance for the benthic system. J Mar Syst 17:435–444

    Article  Google Scholar 

  • Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Annu Rev 23:399–489

    Google Scholar 

  • Hendelberg M, Jensen P (1993) Vertical distribution of the nematode fauna in a coastal sediment influenced by seasonal hypoxia in the bottom water. Ophelia 37:83–94

    Google Scholar 

  • Iken K, Brey T, Wand U, Voigt J, Junghans P (2001) Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Prog Oceanogr 50:383–405

    Article  Google Scholar 

  • Ingels J, Vanhove S, De Mesel I, Vanreusel A (2006) The biodiversity and biogeography of the free-living nematode genera Desmodora and Desmodorella (family Desmodoridae) at both sides of the Scotia Arc. Polar Biol 29:936–949

    Article  Google Scholar 

  • Jensen P (1981) Species, distribution and a microhabitat theory for marine mud dwelling Comesomatidae (Nematoda) in European waters. Cah Biol Mar 22:231–241

    Google Scholar 

  • Kaehler S, Pakhhomov EA, MacQuaid CD (2000) Trophic structure of the marine food web at the Prince Edward Islands (Southern Ocean) determined by δ13C and δ15N analysis. Mar Ecol Prog Ser 208:13–20

    Article  Google Scholar 

  • Kopczynska E, Goeyens L, Semeneh M, Dehairs F (1995) Phytoplankton composition and cell carbon distribution in Prydz Bay, Antarctica: relation to organic particulate matter and its δ13C values. J Plankton Res 17:685–707

    Article  CAS  Google Scholar 

  • Kuipers BR, de Wilde PAWJ, Creutzberg F (1981) Energy flow in a tidal flat ecosystem. Mar Ecol Prog Ser 5:215–221

    Article  Google Scholar 

  • Leventer A (1991) Sediment trap diatom assemblages from the northern Antarctic Peninsula region. Deep-Sea Res A 38:1127–1143

    Article  Google Scholar 

  • Levin LA, Michener RH (2002) Isotopic evidence for chemosynthesis-based nutrition of macrobenthos: the lightness of being at Pacific methane seeps. Limnol Oceanogr 47:1336–1345

    Article  Google Scholar 

  • Linke P, Altenbach AV, Graf G, Heeger T (1995) Response of deep-sea benthic foraminifera to a simulated sedimentation event. J Foram Res 25:75–82

    Article  Google Scholar 

  • Lochte K, Turley CM (1988) Bacteria and cyanobacteria associated with phytodetritus in the deep-sea. Nature 333:67–69

    Article  Google Scholar 

  • MacAvoy SE, Macko SA, Carney RS (2003) Links between chemosynthetic production and mobile predators on the Louisiana continental slope: stable carbon isotopes of specific fatty acids. Chem Geol 201:229–237

    Article  CAS  Google Scholar 

  • Mantoura RF, Llewellyn CA (1983) The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal Chim Acta 151:297–314

    Article  CAS  Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, Version 4. MjM Software Design, Gleneden Beach, Oregon, USA

  • Moens T, Luyten C, Middelburg JJ, Herman PMJ, Vincx M (2002) Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes. Mar Ecol Prog Ser 234:127–137

    Article  Google Scholar 

  • Moens T, Verbeeck L, Vincx M (1999) Preservation- and incubation time-induced bias in tracer-aided grazing studies on meiofauna. Mar Biol 133:69–77

    Article  Google Scholar 

  • Moodley L, Middelburg JJ, Boschker HTS, Duineveld GCA, Pel R, Herman PMJ, Heip CHR (2002) Bacteria and Foraminifera: key players in a short-term deep-sea benthic response to phytodetritus. Mar Ecol Prog Ser 236:23–29

    Article  Google Scholar 

  • Nieuwenhuize J, Maas YEM, Middelburg JJ (1994) Rapid analysis of organic carbon and nitrogen in particulate materials. Mar Chem 44:217–224

    Article  Google Scholar 

  • Nyssen F, Brey T, Lepoint G, Bouquegneau J-M, De Broyer C, Dauby P (2002) A stable isotope approach to the eastern Weddell Sea trophic web: focus on benthic amphipods. Polar Biol 25:280–287

    Google Scholar 

  • Olafsson E, Modig H, van de Bund WJ (1999) Species specific uptake of radio-labelled phytodetritus by benthic meiofauna from the Baltic Sea. Mar Ecol Prog Ser 177:63–72

    Article  Google Scholar 

  • Pakhomov EA, McClelland JW, Bernard K, Kaehler S, Montoya JP (2004) Spatial and temporal shifts in stable isotope values of the bottom-dwelling shrimp Nauticaris marionis at the sub-Antarctic archipelago. Mar Biol 144:317–325

    Article  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Pfannkuche O (1993) Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47° N, 20° W. Deep Sea Res II 40:135–149

    Article  Google Scholar 

  • Pfannkuche O, Lochte K (1993) Open ocean pelago–benthic coupling—Cyanobacteria as tracers of sedimenting salp feces. Deep Sea Res I 40:727–737

    Article  Google Scholar 

  • Rau GH, Hopkins TL, Torres JL (1991a) 15N/14N and 13C/12C in Weddell Sea invertebrates: implications for feeding diversity. Mar Ecol Prog Ser 77:1–6

    Article  CAS  Google Scholar 

  • Rau GH, Takahashi T, Des Marais DJ, Sullivan CW (1991b) Particulate organic matter δ13C variations across the Drake Passage. J Geophys Res 96:15131–15135

    PubMed  CAS  Google Scholar 

  • Rau GH, Takahashi T, Des Marais DJ, Repeta DJ, Martin JH (1992) The relationship between δ13C of organic matter and [CO2(aq)] in ocean surface water: data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim Cosmochim Acta 56:1413–1419

    Article  PubMed  CAS  Google Scholar 

  • Rudnick DT (1989) Time lags between the deposition and meiobenthic assimilation of phytodetritus. Mar Ecol Prog Ser 50:231–240

    Article  Google Scholar 

  • Smith KL Jr, Baldwin RJ, Karl DM, Boetius A (2002) Benthic community responses to pulses in pelagic food supply: North Pacific Subtropical Gyre. Deep Sea Res I 49:971–990

    Article  CAS  Google Scholar 

  • Soltwedel T (2000) Metazoan meiobenthos along continental margins: a review. Prog Oceanogr 46:59–84

    Article  Google Scholar 

  • Somerfield PJ, Warwick RM, Moens T (2005) Chapter 6. Meiofauna techniques. In: McIntyre A, Eleftheriou A (eds) Methods for the study of marine benthos, 3rd edn. Blackwell Science, Oxford, pp 229–272

    Google Scholar 

  • Sommer S, Pfannkuche O (2000) Metazoan meiofauna of the deep Arabian Sea: standing stocks, size spectra and regional variability to monsoon induced enhanced sedimentation regimes of particulate organic carbon. Deep Sea Res II 47:2957–2977

    Article  Google Scholar 

  • Thiermann F, Akoumianaki I, Hughes JA, Giere O (1997) Benthic fauna of a shallow-water gaseohydrothermal vent area in the Aegean Sea (Milos, Greece). Mar Biol 128:149–159

    Article  Google Scholar 

  • Urban-Malinga B, Moens T (2006) Fate of organic matter in arctic intertidal sediments: is utilization by meiofauna important? J Sea Res 56:239–248

    Article  CAS  Google Scholar 

  • Vanhove S, Arntz W, Vincx M (1999) Comparative study of the nematode communities on the southeastern Weddell Sea shelf and slope (Antarctica). Mar Ecol Prog Ser 181:237–256

    Article  Google Scholar 

  • Vanhove S, Beghyn M, Van Gansbeke D, Bullough LW, Vincx M (2000) A seasonally varying biotope at Signy Island, Antarctic: implications for meiofaunal structure. Mar Ecol Prog Ser 202:13–25

    Article  Google Scholar 

  • Vanhove S, Lee HJ, Beghyn M, Van Gansbeke D, Brockington S, Vincx M (1998) The metazoan meiofauna in its biogeochemical environment: the case of an Antarctic coastal sediment. J Mar Biol Assoc UK 78:411–434

    Google Scholar 

  • Vanhove S, Wittoeck J, Desmet G, Van Den Berghe B, Herman RL, Bak RPM, Nieuwland G, Vosjan JH, Boldrin A, Rabitti S, Vincx M (1995) Deep sea meiofauna communities in Antarctica: structural analysis and the relation with the environment. Mar Ecol Prog Ser 127:65–76

    Article  Google Scholar 

  • Vermeeren H, Vanreusel A, Vanhove S (2004) Species distribution within the free-living marine nematode genus Dichromadora in the Weddell Sea and adjacent areas. Deep Sea Res II 51:1643–1664

    Article  Google Scholar 

  • Vincx M (1996) Meiofauna in marine and freshwater sediments. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. CAB International, Cambridge, USA, pp 187–195

    Google Scholar 

  • Wada E, Terazaki M, Kabaya Y, Nemoto T (1987) 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep Sea Res 34:829–841

    Article  CAS  Google Scholar 

  • Widbom J, Frithsen JB (1995) Structuring factors in a marine soft bottom community during eutrophication—an experiment with radio-labelled phytodetritus. Oecologia 101:156–168

    Article  Google Scholar 

  • Wieser W (1953) Die Beziehung zwishen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Ark Zool 4:439–484

    Google Scholar 

  • Witte U, Aberle N, Sand M, Wenzhöfer F (2003a) Rapid response of a deep-sea benthic community to POM enrichment: an in situ experimental study. Mar Ecol Prog Ser 251:27–36

    Article  Google Scholar 

  • Witte U, Wenzhöfer F, Sommer S, Boetius A, Heinz P, Aberle N, Sand M, Cremer A, Abraham W-R, Jørgensen BB, Pfannkuche O (2003b) In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 424:763–766

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research presented in this paper was performed under the auspices of the Scientific Research Programme on Antarctica from the Belgian State—Prime Minister’s Federal Office for Scientific, Technical and Cultural Affairs (OSTC) and the concerted actions of Ghent University (BOF 01GZ0705). The authors thank the Alfred WegenerInstitute for Polar and Marine Research, the captain, crew members and chief scientists of the research vessel RV “Polarstern”, for help within the EASIZ II and EASIZ III campaigns. We are indebted to M. Vincx and W. Arntz for the provision of technical and logistic facilities. P. Dauby and F. Dehairs provided logistics and assistance for isotopic measurements. Caroline Luyten, Lee Hee-Joong, Karina Onton, Dirk Van Gansbeke, Danielle Schram, Bernard Timmerman and Annick Van Kenhove all helped in one way or another with analyses of environmental or meiobenthic data. Christine Van der heyden's help in the preparation of the figures is gratefully acknowledged. T.M. is a postdoctoral fellow with the Fund for Scientific Research—Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Moens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moens, T., Vanhove, S., De Mesel, I. et al. Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment. Polar Biol 31, 1–13 (2007). https://doi.org/10.1007/s00300-007-0323-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-007-0323-x

Keywords

Navigation