Skip to main content
Log in

A vertically resolved model for phytoplankton aggregation

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

This work presents models of the vertical distribution and flux of phytoplankton aggregates, including changes with time in the distribution of aggregate sizes and sinking speeds. The distribution of sizes is described by two parameters, the mass and number of aggregates, which greatly reduces the computational cost of the models. Simple experiments demonstrate the effects of aggregation on the timing and depth distribution of primary production and export. A more detailed ecological model is applied to sites in the Arabian Sea; it demonstrates that aggregation can be important for deep sedimentation even when its effect on surface concentrations is small, and it presents the difference in timing between settlement of aggregates and fecal pellets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alldredge A L and Gotschalk C 1988In situ settling behaviour of marine snow;Limnol. Oceanogr. 33(3) 339–351

    Google Scholar 

  • Alldredge A L and Gotschalk C 1989 Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocities and formation of diatom aggregates;Deep-Sea Res. 36(2) 159–171

    Article  Google Scholar 

  • Alldredge A L and McGillivary P 1991 The attachment probabilities of marine snow and their implications for particle coagulation in the ocean;Deep-Sea Res. 38(4) 431–443

    Article  Google Scholar 

  • Alldredge A L and Silver M W 1988 Characteristics, dynamics and significance of marine snow.Progress in Oceanography 20 (41–82)

    Article  Google Scholar 

  • Banse K 1987 Seasonality of phytoplankton chlorophyll in the central and northern Arabian Sea.Deep-Sea Res. 34 713–723

    Article  Google Scholar 

  • Banse K 1994 On the coupling of hydrography, phytoplankton, zooplankton, and settling organic particles offshore in the Arabian Sea;Proc. Indian Acad. Sci. (Earth Planet. Sci.) 103(2) 125–161

    Google Scholar 

  • Bochdansky A B and Herndl G H 1992 Ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea. III. Zooplankton interactions with marine snow;Mar. Ecol. Progr. Ser. 87 135–146

    Article  Google Scholar 

  • Brock J C, McClain C R, Luther M E and Hay W W 1991 The phytoplankton bloom in the northwestern Arabian Sea during the southwest monsoon of 1979;J. Geophys. Res. 96(C11) 20623–20642

    Google Scholar 

  • Brock T D 1981 Calculating solar radiation for ecological studies;Ecol. Model. 14 1–19

    Article  Google Scholar 

  • Brown P N, Byrne G D and Hindmarsh A C 1989 VODE: A Variable Coefficient ODE Solver;SIAM J. Sci. Stat. Comput. 10 1038–1051

    Article  Google Scholar 

  • Dam H G and Drapeau D T 1995 Coagulation efficiency, organic-matter glues and the dynamics of particles during a phytoplankton bloom in a mesocosm study;Deep-Sea Res. II 42(1) 111–123

    Article  Google Scholar 

  • Engel A 1998Bildung, Zusammensetzung und Sinkgeschwindigkeiten mariner Aggregate. Ber. Institut fur Meereskunde, Kiel 300. Christian-Albrechts-Universität zu Kiel, 145 pp.

    Google Scholar 

  • Eppley R W, Rogers J N and McCarthy J J 1969 Halfsaturation constants for uptake of nitrate and ammonium by marine phytoplankton;Limnol. Oceanogr. 14 912–920

    Google Scholar 

  • Evans G T 1999 The role of local models and data sets in the Joint Global Ocean Flux Study;Deep-Sea Res. I 46 1369–1389

    Article  Google Scholar 

  • Evans G T and Garçon V 1997One — dimensional models of water column biogeochemistry; JGOFS Report 23. Scientific Committee on Oceanic Research, Bergen, Norway, 85 pp.

    Google Scholar 

  • Evans G T and Parslow J S 1985 A model of annual plankton cycles;Biol. Oceanogr. 3 327–347

    Google Scholar 

  • Fasham M J R and Evans G T 1995 The use of optimization techniques to model marine ecosystem dynamics at the JGOFS Station at 47°N, 20°W;Phil. Trans. Roy. Soc. London B 348 203–209

    Article  Google Scholar 

  • Fasham M J R, Ducklow H W and McKelvie S M 1990 A nitrogen-based model of plankton dynamics for the oceanic mixed layer;J. Mar. Res. 48 591–639

    Google Scholar 

  • Fowler S W and Knauer G A 1986 Role of large particles in the transport of elements and organic compounds through the oceanic water column;Prog. Oceanog. 16 147–194

    Article  Google Scholar 

  • Garrison D L, Gowing M M and Hughes M P 1998 Nano- and microplankton in the northern Arabian Sea during the Southwest Monsoon, August-September 1995: A US-JGOFS study;Deep-Sea Res. II 45(10–11) 2269–2299

    Article  Google Scholar 

  • Haake B, Ittekkot V, Rixen T, Ramaswamy V, Nair R R and Curry W B 1993 Seasonality and interannual variability of particle fluxes to the deep Arabian Sea;Deep-Sea Res. 40(7) 1323–1344

    Article  Google Scholar 

  • Haupt O J 1995Modellstudien zum pelagischen Stickstoffumsatz und vertikalen Partikelfluβ, in der Norwegensee; Berichte aus dem Sonderforschungsbereich 313 60. Christian-Albrechts-Universität zu Kiel, 140 pp.

  • Hurtt G C and Armstrong R A 1996 A pelagic ecosystem model calibrated with BATS data;Deep-Sea Res. II 43(2/3) 653–683

    Article  Google Scholar 

  • Jackson G A 1990 A model for the formation of marine algal flocs by physical coagulation processes;Deep-Sea Res. 37(8) 1197–1211

    Article  Google Scholar 

  • Keen T R, Kindle J C and Young D K 1997 The interaction of Southwest Monsoon upwelling, advection and primary production in the northwest Arabian Sea;J. Mar. Systems 13(1–4) 61–82

    Article  Google Scholar 

  • Krey J 1973 Primary Production of the Indian Ocean. Chap. 2.1, pages 155–126 In:The Biology of the Indian Ocean (ed) B Zeitzschel (Berlin: Springer)

    Google Scholar 

  • Krey J and Babenerd B 1976Phytoplankton production. Atlas of the International Indian Ocean Expedition; Institut fur Meereskunde an der Christian-Albrechts-Universität Kiel, 70 pp.

  • Kriest I 1999The influence of phytoplankton aggregation on sedimentation — A model study; Ber. Institut fur Meereskunde 306. Christian-Albrechts-Universität zu Kiel, 136 pp.

  • Kriest I and Evans G T 1999 Representing phytoplankton aggregates in biogeochemical models;Deep-Sea Res. I 46 1841–1859

    Article  Google Scholar 

  • Lampitt R S 1985 Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension;Deep-Sea Res. 32(8) 885–897

    Article  Google Scholar 

  • Lampitt R S, Hillier W R and Challenor P G 1993 Seasonal and diel variation in the open ocean concentration of marine snow aggregates;Nature 362 737–739

    Article  Google Scholar 

  • Latasa M and Bidigare R R 1998 A comparison of phytoplankton populations of the Arabian Sea during the spring intermonsoon and southwest monsoon of 1995 as described by HPLC-analyzed pigments;Deep-Sea Res. II 45(10–11) 2133–2170

    Article  Google Scholar 

  • Lee C, Murray D W, Barber R T, Buesseler K O, Dymond J, Hedges J I, Honjo S, Manganini S J, Marra J, Moser C, Peterson M L, Prell W L and Wakeham S G 1998 Particulate organic carbon fluxes: compilation of results from the 1995 US JGOFS Arabian Sea Process Study by the Arabian Sea Process Study;Deep-Sea Res. II 45(10–11) 2489–2501

    Article  Google Scholar 

  • McCreary J P, Kohler K E, Hood R R and Olson D B 1996 A four-component ecosystem model of biological activity in the Arabian Sea;Prog. Oceanog. 37 193–240

    Article  Google Scholar 

  • Morrison J, Codispoti L A, Gaurin S, Jones B, Manghnani V and Zheng Z 1998 Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study;Deep-Sea Res. II 45(10–11) 2053–2101

    Article  Google Scholar 

  • Nair R R, Ittekkot V, Manganini S J, Ramaswamy V, Haake B, Degens E T, Desai B N and Honjo S 1989 Increased particle flux to the deep ocean related to monsoonsNature 338 749–751

    Article  Google Scholar 

  • Noji T 1989The influence of zooplankton on sedimentation in the Norwegian Sea; Ber. Sonderforschungsbereich 313 17. Christian-Albrechts-Universität zu Kiel, 183 pp.

  • Oschlies A, Koeve W and Garçon V 2000 An eddy-permitting coupled physical-biological model for the North Atlantic. 2. Ecosystem dynamics and comparison with satellite and JGOFS local studies data;Global Biogeochemical Cycles. 14 (1) 499–523

    Article  Google Scholar 

  • Pollehne F, Klein B and Zeitzschel B 1993 Low light production and export production in the deep chlorophyll maximum layer in the northern Indian Ocean;Deep-Sea Res. II 40(3) 737–752

    Article  Google Scholar 

  • Reed R K 1976 On estimating insolation over the ocean;Journal of Physical Oceanography 7 482–485

    Article  Google Scholar 

  • Riebesell U 1991 Particle aggregation during a diatom bloom. I. Physical aspects;Mar. Ecol. Progr. Ser. 69 273–280

    Article  Google Scholar 

  • Riebesell U and Wolf-Gladrow D 1992 The relationship between physical aggregation of phytoplankton and particle flux: a numerial model;Deep-Sea Res. 39(7/8) 1085–1102

    Article  Google Scholar 

  • Ruiz J and Izquierdo A 1997 A simple model for the break-up of marine aggregates by turbulent shear;Oceanologica Acta 20(4) 597–605

    Google Scholar 

  • Schnack S 1983 On the feeding of copepods onThalassiosira parthenia from the Northwest African upwelling area;Mar. Ecol. Progr. Ser. 11 49–53

    Article  Google Scholar 

  • Smayda T J 1970 The suspension and sinking of phytoplankton in the sea;Mar. Biol. Ann. Rev. 8 353–414

    Google Scholar 

  • Smayda T J and Boleyn B J 1965 Experimental observations on the flotation of marine diatoms. II.Skeletonema costatum andRhizosolenia setigera;Limnol. Oceanogr. 11 18–34

    Article  Google Scholar 

  • Smith S L 1982 The northwestern Indian Ocean during the monsoons of 1979: distribution, abundance, and feeding of zooplankton;Deep-Sea Res. 29(11A) 1331–1353

    Article  Google Scholar 

  • Smith Jr K L, Baldwin R J, Glatts R C, Kaufmann R S and Fisher E C 1998 Detrital aggregates on the sea floor: Chemical composition and aerobic decomposition rates at a time-series station in the abyssal NE Pacific;Deep-Sea Res. II 45 843–880

    Article  Google Scholar 

  • Waite A, Bienfang P K and Harrison P J 1992 Spring bloom sedimentation in a subarctic ecosystem. I. Nutrient sensitivity.Mar. Biol. 114

  • Waite A M and Thompson P A 1992 Does energy control the sinking rates of marine diatoms?Limnol. Oceanogr. 37(3) 468–477

    Google Scholar 

  • Young D K and Kindle J C 1994 Physical processes affecting the availability of dissolved silicate for diatom production in the Arabian Sea;J. Geophys. Res. 99(C11) 22619–22632

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kriest, I., Evans, G.T. A vertically resolved model for phytoplankton aggregation. J Earth Syst Sci 109, 453–469 (2000). https://doi.org/10.1007/BF02708333

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708333

Keywords

Navigation