Table S1. Empirical evidence for factors relating to resistance and the evidence score (-5 to +5) based on evaluations from 28 coral reef experts. 
	Empirical scientific evidence for resistance
	Statement of evidence
	Key citations

	Resistant species
	Resistant species (e.g. massive corals) are often not impacted by disturbance and a high abundance of resistant species, by definition, confers resistance
	
 ADDIN EN.CITE 
[1,2,3,4,5]


	Temperature variability
	Temperature variability, or the previous exposure of corals to different thermal regimes, has been demonstrated to increase resistance to bleaching in both field observations and experimental manipulations. 
	
 ADDIN EN.CITE 
[6,7,8,9,10,11,12,13]


	Stress-resistant symbionts
	There is clear field and experimental evidence that different symbionttaxa lead to variation in bleaching tolerance both within and among coral species. Moreover, reefs in high temperature environments also tend to be dominated by corals with heat tolerant symbionts.
	
 ADDIN EN.CITE 
[14,15,16,17,18,19,20]


	Reduced light stress
	Higher solar radiation acts synergistically with high temperatures to increase bleaching susceptibility. Reduced solar radiation from cloud cover or physical structures that provide shade (e.g. emergent rocks or other corals) are thought to increase resistance to bleaching.
	
 ADDIN EN.CITE 
[10,21,22,23,24,25,26]


	Water mixing (not weather)
	Regular mixing from multiple oceanographic factors, primarily persistent oceanic currents, waves, or tidal currents, can provide cooling that protects reefs from thermal stress. This is especially true of upwelling, oceanic waves and tidal currents.  Seasonally variable, but regular events such as monsoons can prevent growth of warm anomalies but can be disturbed by climate patterns such as ENSO.
	
 ADDIN EN.CITE 
[15,27,28,29,30,31]


	Coral disease
	Few studies have directly tested how disease affects bleaching sensitivity. Instead, research has focused on the effect of temperature on pathogen virulence, how disease outbreaks follow bleaching episodes (suggesting corals are more susceptible), and how disease might become more common as climate change continues. 
	
 ADDIN EN.CITE 
[32,33,34,35,36,37]


	Nutrient pollution
	Field and experimental evidence suggests that nutrient pollution can reduce coral reef resistance to stress, but differences have been observed based on coral species, morphology, type of nutrient, level of nutrients and local context.
	
 ADDIN EN.CITE 
[38,39,40,41,42]


	Coral diversity
	Coral diversity may increase resistance, but this likely depends on the species composition and their species-specific sensitivities or tolerances to disturbance. Overall, the association between diversity and resistance remains unclear. 
	
 ADDIN EN.CITE 
[43,44,45]


	Sedimentation
	The effects of increased sediments on corals, widely studied in both classical recent literatures are linked to resistance properties of corals. In synergy with SST, increased sediment and nutrients have been shown to decrease the thermal tolerance of corals causing bleaching during marginal increase in SST. 
	
 ADDIN EN.CITE 
[39,41,46,47,48,49]


	Anthropogenic physical impacts
	Several studies have illustrated that there is a strong negative relationship between anthropogenic physical impacts (especially reef trampling and/or diving, ship groundings and coral mining/dredging) to coral reefs and their ability to resist stressors.  Physical destruction may not kill coral colonies entirely, but even partial mortality and weakening increases susceptibility to thermally induced coral bleaching, disease outbreak or and reduce the reproductive potential of individuals.  However, the degree of resistance exhibited by coral reefs or colonies may be dependent on the scale and frequency of the disturbance. 
	
 ADDIN EN.CITE 
[50,51,52,53]


	Habitat complexity
	There is little evidence for habitat complexity per se conferring resistance. More complex habitats may have physical factors that enhance water movement and flush toxins. 
	54[]


	Upwelling
	Upwelling can reduce thermal stress during bleaching episodes and buffer stress through higher heterotrophy. However, upwelling does not always occur at the time of year when temperature anomalies occur.  A potential negative impact is the advection water with low aragonite saturation.  
	55[,56]


	Topographic complexity
	Small-scale topographic complexity on a reef results in self-shading, cooling or shading that can reduce light stress during the long still hot periods that often precede the high temperatures that can cause bleaching. More resistance is conferred upon sites that are topographically complex
	17[]


	Size class distribution
	There is little scientific evidence that the evenness across coral-colony size classes increases resistance to environmental stress. Yet, colony mortality is less frequent for large colonies than for small colonies and, within a given coral species, small encrusting juvenile colonies show more resistance to thermal stress than mature colonies.  Moreover, the presence of large colonies on a reef shows that they have resisted stress events in the past 
	
 ADDIN EN.CITE 
[1,57,58,59,60,61]


	Fishing pressure
	The ability to definitively link fishing pressure and resistance is difficult, due to the indirect impact of fishing pressure on corals and problems quantifying fishing pressure. 
	
 ADDIN EN.CITE 
[62,63,64]


	Herbivore diversity
	Functional diversity within the herbivore guild may enhance coral resistance but there is little direct evidence for this.
	65[,66]


	Mature colonies
	Low evidence rating and high relative variance indicate a weak indicator, with opposing evidence depending on the type of disturbance.  During storms, mature larger colonies are mechanically stronger or more likely to remain as remnants, which provide a basis for recovery.  Bleaching causes a reduction of mean colony size, which supports the notion that larger colonies have higher mortality or are broken up into smaller colonies, indicating a negative relationship.
	
 ADDIN EN.CITE 
[4,67,68,69]


	Proximity of other habitats
	Low evidence and high variance in the rating indicate a debatable indicator that depends on how other habitats are defined.  Where other habitats are seagrass and mangroves, they prevent sediment from reaching a reef, thus reducing external stressors that smother corals, thus enhancing resistance.  Coastal proximity and thus higher turbidity, however could protect corals from direct radiation.
	
 ADDIN EN.CITE 
[70,71,72,73]


	Herbivore biomass
	No clear evidence the herbivory increases resistance. It is possible that reduced algal competition might help corals withstand other stressors but no clear evidence.
	
 ADDIN EN.CITE 
[74,75]


	Physical impacts
	Storms/high wave energy may actually be beneficial in reducing coral bleaching. Majority of studies did not specifically address the effects of storm damage on coral bleaching resistance and recovery, other than commenting generally about the potentially additive stress of storms but hurricanes can reduce water temperatures and reduce thermal stress. 
	
 ADDIN EN.CITE 
[57,76,77,78,79]


	Water mixing (weather)
	Weather events on several scales can reduce temperatures or change light reaching corals, helping corals resist thermal stress.  However, weather is unpredictable at climate change scales, preventing an analysis of the patterns of change and potential protection they may bring.  Even if cyclones increase in some way, their impact on reefs is largely driven by storm tracks that are unpredictable beyond a few days.
	
 ADDIN EN.CITE 
[25,27,29,78,80,81,82,83,84,85]


	Macroalgae
	The impact of macroalgae on resistance is not clear though potential factors are generally negative. Factors can work to counteract one another. For example, macroalgae can reduce growth rates, shade can reduce bleaching, and disease transmission from algae can divert coral resources.
	54[,86]


	Recruitment
	Mixed evidence surrounds the thermal sensitivity of coral recruits and small size classes, compared to larger corals, with some evidence suggesting small corals bleach more severely, while a great number of studies suggest coral recruits and small size classes are more resistant to bleaching and mortality. 
	
 ADDIN EN.CITE 
[58,67,87,88]


	Coral cover
	Perceived to be weakly important but reviews of coral cover and resistance to disturbance usually show no correlation. This most likely due to two factors: high coral cover often includes a higher proportion of more susceptible taxa, and sites with high coral cover often suffer a larger percentage loss with disturbance.
	
 ADDIN EN.CITE 
[77,80,89,90]


	Bioerosion
	There is little evidence linking bioerosion to resistance to disturbances but it could reduce the strength of the carbonate framework. 
	
 ADDIN EN.CITE 
[91,92,93,94]


	Population explosions, exotics and invasive species
	There is some evidence that coral predators, such as Acanthasterplanci, may cause preferential mortality of thermally sensitive corals, leading to survivorship and dominance of thermally resistant taxa. Some ecological theory suggests that higher diversity communities may be more resistant to invasion (therefore presence of invasive species may indicate a compromised community), but this is contested and poorly tested on coral reefs.
	95[,96]


	Connectivity
	There is no real basis for connectivity enhancing resistant, other than the potential supply of resistant taxa. However, effectively quantifying connectivity, is challenging
	44[]


	Rapidly growing species
	Trade-off theory suggests physiological tradeoffs between rapid growth and resistance to environmental stress. Resistance and growth rate are often inversely related. For example, corals with a capacity to rapidly grow are more susceptible to environmental stress, whereas corals that do not have the capacity to rapidly grow are generally more resistant to environmental stress. 
	
 ADDIN EN.CITE 
[1,97,98]


	Coral growth rates
	There is some indirect evidence through lack of visual stress banding that corals with higher long-term mean extension rates coupled with lower levels of chronic stress may have resisted past bleaching events, however this has not yet been confirmed with paired field observations of individual corals. As coral growth rates exhibit complex responses to local stressors direct measurements of local stressors would likely be more predictive.
	99[,100]


	Crustose coralline algae
	There is little evidence linking CCA with resistance to disturbance of corals.  
	101[]


	Substrate suitability
	There is no evidence that substrate suitability enhances resistance, though it is correlated with other perceived resistance factors, including the presence of grazers and low macroalgal density.
	86[]
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