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Supplemental Materials and Methods
High-throughput siRNA screen. The siRNA library used for the primary siRNA screen (Ambion Silencer Extended druggable genome library V3) contains a total of 27306 siRNAs to target a specific subset of 9,102 human genes (listed in Table S2A and B), with three independent siRNAs per gene. Production of 384- (primary screen) and 96-well plates (validation screen) for solid-phase reverse transfection has been described earlier 


[1] ADDIN REFMGR.CITE . In brief, to prepare 384-well plates 3 μl OptiMEM (supplemented with 0.4 M sucrose), 3.5 μl Lipofectamine 2000 (Invitrogen, Darmstadt, Germany) and 5 μl of the respective siRNA stock solution (30 μM) were mixed using an automated liquid handler (Microlab STAR, Hamilton, Martinsried, Germany) in 384-well low-volume plates (Nalge Nunc International) and incubated for 30 min at RT. Afterwards, 7.25 μl of a 0.2% (w/v) gelatin solution containing 0.01% (v/v) fibronectin was added and 18 μl of the mix was diluted in 180 μl ddH2O. Five μl of the transfection mix was pipetted into each well of a white μclear 384-well plate (Greiner Bio-One, Frickenhausen, Germany) and dried in a centrifugal evaporator (Genevac Mivac Quattro, Thermo-Fisher, Schwerte, Germany). For the validation siRNA screen, 96-well plates were prepared in the analogous way with minor modifications. Briefly. 2.38 μl OptiMEM (supplemented with 0.4 M sucrose), 0.87 μl Lipofectamine 2000 (Invitrogen, Darmstadt, Germany)  and 2.5 μl of the respective siRNA stock solution (15 μM, ONTARGETplus, Dharmacon, Schwerte, Germany) were mixed using an automated liquid handler (Microlab STAR, Hamilton, Martinsried, Germany) in 384-well low-volume plates (Nalge Nunc International) and incubated for 30 min at RT. Afterwards, 3.625 μl of a 0.2% (w/v) gelatine solution containing 0.01% (v/v) fibronectin was added and 9 μl of the resulting mix was diluted in 450 μl ddH2O. Fifty μl of the transfection mix was pipetted into each well of a white μclear 96-well plate (Greiner Bio-One, Frickenhausen, Germany) and dried in a centrifugal evaporator (Genevac Mivac Quattro).

Cell seeding, infection and reinfection. For the primary screen 1.5 x 103 Huh7.5 FLuc cells were seeded per siRNA-coated well of a 384-well plate in a volume of 30 µl. For the validation siRNA screen, 5 x 103 Huh7.5 FLuc cells were seeded per well of a siRNA-coated 96-well plate in a volume of 200 µl. After 42 h cells were infected with the JcR2a using a MOI of ~1 TCID50/cell and medium was exchanged 24 h later. Forty-eight hours post infection cells were washed once with PBS, lysed in luciferase lysis buffer using 20 µl per well of a 384-well plate or 30 µl per well in case of a 96-well plate, respectively. To determine infectivity titers in supernatants of primary infected cells, naïve Huh7.5 FLuc cells were inoculated with culture supernatants, thus allowing identification of host cell factors involved in HCV assembly and release. Seventy-two hours later, viral replication was quantified by Renilla luciferase assay. Cytotoxicity was monitored by measuring Firefly luciferase activity. The primary screen was repeated three times; the validation screen four times.

Statistical analysis of the screen. Data were normalized in R/Bioconductor using the RNAither package [2]. After exclusion of lowest and highest 5% of wells based on cell counts, signal intensities were normalized for cell count effects using locally weighted scatterplot smoothing. We then performed within-plate and between-plate normalization using the Bscore method as implemented in RNAither for the primary screen, using the full screen as a quasi-negative control, and by zscore-normalization using the median and median absolute deviation of the negative controls as reference for the validation screens. Replicates were summarized using the mean. Hits were defined based on a score threshold of +/- 2 for at least two siRNAs per gene. 
Bioinformatic resources. Cellular factors were extracted from the respective publications 


 ADDIN EN.CITE.DATA 


[3–21] ADDIN REFMGR.CITE . Human protein-protein interactions were taken from iRefIndex [22], which consolidates data from the Biomolecular Interaction Network Database (BIND) 


[23] ADDIN REFMGR.CITE , BioGRID 


[24] ADDIN REFMGR.CITE , CORUM 


[25] ADDIN REFMGR.CITE , the Database of Interacting Proteins (DIP) [26], the Human Protein Reference Database (HPRD) 


[27] ADDIN REFMGR.CITE , InnateDB 


[28] ADDIN REFMGR.CITE , IntAct 


[29] ADDIN REFMGR.CITE , MatrixDB [30], the MIPS mammalian protein-protein interaction database 


[31] ADDIN REFMGR.CITE  and the Molecular INTeraction database (MINT) [32]. Protein complexes and predicted protein interactions were excluded. Interactions between human and HCV proteins were taken from 


[33] ADDIN REFMGR.CITE . Functional protein annotations of the categories biological process (BP), molecular  function (MF) and cellular component (CC) were retrieved from the Gene Ontology (GO) [34] version 2013.06. UniProtKB keywords were obtained via DAVID v6.7 [35]. 

For all computational analyses, the various protein and gene identifiers were unified to NCBI gene identifiers. Entries without a valid gene mapping were excluded, entries with multiple mappings were merged. GO biological process enrichments were computed with TopGO [36], version 2.12 that is bundled to Bioconductor 2.12, using a LEA score < 0.001 as significance treshold. Network visualizations were created in Cytoscape [37].
Bioinformatic analysis. To reveal cellular processes critically involved in the HCV life cycle, we performed an integrative computational analysis. We first identified cellular interaction partners of our confirmed hits that were described in other HCV siRNA screens (Figure 2 and Table S1F). This extended pool of host factors was analyzed for significantly over-represented GO biological processes (Table S1D). In this way we identified intracellular protein transport pathways such as the COP-I system as one of the most prominent pathways involved in the HCV life cycle, which is consistent with an earlier siRNA-based study 


[4] ADDIN REFMGR.CITE . Additionally enriched factors included the epidermal growth factor receptor signaling pathway consistent with its role in HCV entry 


[38] ADDIN REFMGR.CITE , signal recognition particle receptor-dependent transport and signal peptide processing (reviewed in [39]) or the LDL-pathway, consistent with the tight link of HCV assembly with intracellular lipid synthesis and storage systems 


[40] ADDIN REFMGR.CITE .
Meta-analysis of HCV relevant host cell factors. The following data sources were implemented into the meta-analysis: i) HCV siRNA screens with genome-wide or selected siRNA libraries 


 ADDIN EN.CITE.DATA 


[3–8,10–21] ADDIN REFMGR.CITE ; ii) genome-wide high-throughput yeast-two hybrid protein interaction study 


[33] ADDIN REFMGR.CITE ; iii) comparative analysis of the proteome of crude replication complexes (CRCs) i.e. membrane preparations containing active HCV replicase complexes (host cell factor enrichment in CRC preparations relative to identical membrane preparations from naïve cells, and the resistance of CRC-associated host cell factors to proteinase K digestion 


[41–43] ADDIN REFMGR.CITE , data sets generated in our laboratory); iv) comparative transcriptome analyses between  naïve Huh7 cells and  low / highly permissive Huh7 cells 


[44,45] ADDIN REFMGR.CITE  (assuming that the latter express higher amounts of HCV-specific HDFs) and of mouse hepatocytic cells (Hep56.1D) or human HuH6 cells with or without a subgenomic HCV replicon 


[46,47] ADDIN REFMGR.CITE  (assuming that host factors of relevance for HCV might be expressed differentially in the presence of replicons); v) our own primary HCV siRNA primary screen. 
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