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Abstract

Sequence diagrams belong to the most commonly used types of UML diagrams. There
is research on desirable aesthetics, but to our knowledge no published layout algorithms,
although several have been developed. This might be due to the rigid specification of
sequence diagrams that seems to make laying them out quite easy. However, as we argue
here, naive algorithms do not always produce desirable solutions.

We present a layout algorithm that can compute the order of lifelines according to
different optimization criteria. We also look at the problem of diagram size by intro-
ducing vertical compaction to sequence diagrams and by applying label management
to compact them horizontally. We evaluate our methods with 50 real-world sequence
diagrams.



1 Introduction

Sequence diagrams, a type of diagram defined by the Unified Modeling Language (UML),
specify an interaction between a number of entities. At their most basic, sequence
diagrams consist of lifelines that each represent an entity and are connected by arrows
which represent the exchange of a message. The order of messages at each lifeline is
meaningful: if a message a connects to a given lifeline above a message b, a temporally
occurs before b.

In a study on the use of UML among 50 professional software developers [11], Petre
found sequence diagrams to be among the top three most commonly used diagrams
(along with activity diagrams and, of course, class diagrams), making them interesting
objects to study. In this report, we will look at automatic layout of sequence diagrams,
a topic which has received little research attention.

1.1 Contributions

We will present and evaluate an automatic layout algorithm for sequence diagrams which
focusses on the following problems:

e Height. As the number of messages in an interaction increases, sequence diagrams
grow taller. We present vertical compaction as a means to decrease their height
by allowing messages to share y coordinates.

e Width. Not just the number of lifelines affects a diagram’s width, the labels of
messages do so as well. If we want to avoid impairing legibility due to lifelines
that cross message labels, these need to fit into the space between lifelines, quite
possibly pushing them apart. This problem is severe enough for companies to have
developed guidelines for technical writers on how to draw sequence diagrams that
fit into the available space [2]. We apply label management, first introduced in
the context of another visual language [15], to sequence diagrams to improve this
situation.

e Lifeline order. The order of lifelines affects the flow of communication through
the diagram and the number of crossings between messages and lifelines. We build
upon concepts introduced by Poranen et al. [13] to have the layout algorithm
compute an order based on different criteria.

The scope of this paper is limited to what we believe are the most frequently used
features of UML diagrams. Adding more features, however, would be straightforward.



1.2 Related Work

As opposed to class diagrams, sequence diagrams have received comparatively little
research attention. A paper by Wong and Sun [17] on desirable aesthetics of class and
sequence diagrams is a case in point: while the authors reference four papers just on the
layout of class diagrams, sequence diagrams are represented only by two papers [2, 13]
which do not even describe layout algorithms, but merely general aesthetics. One reason
for this situation might be that compared to class diagrams, sequence diagrams offer
rather less freedom when it comes to their layout.

In fact, layout algorithms have been developed, but we are not aware of any hav-
ing been published. Bennett et al. [1] have implemented a sequence diagram viewer as
part of a tool used in a study. They did not, however, describe their layout algorithm.
There are several sequence diagram editors available that turn specifications based on
a domain-specific languages into diagrams. Examples are Quick Sequence Diagram Edi-
tor,! WebSequenceDiagrams,? and SequenceDiagram.org.® Again, details on their layout
algorithms have not been published, but experiments showed that none change the order
of lifelines to optimize for any aesthetic criteria, or allow messages to share vertical co-
ordinates to reduce the height of the diagram. Both are features of our layout algorithm
that we describe in chapter 3.

Poranen et al. [13] describe and partly formalize aesthetic criteria they believe to be
desirable for the layout of sequence diagrams. Wong and Sun [17] pick up on those
criteria and justify them with principles from perceptual theories. We will introduce the
relevant criteria in Sec. 2.1.1.

Label management, first proposed by Fuhrmann [4], has since been successfully in-
tegrated into another visual language based on node-link diagrams [15]. Here, we will
integrate it into sequence diagrams, which exhibit other characteristics and thus make
for a valuable additional case study.

1.3 Outline

This paper is structured as follows. We start by explaining the foundations of sequence
diagrams and label management in chapter 2. We then describe our layout algorithm
in chapter 3, followed by the integration of label management in chapter 4. After an
evaluation in chapter 5, we conclude in chapter 6.

'http://sdedit.sourceforge.net/
’https://www.websequencediagrams.com/
3https://sequencediagram.org/
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2 Foundations

This chapter will introduce the foundations necessary to understand the rest of this
report: sequence diagrams (along with their aesthetics) and label management.

2.1 Sequence Diagrams

The UML distinguishes two types of diagrams [9]: structure diagrams and behavior di-
agrams. Sequence diagrams belong to a sub-group of the latter type called interaction
diagrams that describe the communication between parts of a system, each focusing on
different aspects. Sequence diagrams focus on the messages exchanged between com-
municating parties as part of an interaction between them. In a study performed by
Petre [12], sequence diagrams were among the three types of UML diagrams most com-
monly used by professional software developers.

Figure 2.1 shows a simple sequence diagram while Figure 2.2 shows a more compre-
hensive overview of some of the elements available in sequence diagrams. The frame
around it represents the interaction described by the diagram. Inside the frame is a
series of vertical lines with individual headings called [lifelines, one for each of the in-
teraction’s participants. The lifelines are connected by arrows that represent messages
being exchanged; in the realm of object-oriented languages, these might for example be
method calls. We say that a message that leaves or arrives at a lifeline is incident to
that lifeline. Lifelines can be created and destroyed by messages, just like objects can be
created and destroyed during the execution of, say, a Java program. Usually, whenever
a lifeline is “busy” sending and receiving messages, this is interpreted as specifying a
particular execution of whatever the lifeline represents, for example the execution of a
method on an object. Such ezecution specifications are visualized by drawing a box
along the lifeline starting at the first and ending at the last message involved. Execution
specifications can be nested.

A sequence diagram can include two kinds of hierarchy. First, it can reference in-
teractions specified in other sequence diagrams. This is called interaction use and is
visualized by drawing a box across the involved lifelines. Second, combined fragments
(or simply fragments) bundle a set of messages to be operands to a specified operator.
For example, a given exchange of messages can be surrounded by a loop fragment to
emphasize that it should be executed repeatedly. Combined fragments are visualized by
drawing a box around the involved messages that mentions the operator in the top left
corner. If the operator requires more than a single set of messages to operate on, the
box is divided into different regions by dashed horizontal lines.

Sequence diagrams make use of text in several ways. First, every graphical element
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Figure 2.1: A simple example of a UML sequence diagram.
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Figure 2.2: The different elements of a sequence diagram. The full specification includes yet
more elements, but we constrain ourselves to this subset. Comments are not part of
the official specification, but are included in virtually any sequence diagram editor.



has a label to provide necessary details. This includes headings for lifelines and message
labels. Both can contribute to a sequence diagram’s width, but message labels can have
the additional problem of crossing other lifelines, which reduces their legibility. While
not strictly part of the specification, sequence diagram editors usually also allow users
to add comments to their diagrams which can either be free floating or be connected to
specific elements.

Software for drawing sequence diagrams comes in two flavors: drag and drop editors
(a popular example from the Eclipse world being the Papyrus' project), and textual
editors based on custom Domain Specific Languages (DSLs) with a synthesized graphical
view (WebSequenceDiagrams and SequenceDiagram.org for the browser, Quick Sequence
Diagram Editor for the desktop).

Drag and drop sequence diagram editors have an interesting problem to solve: due
to the comparatively rigid visual structure of the diagrams, they cannot allow users too
much freedom in placing their elements. For example, they will usually want to ensure
that lifelines are placed next to each other, along a horizontal line. This can blur the
distinction between drag and drop editing and automatic layout: if the editing operations
are constrained enough, they will assume much of the functionality that automatic layout
would provide. Constraining them to this level, however, carries with it the danger of
making the editor harder to understand for users by prohibiting operations they might
expect to be possible based on their experience with other editors.

To implement and test concepts proposed in this report, we have developed a tex-
tual editing environment that uses a new DSL called KIELER Sequence Diagram Lan-
guage (KieSL), shown in Figure 2.3. The textual editor provides many features today’s
users would expect, such as syntax highlighting and content assist. In addition, the
automatically updated graphical view can serve as a navigation aid in that clicking on
an element reveals its definition in the text. The editing environment is available as part
of the Open KIELER project.?

2.1.1 Aesthetics

Since sequence diagrams look entirely different than standard node-link diagrams, com-
monly accepted aesthetic criteria differ in applicability, as noted by Poranen et al. [13].
Edge crossings, for instance, should not be regarded as being just that, crossings between
two edges, but as crossings between messages and lifelines. As per the UML standard [9],
edges are always straight and are usually drawn horizontally. The length of an edge is
closely related to the number of lifelines it crosses. A sequence diagram’s size and aspect
ratio are mostly functions of its structure, but its height in particular can be variable,
as we shall see in chapter 3 (in this point we disagree with Poranen et al., who consider
the size of a sequence diagram to follow entirely from its structure).

It is not just that existing aesthetic criteria must be adapted to sequence diagrams
or do not apply in the first place, it is also that additional criteria may be called for.

'https://eclipse.org/papyrus
Zhttps://github.com/OpenKieler
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Figure 2.3: The sequence diagram from Figure 2.1 being edited in our sequence diagram editing
environment. Sequence diagrams are defined through the textual KieSL language
in the text editor to the left. Right next to it is the graphical view that shows
the corresponding diagram, with the sidebar to the right allowing users to switch
between different display options.

Poranen et al. introduce three such criteria: subset separation, the number of long edges,
and slidability (which they call sliding).

Subset separation prefers the set of lifelines to be partitioned into subsets placed next
to each other such that most messages connect lifelines that are part of the same subset.
This is similar to the Gestalt principle of proximity, which layout methods such as the
force-directed approach are naturally good at, at least provided that many edges run
inside the subsets and only few between.

Minimizing the number of long edges is one way that optimizing for the common edge
length criterion can be interpreted. It thus seems debatable whether this is really a new
aesthetic specific to sequence diagrams.

The opposite is true for slidability. To get an idea of this criterion, imagine browsing
through a sequence diagram zoomed in enough for it to not fit on the screen anymore.
Reading the diagram requires the viewport to be moved downwards. Slidability is max-
imized if the end points of all messages visible in the viewport are themselves visible
in the viewport as well. If this is not the case for all messages, the viewport needs
to be moved sideways to see which lifelines a message connects. In a way, slidability is
negatively correlated with the number of times the viewport needs to be moved sideways.

One last, but important aesthetic is one which Poranen et al. even elevate to a con-
straint each sequence diagram must satisfy: the starting object criterion, which requires
that the lifeline which initiates the interaction be the leftmost lifeline in the sequence
diagram.



2.1.2 Label Management

Too much text in a diagram has two effects: first, it increases the width of a diagram to
a point where, if it is supposed to be drawn on screen in its entirety, it needs to be scaled
down too much to be readable; and second, it puts much information on screen that may
not actually be relevant to the viewer at a given moment. Label management [15] solves
this through label management strategies that take the original text and shorten or wrap
it, optionally taking a desired target width into account. The latter can be provided by
automatic layout algorithms since they know how long a label can be before it starts
affecting the size of the diagram by pushing other elements apart.

Label management ties into the well-known model-view-controller paradigm [14] in
that it is a solution that only affects the view, not the underlying model. Regarding the
decision of whether to shorten a label or to leave it as is, focus and context is an important
concept [3]. Herein, the diagram elements are divided into the set of elements the user
is currently focussing on (which should probably be left untouched) and surrounding
elements that provide context (which may well have their details reduced).



3 Laying Out Sequence Diagrams

Due to the rigorous visual structure of sequence diagrams it may seem that they do not
make for a particularly interesting layout problem. After all, the order of messages is
fixed within each lifeline, and the lifelines themselves are simply placed next to each
other along a horizontal line. However, the order of lifelines is free and determines
the number of crossings between messages and lifelines. Also, the exact coordinates of
message end points, while constrained, is not fixed and can impact readability. Our
layout algorithm aims to capitalize on these degrees of freedom.

In accordance with the vertical distance constraint defined by Poranen et al. [13], we
divide the diagram into horizontal communication lines, a configurable amount of space
apart, and restrict messages to run along these lines only. We allow messages to share
a communication line, in contrast to other sequence diagram tools—at least ones based
on automatic layout—which usually assign each message to its own communication line,
ordered by their appearance in the original diagram (or a textual description thereof).
This of course results in higher drawings, whereas allowing messages to share commu-
nication lines gives us more freedom to optimize the diagram’s height. This is what we
refer to as wvertical compaction, which we allow to be switched on or off.

Our algorithm is structured into five phases, each with clearly defined responsibilities:

1. Lifeline ordering

2. Space allocation

3. Cycle Breaking

4. Communication line assignment
5. Coordinate assignment

The following sections will describe each phase.

3.1 Phase 1: Lifeline Ordering

The algorithm starts out by tackling what it has the most control over: determining
the order of lifelines. It provides three different ordering strategies: interactive order,
communication line order, and short message order. The results produced for an example
diagram are shown in Figure 3.1.

The latter two strategies require further information about the vertical order of mes-
sages, which is why the first phase begins by calculating an element ordering graph.
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der

Figure 3.1: The results produced by different lifeline ordering strategies. The interactive order
corresponds to the original order as fed to the layout algorithm.

Therein, each message is represented by a node and an edge runs from node x to node
y if the following conditions are met:

1. There is a lifeline both messages are incident to.

2. The message represented by x immediately precedes the messages represented by
y on that lifeline.

We call this an element ordering constraint, and it must be adhered to in the final layout
by assigning the involved messages to different communication lines.

If vertical compaction is disabled, further constraints are added to the graph to en-
sure that each message is assigned its own communication line. We order the messages
by their vertical coordinates and introduce a constraint between each pair of adjacent
messages, unless one already exists. Note that the coordinates are used only to estab-
lish an order among the messages and thus need not be based on any kind of existing
drawing of the sequence diagram. For a diagram based on a textual language, it may
for example be enough to simply use the line number a message was defined in as its
vertical coordinate.

3.1.1 Interactive Order

The simplest of the three ordering strategies, this one simply adopts the lifeline order
from an input graph.

3.1.2 Communication Line Order

The idea of this strategy is to order lifelines in a way that makes following the communi-
cation through the diagram as easy as possible. The main loop in Figure 3.2 runs until all
lifelines are placed. Each iteration starts with a call to the findUppermostMessage(. . .)
function (line 1). Among the outgoing messages of all unprocessed lifelines, it computes



Input: lifelines, the set of lifelines to be ordered
Output: Ordered list of lifelines

result < empty list

while lifelines # () do
msg « findUppermostMessage(lifelines)

if msg is undefined then

Add lifelines to result in arbitrary order
lifelines < ()

else

Remove source(msg) from lifelines

Add source(msg) to result

repeat

if target(msg) € lifelines then
Remove target(msg) from lifelines
Add target(msg) to result

end

msg < findUppermostOutgoingMessage(target(msg), lifelines)
until msg is undefined

end

end

return result

Figure 3.2: The communication line lifeline ordering strategy.

the subset of messages whose corresponding nodes have no predecessor in the element or-
dering graph. Of this subset it returns the message whose source lifeline has the biggest
difference of outgoing message count minus incoming message count, the idea being to
have lifelines with lots of outgoing messages move to the left of the diagram. If there is
no outgoing message left among the unprocessed lifelines, we add the remaining lifelines
to our result in an arbitrary order (lines 1 to 1).

If we did find an uppermost message, we add its source lifeline to the end of our list
(lines 1 and 1). If the message’s target lifeline has not been placed yet, we do so (lines 1
to 1) and then proceed to find the uppermost message that connects it to a lifeline that
has not been placed yet by calling the findUppermostOutgoingMessage(. ..) function
(line 1).

To take the diagram in Fig. 3.1a as an example, we would start with all three lifelines
unprocessed. The algorithm would find that msgA is the uppermost message and would
thus add [l3 to the as yet empty list of lifelines. It would then proceed to add the
message’s target, 12, to the list as well and look for its uppermost outgoing message
that is headed for an unprocessed lifeline. It finds msgB and adds [l1 to the list, at
which point the result is the one shown in Fig. 3.1b.

The results produced by this algorithm adhere to the starting object constraint which

10



requires the lifeline that initiates the interaction to be the leftmost one. Their criterion of
slidability should not be confused with our goal here. While layouts with good slidability
lend themselves well to being browsed through from top to bottom with only occasional
horizontal shifts, the layouts produced by our algorithm will generally tend to be browsed
through from left to right.

3.1.3 Short Message Order

None of the preceding algorithms minimizes the length of messages or the crossings
they cause. The culprits in our example diagram are the three bottommost messages,
which in both layouts so far span the whole diagram. Besides the message length itself,
longer messages quite obviously also produce more crossings with lifelines [13], which
may harm readability. The third and final algorithm thus aims to optimize for message
length. Doing so, however, turns out to be a hard problem.

Let L be a set of n € N lifelines and let m({y,l3) be the number of messages from [;
to Iy or vice versa for [y # Iy € L (zero for I; = ly). What we are looking for in our
quest to order the lifelines is a bijective assignment £: L — {1,...,n}. The length of a
message that connects l; and [y is exactly |£(l;) — £(l3)|, and the number of crossings
it produces is [L(l;) — L(lo)] — 1.

Poranen et al. list two different goals one might want to optimize for [13]:

e The first would be to minimize the weighted sum of the length of all messages:

> mll ) - 1L(0h) = £(b)].

{la,12}CL

This is a weighted version of the linear arrangement problem, which is NP-complete
already in the unweighted case [6].

e The second would be to minimize the length of the longest message. This is
equivalent to the bandwidth minimization problem, shown to be NP-complete by
Papadimitriou [10].

We accept a few long edges to gain mostly short edges and thus optimize for the first
goal. Our implementation is based on an algorithm proposed by McAllister [8], which,
like many algorithms for bandwidth minimization, is split into two phases:

1. Selecting a start lifeline. This will end up being the leftmost lifeline in the diagram.
2. ITteratively selecting lifelines for the remaining n — 1 slots.

We make two adjustments to McAllister’s algorithm to adapt it to the requirements
of sequence diagram layout. First, we select the start lifeline as we did with the com-
munication line order algorithm to have the leftmost lifeline be the one that starts the
interaction. And second, we introduce an option to increase the weight of messages that
are contained in combined fragments. The algorithm then tries harder to keep such
messages short, resulting in smaller fragments.

11



Figure 3.3: A diagram with the element ordering graph produced by the algorithm’s second
phase. Note how the successor constraint from msgC to msgD was broken to
reserve space for the comment.

3.2 Phase 2: Space Allocation

The algorithm will soon use the element ordering graph to assign messages to commu-
nication lines such that no two messages with direct or transitive ordering constraints
end up on the same communication line. To comply with the vertical distance con-
straint, communication lines will later be placed a uniform distance apart. To ensure
that diagram elements that are not messages will have enough space available for their
placement, Phase 2 inserts nodes into the element ordering graph to reserve space for
them. The set of affected elements includes comments as well as headers of combined
fragments.

Figure 3.3 shows a diagram with its element ordering graph overlaid. Note that
the comment is so tall that it requires two communication lines of space, and is thus
represented by two nodes in the graph.

Unless vertical compaction is switched off, there is yet another problem to be solved.
Consider the sequence diagram in Figure 3.4. Without further provisions the layout
algorithm may end up moving msgD into the combined fragment, since the element
ordering graph does not prevent it from doing so.

Before we solve this problem we define two kinds of nodes in the element ordering
graph. The lowermost nodes of a fragment are nodes that represent messages of the
fragment that have no successors in the ordering graph that represent messages of the

12
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Figure 3.4: Without further precautions, the ordering constraints placed on msgD would allow
it to creep into the combined fragment, sharing a communication line with msgC.

same fragment. In the example, the node that represents msgC' is a lowermost node.
Note that however large the fragment becomes, one of its lowermost nodes will always
mark its bottom boundary.

The second concept we need is that of fragment successor nodes: nodes that represent
messages not part of a given fragment, but that have at least one predecessor which is.
In the example, both msgD and msgFE are fragment successor nodes, but msgF is not.

To solve our original problem, we introduce additional ordering constraints from all
lowermost nodes to all fragment successor nodes. In a way, we force the algorithm to
keep the messages that follow the fragment from creeping past those messages that will
later determine the fragment’s lower boundary.

Similar problems arise above a fragment. First, the fragment predecessor nodes must
be kept from creeping past the fragment’s upper boundary. And second, the fragment’s
uppermost nodes must not enter the fragment’s header area. Both problems are solved by
introducing additional successor constraints from the predecessor nodes to the dummy
node that represents the fragment’s header area, and from said dummy node to the
fragment’s uppermost nodes.

3.2.1 Phase 3: Cycle Breaking

The element ordering graph created by the preceding phase captures message ordering
constraints that need to be met once messages are assigned to communication lines. For
this to be possible, the graph needs to be acyclic. At first, this does not seem to be a
problem, but there are valid sequence diagrams that violate this requirement, such as
the one in Figure 3.5a, which results in the element ordering graph shown in Figure 3.5b.
While it certainly seems debatable whether such a diagram makes sense, the fact is that
such states can arise while users are in the process of building a sequence diagram, and
thus need to be supported by the layout algorithm.

13
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Figure 3.5:

The algorithm needs to be able to handle diagrams with cyclic element ordering
graphs. (a) A sequence diagram with non-horizontal messages, inspired by the
UML specification [9, Figure 17.3]. (b) Without processing, msgB causes the
graph to be cyclic. (c) The node that represents msgB is split into two nodes to
remove the cycle, each representing one of the message’s end points.
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To break a cycle, ELK Sequence splits one of its nodes, as shown in Figure 3.5¢. Since
most messages will end up being drawn horizontally, each node in the element ordering
graph usually represents both the start and the end point of its corresponding message.
Its incident edges consequently represent ordering constraints involving either the source
or the target lifeline. This is the cause for cycles in the first place. Splitting a node
makes the ordering constraints independent from one another, making it impossible for
cycles to appear.

3.3 Phase 4: Communication Line Assignment

With the first three phases completed, we now have an acyclic element ordering graph
that we can use to assign the graph’s nodes to communication lines. This problem
is equivalent to the layer assignment problem of the well-known layered approach by
Sugiyama et al. [16]. To solve it, we use the network simplex algorithm by Gansner et
al. [5] to produce results that tend to keep messages close together on each lifeline.

Similar to Phase 2, the fourth phase also has to solve an additional problem if vertical
compaction is switched on. Phase 2 introduced constraints that keep messages from
entering fragments off limits to them, but it was only able to catch those messages that it
knew for a fact would have to precede or follow a fragment. It could not, however, prevent
completely unrelated messages from wreaking havoc with the diagram’s semantics.

Consider, for example, the sequence diagram in Fig. 3.6a. It has five lifelines of which
[l2 and (I3 have no relation at all to the others, in particular not to anything contained in
the combined fragment. Fig. 3.6b shows the original assignment of the element ordering
graph’s nodes to communication lines as produced by Phase 4, including the nodes added
for fragment headers (darker nodes). Since Phase 2 completely missed the fact that msgF
and msgG must not move into the big fragment, Phase 4 produces an assignment that
would lead to an overlap of the two fragments unless we take additional steps to prevent
that from happening.

Even if Phase 2 had noticed the problem, it could not have determined which addi-
tional constraints to add: should msgF and msgG be placed above or below the larger
fragment? Such decisions can only be made once messages have been assigned to com-
munication lines and possible overlaps can be detected; in other words, it becomes the
responsibility of Phase 4.

We deal with this problem by post-processing the communication line assignment as
follows. For each combined fragment, we compute the lifelines it spans by looking for
the leftmost and for the rightmost lifeline incident to one of the fragment’s messages.
The big fragment in Fig. 3.6a, for example, spans all five lifelines whereas the smaller
fragment only spans two. We then iterate over all communication lines and keep a
list of fragments for each lifeline that are currently open (or active) there. For each
communication line, we perform four steps of computation.

15
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Figure 3.6: Correct drawing of a sequence diagram with five lifelines, of which two ({/I2 and
[13) bear no relation to the others. Its element graph originally had both areas
assigned to the same communication lines since there are no ordering constraints

between the involved nodes.
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3.3.1 Step 1

We iterate over the communication line’s nodes, looking for nodes that represent the
header of a combined fragment. Let x be such a node and f, be the fragment it rep-
resents. The fragment can begin at the current communication line if there is no other
fragment f, for which all of the following conditions are true:

e f, has already been marked as being active.
e The sets of lifelines spanned by f, and f, have a non-empty intersection.

e f, is not contained in f, and f, is not contained in f, (otherwise it would be
perfectly fine for them to overlap).

If we find no such fragment f,, f, can begin at the current communication line and is
thus marked as being active at all lifelines it spans.

Taking the ordering graph from Fig. 3.6b as an example, we would first encounter the
node that represents the header of the large fragment and mark that as active at all
lifelines. For the node that represents the smaller fragment, we would detect a conflict
with the larger fragment at lifelines [[2 and [l3 and thus refrain from activating it.

3.3.2 Step 2

We iterate over the current communication line’s nodes again, building an initially empty
list of nodes that will have to be moved to the next communication line because they
are in conflict with active fragments. If a node represents the header of a fragment that
has not been marked active by Step 1, it is added to our list. If a node represents a
message that would cross an active fragment it is not part of, that too is added to our
list.

In our example graph, the smaller fragment’s header node would be the only one
added to the list while processing the first communication line.

3.3.3 Step 3

Each node in the list computed by the previous step is moved to the next communication
line. If it has successors in the element ordering graph, that may of course invalide
the communication line assignment by placing two nodes with ordering constraints on
the same communication line. We thus allow the movement to propagate through the
following communication lines to restore the assignment’s validity.

In our example, we would move the smaller fragment’s header node to the second
communication line. Since it now shares a communication line with the node representing
msgF', we would move that to the third line, and move msgG to the fourth line for a
similar reason.
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3.3.4 Step 4

Finally, we look for active fragments that need to be deactivated. A fragment can cease
to be active once we have encountered all of its bottommost nodes.

In the example, the first time this happens is when we encounter the node that rep-
resents msgD on communication line five. This is when we mark the larger fragment as
not being active anymore, thereby allowing the smaller fragment to become active once
we process the next communication line.

3.4 Phase 5: Coordinate Assignment

With a lifeline order having been decided upon and communication lines having been
computed, the final phase computes actual coordinates for all elements of the sequence
diagram. This is rather straightforward. The bulk of the coordinate assignment process
can be divided into two stages: the vertical sweep and the horizontal sweep.

The vertical sweep iterates over the communication lines computed during the pre-
ceding phase and is only interested in those of the nodes of the element ordering graph
that represent messages. At first glance it seems that we can simply assign all of the
line’s messages a y coordinate that is a configurable amount of space below the preceding
line’s messages. In doing so, however, we might end up with overlaps between messages
with a non-empty intersection of the sets of lifelines they span. The solution of course is
to introduce the possibility for a communication line to split into several lines to avoid
message overlaps, but trying to get away with as few lines as possible. We use a simple
greedy algorithm that iterates over the communication line’s messages and splits off a
new line if a message causes overlaps in all existing lines.

The horizontal sweep primarily iterates over the lifelines and assigns x positions to
them. This is a straightforward process, yet one needs to be sure to reserve enough space
for lost and found messages, execution specifications, message labels, and comments
attached to messages. The x positions of the lifelines can not always be directly applied
to their incident messages due to the possible presence of execution specifications. After
placing these, x coordinates of incident messages need to be adjusted.

At this point we know how far to the right the lifelines extend. Any comments not
explicitly attached to diagram elements can now be placed in a column to the right of
the rightmost lifeline. Also, coordinates of combined fragments can be set according to
the messages they contain.
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4 Integrating Label Management

Sequence diagrams, prone to becoming large rather quickly [2], are a good candidate for
label management. They use labels at several points, which we will go through in order
to discuss if and how we apply label management to them.

First up is the title of a sequence diagram’s interaction. This will usually be much
shorter than the interaction’s content is wide and does not contribute a lot to the dia-
gram’s clutter. We thus exempt it from label management.

More relevant are the titles of lifelines. We believe them to be important enough,
though, for them not to be shortened. We thus exempt lifeline titles from label manage-
ment as well.

Message labels are a lot more interesting. If they are placed between the message’s
source lifeline and one of its adjacent lifelines, they influence the amount of space between
them, quickly pushing them apart and enlarging the diagram in the process. This is a
prime candidate for label management.

We allow users to switch between two label management strategies. The first is a
label management strategy which removes the arguments of method calls (semantical
abbreviation). While this seems promising for sequence diagrams that model interactions
at this level of abstraction, it will not work as well for diagrams which model, say,
communication protocols. The second strategy thus simply cuts off the label text once
it reaches the minimum amount of space available to it at the lifelines it is placed between
(syntactical abbreviation), adding an ellipsis to indicate to users that this has happened.
The amount of space is calculated by the horizontal sweep of the algorithm’s fourth
phase and supplied to label management as the target width.

Just like messages, comments can also push lifelines apart and thereby enlarge se-
quence diagrams. Unlike messages, they can even contain several lines of text. We thus
start by removing all but the first five words, followed by syntactical abbreviation to
ensure that what remains does not enlarge the diagram.

Besides offering tool tips that provide access to the original text, we can also make
good use of focus and context by only applying label management to those elements that
are part of the context and displaying focussed elements in full detail. If the user selects
a comment, only that is focussed. If they select a message, its label and any associated
comments are focussed. If they select a lifeline, any incident messages and associated
comments are focussed.

This behavior led to an interesting discovery. Imagine that the labels of the comment
and the messages in the sequence diagram shown back in Figure 2.1 were much longer
than they are in that diagram, so much so that they push the two lifelines apart. Sup-
pose further that label management is engaged, which promptly pulls the lifelines closer
together again by shortening the text of all messages and comments. Finally, suppose
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that the user selects a message. The message’s original text is restored, pushing the life-
lines apart again. While this does not come as a surprise, what can come as one is what
happens to the comment. It is not part of the focus, but the additional space available
between the lifelines may allow label management to show more of the comment’s text
as well.

When this happened during a presentation, someone in the audience commented that
they found this behavior confusing. In this case, confusion might be reduced by always
shortening a comment which is not focussed to its first few words, without the additional
syntactical abbreviation step.
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5 Evaluation

We evaluated the layout algorithm and our label management implementation with two
aesthetics-based experiments. To do so, we used 50 sequence diagrams published on
GitHub which we found among the first 5,000 items of a list of real-world UML models
published by Helbig et al. [7].! The sequence diagrams averaged 6.06 lifelines (for a total
of 303) and 16.54 messages (827). The collected data and any scripts used to conduct
the subsequent analysis are available online.?

5.1 Layout Algorithm

We wanted to answer the following questions:

1. Which effects do the lifeline ordering strategies have on the length of messages and
their crossings with lifelines?

2. Which effect does vertical compaction have on the height of sequence diagrams?

5.1.1 Lifeline Ordering Strategies

Figure 5.1a shows the mean message length in each diagram produced by the three lifeline
ordering strategies. The results look rather similar, so Figure 5.1b shows the effect of
the non-interactive strategies on message length compared to the original ordering as
determined by the diagram’s designer. As expected, short message order will usually
decrease the mean edge length in a diagram, which is true for 50% of all diagrams in
our test set, as Table 5.1 shows.

Figure 5.2a shows the number of crossings between messages and lifelines produced by
the three strategies in each diagram. The way we counted crossings, neither the source
nor the target lifeline of a message contributed to the total. In this metric, short message
order has a considerably more pronounced effect, a conclusion confirmed Figure 5.2b,
which shows the number of crossings relative to the original ordering. As Table 5.1
shows, short message ordering reduces the number of crossings in half of all diagrams.

5.1.2 Vertical Compaction

Let us turn to the second question: the influence of vertical compaction on diagram
height. Figure 5.3a shows the height of diagrams with and without vertical compaction.

'http://oss.models-db.com/
’https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/report-1804-data.zip
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Figure 5.1: The mean message length produced by different lifeline ordering strategies for each
sequence diagram, both overall and expressed as the change compared to the orig-
inal lifeline order.

Communication line order Short message order

Mean message length

Decreased 32 50
Unchanged 50 24
Increased 18 26

Message-lifeline crossings

Decreased 32 50
Unchanged 50 24
Increased 18 26

Table 5.1: Percentage of diagrams whose message length or number of message-lifeline cross-
ings have decreased, remained unchanged, or have increased subject to the lifeline
ordering algorithm.
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Figure 5.2: The sum of message-lifeline crossings produced by different lifeline ordering strate-
gies for each sequence diagram, both as absolute values and as the change compared
to the original lifeline order.
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Figure 5.3: The height of drawings with and without vertical compaction, both for all diagrams
and limited to those diagrams affected by compaction.

Both results are virtually identical, suggesting that vertical compaction does not have
much of an effect. Indeed, closer inspection revealed that it affected only 18% of dia-
grams. If we limit our evaluation on those, we get the data shown in Figure 5.3b. If
vertical compaction has a chance to do something, its influence is noticeable, as Fig-
ure 5.3¢ shows.

5.1.3 Discussion

It is hard to give final advice on how to configure ELK Sequence. As is often the case, the
question of what is the “best” configuration depends on the situation. If one associates
certain semantics with the order of lifelines, going for the short message order strategy
might not be a good idea. The communication line strategy aims at finding a helpful
order and will probably be the best choice if one does not yet have an idea of what the
final diagram should look like, as is often the case while the user is still in the process
of creating it. Since users may be irritated if the order of lifelines changes while editing,
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Figure 5.4: The mean width of sequence diagrams with different label management strategies
as well as with label management turned off.

a sensible approach may be to keep the order they chose until they request it to be
optimized.

Vertical compaction seems to be less ambivalent. While this may be different for other
diagrams, it never had a negative effect on the diagrams in our test set. This leads us
to believe that leaving it turned on will usually not be harmful.

5.2 Label Management

Every diagram was laid out once with every available label management strategy as well
as with label management switched off. We measured each diagram’s width and height
and calculated the resulting aspect ratio (width divided by height). Since one of the
goals of label management is to be able to increase the scaling a diagram is displayed
with, we also calculated for each diagram how the scaling necessary to fit it on screen
changes for each label management strategy compared to label management switched
off.

The mean scaling factor increases where rather disappointing at first (1.03 for seman-
tical abbreviation and 1.04 for syntactical abbreviation). The values do make sense,
however: quite often, sequence diagrams are dominated by their height (true for 78% of
diagrams in our data set), which dramatically reduces the impact of label management,
a technique focussed on reducing the width of diagrams.

Which impact, then, do the label management strategies have on the width of our
diagrams? Figure 5.4 shows that the impact is more dramatic here, with the mean
diagram width reduced up to almost 25%.

If label management makes narrow diagrams narrower, why use it in the first place?
First, not all diagrams are dominated by their height. And second, applying label
management allows lifelines to move closer together. This helps when zooming into a
diagram since more of it can be displayed on a screen, reducing the need for users to
pan the view by increasing slidability.
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6 Conclusions and Outlook

In this report we have demonstrated the two ways that the definition of sequence di-
agrams leaves for layout algorithms to exploit: computing the order of lifelines and
allowing messages to share y coordinates in order to reduce their height. We have also
shown how label management can be applied to reduce the width of sequence diagrams
in interactive editing and viewing scenarios. How effective the methods are depends on
the actual sequence diagram and the application. We thus believe that it is a good idea
to allow users to experiment with different settings.

We currently plan for an implementation of the algorithm we presented to be included
in the Eclipse Layout Kernel (ELK) project,! an open-source project that provides auto-
matic layout algorithms and an infrastructure to support them. Until that has happened,
preliminary versions can be made available upon request.

Regarding future work, while we have evaluated the methods in terms of their influence
on aesthetics, a user study may be interesting in order to establish how well they are
received in practice. We also think about allowing users to configure whether the space
between communication lines should be uniform or not. If it need not be, that would—
depending on the chosen distance between them—open up further avenues for vertical
compaction.

https://www.eclipse.org/elk/
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