Schlußbericht des Verbundprojekts

Multigassensor für biogene Emissionen aus der Landwirtschaft auf Basis eines Schwing-quarzarrays

Projektträger: VDI, Teltow

Projektlaufzeit: 07.1996 – 12.1999

Projektkoordination: Prof. Dr. P. Schulze Lammers

Dr. P. Boeker

Beteiligte Verbundpartner:

- Institut für Organische Chemie, Freiberg Prof. Dr. E. Weber
- Institut für Physikalische und Theoretische Chemie, Bonn Prof. Dr. J. Bargon
- Institut für Landtechnik, Bonn

Prof. Dr. P. Schulze Lammers

- HKR Sensorsysteme GmbH, München
- Möller GmbH, Golzow
- FOQ Piezo Technik GmbH, Bad Rappenau

Inhaltsverzeichnis

Endt	ericht -	– Projekt ,MULTIGAS' Fehler! Textmarke nicht defin	niert.
1 I	Kurzfas	ssung	10
2 I	Einleitu	ing und Problemstellung	11
2.1	Bed	darf der Landwirtschaft an einer kostengünstigen Schadgassensorik	11
2.2	2 Ziel	l des Verbundprojektes	12
2.3	3 Anf	forderungen an den Schadgassensor	12
2.4	Che	emische Sensorik	13
2	2.4.1	Chemische Sensorik mit der Schwingquarzwaage	14
2	2.4.2	Abschätzung von Sensor-Effekten für den Analyten 'Ammoniak'	16
2	2.4.3	Vorteile der chemischen Sensorik mit Schwingquarzwaagen	16
2.5	5 Auf	fbau des Berichts	17
3 5	Sensors	substanzen	18
3.1	Die	wichtigsten Synthesestrategien	18
3	3.1.1	Molekulare Hohlraumbildner	19
3	3.1.2	Clathratbildner, Kristalleinschluss	22
3.2	2 Die	wichtigsten Screeningergebnisse	22
3	3.2.1	Niedermolekulare Sensorsubstanzen	22
3	3.2.2	Polymere	24
3	3.2.3	Permanente Porenbildner	25
3	3.2.4	Heterocalixarene	26
3	3.2.5	Makrocyclen	27
3	3.2.6	Cryptophane	28
4 l	Univers	salprüfstand für Gasmeßgeräte	29
4.1	Gas	smischanlage	29
4	4.1.1	Erzeugung von Gasmischungen nach dem Volumenstromprinzip	29
4	4.1.2	Befeuchtung des Prüfgases	30
4	4.1.3	Massenflußregler	31
4	4.1.4	Prüfgase	33
4.2	2 Die	e 12-fach-Meßkammer	33
4.3	B Mel	ßdatenerfassungs- und Steuerungssoftware	34
4.4	l Mel	ßprozedur	35
4.5	Zus	sammenfassung	35
5 I	Beheizb	pares Array	36
5.1	Ent	wicklung eines neuartigen Schwingquarz-Arrays	36
5.2	2 Ten	nperaturmodulations (TM) - Modus	38
4	5.2.1	Theoretischer Hintergrund	38
4	5.2.2	Temperaturverhalten des beheizbaren Sensor-Arrays	39
4	5.2.3	Auswertung der Sensorsignale im TM-Modus	40
4	5.2.4	Vergleich der Ammoniakkennlinien von DM189 im TM-Modus und	d im
5	Spülgas	smodus	41
4	5.2.5	Wassersensor im TM-Modus	43

5.2.6 Signalstabilisierung mit einem Referenzquarz	44
5.3 Vorteile des TM-Modus	45
6 Entwicklung der Oszillatorelektronik	46
7 Frequenzzählerplatine	47
8 Signalauswertung	48
8.1 Das N6-Programm zur Datenerfassung	48
8.1.1 Das Fenster für den Handbetrieb	48
8.1.2 Das Fenster für den Meßbetrieb	48
8.2 Quantitative Mustererkennung: Das PLS-Verfahren	49
8.2.1 Auswahl eines geeigneten Mustererkennungsverfahrens	49
8.2.2 Quantitative Gasanalyse - Classical Least Square (CLS) Regre	ession50
8.2.3 Die Partial Least Square (PLS) Analyse	51
8.2.4 Das Programm WPLS	54
9 Das Elektro-Spray-Verfahren	54
9.1 Bedeutung des Beschichtungsverfahren für die Sensorentwicklung	g54
9.2 Funktionsweise des Elektro-Spray-Verfahrens	55
9.2.1 Aufbau der Elektro-Spray-Apparatur	55
9.3 Vorteile des Elektro-Spray-Verfahrens	56
10 Verstärkung des Sensorsignals durch Anreicherung	57
10.1 Das Prinzip der thermischen Desorption	57
10.2 Technische Realisierung der Thermodesorptionseinheit	57
10.3 Eine neue Methode zur Charakterisierung von Absorbern	59
10.3.1 Meßaufbau	59
10.3.2 Interpretation der FT-IR-Daten	
10.4 Kieselgel 60 als Absorber für Ammoniak	61
10.5 Optimierung der Kopplung zwischen Anreicherung und QMB-Sei	nsor-Array 63
10.6 Resultate nach optimierter Kopplung	63
10.7 Zusammenfassung	64
11 Meßgasaufbereitung: Auswirkung einer Kühlfalle auf die gemesser	ne Gaskonzentration
64	
11.1 Theorie zur Kondensation	65
11.2 Meßaufbau	67
11.3 Ergebnisse des Kondensationsexperiments	68
11.3.1 Ergebnisse für Methan	68
11.3.2 Ergebnisse für Ammoniak	69
11.4 Zusammenfassung der Ergebnisse des Kondensationsexperiments	70
12 Praxistest – Abgrenzung zu anderen Sensoren	70
12.1 Die verwendete Referenzanalytik	70
12.1.1 Das verwendete FT-IR Spektrometersystem	70
12.1.2 Der photoakustische Multigasmonitor	71
12.2 Die Meßbox	72
12.3 Erster Praxisversuch mit Array-externer Wasserquerkompensatio	n73
12.3.1 Meßaufbau	73

12.4 Ergebnisse des Praxistests 1	75
12.4.1 Konsequenzen für Praxistest 2	76
12.5 Zweiter Praxisversuch mit array-interner Wasserquerkompensation	76
12.6 Praxistest des TM-Modus (Praxistest 3)	79
12.7 Stabilität der Sensorsubstanzen	80
12.7.1 Off-Line-Langzeitversuch - Alterungsversuch 1	80
12.7.2 Alterungsversuch 2	81
13 Alternative Lösungsmöglichkeiten	82
13.1 Vergleichsmessung mit einem Chemowiderstand	83
13.2 Andere Ammoniaksensoren	84
13.3 Zusammenfassung der Vergleichsstudie	85
14 Integration des Sensor-Arrays in die Stallklimaregelung	86
14.1 Auswertung des Sensorsignals im Spülgasmodus	86
14.2 Programmablauf	87
14.3 Datenkommunikation über den LON-Bus	87
14.3.1 Der LON-Bus	87
14.3.2 Der RS232/LON-Konverter	88
14.3.3 Das LON-Bus-Netzwerk	88
14.3.4 Integration der Sensormeßdaten in den Regelalgorithmus	89
15 Zusammenfassung	90
16 Konsequenzen für weitere Forschungsaktivitäten	91
17 Anwendungspotentiale und Nutzbarkeit der Ergebnisse für die beteiligten KMU	92
17.1 Firma HKR Sensorsysteme	92
17.2 Firma FOQ Piezotechnik	92
17.3 Firma Möller	92
18 Angebot von Dienstleistungen der beteiligten Projektpartner	93
18.1 Institut für Landtechnik	93
18.2 Institut für Physikalische Chemie	93
18.3 Institut für Organische Chemie	93
19 Verzeichnisse	93
19.1 Verzeichnis der zitierten und weiterführenden Literatur	93
19.2 Sensorsubstanzen: Abkürzungsverzeichnis	100
20 Anhang	101
20.1 Öffentlichkeitsarbeit	101
20.2 Veröffentlichungen	
20.3 Projekttreffen	104
20.4 Informelle Arbeitsbesuche	104

Abbildungsverzeichnis

Abbildung 2.1: Allgemeines Funktionsprinzip eines chemischen Sensors
Abbildung 2.2: Funktionsprinzip eines chemischen Sensors auf Schwingquarzbasis
Abbildung 3.1: Bildung eines intramolekularen (Cavitat) und eines extramolekularen
Einschlusskomplexes (Clathrat)
Abbildung 3.2: a) Schematisierte Hohlraumstruktur und b) Molekülstruktur des
Trisäurecryptophans
Abbildung 3.3: a) Schematische Hohlraumstruktur und b) Struktur des Heterocalix[8]arens
$(R^1, R^2 = OCH_3)$
Abbildung 3.4: Molekülstruktur des Dicarbonsäuremakrocyclus
Abbildung 3.5: a) Wasserstoffbrücken-Aggregat der Carbonsäure; b) Molekülstruktur der
freien Tricarbonsäure; c) Diethylammonium-Salz der Tricarbonsäure
Abbildung 3.6: Überblick über die verwendeten Säurefunktionen. (R steht für einen
anorganischen oder organischen Rest.)23
Abbildung 3.7: Vergleich der Frequenzänderung bei Beaufschlagung der Sensorschicht mit
Ammoniak (1000 ppm) und Wasser (10.000 ppm) unter Verwendung niedermolekularer
Sensorbeschichtungen. (*) = irreversible Reaktion
Abbildung 3.8: Molekülstruktur der Polyacrylsäure
Abbildung 3.9: Vergleich der Frequenzänderung bei Beaufschlagung der Sensorschicht mit
Ammoniak (1000 ppm) und Wasser (10.000 ppm) unter Verwendung verschiedener
Polymere
Abbildung 3.10: Vergleich der Frequenzänderung bei Beaufschlagung der Sensorschicht mit
Ammoniak (1000 ppm) und Wasser (10.000 ppm) unter Nutzung von Vorstufen
permanenter Porenbildner als Sensorbeschichtung
Abbildung 3.11: Vergleich der Frequenzänderung bei Beaufschlagung der Sensorschicht mit
Ammoniak (1000 ppm) und Wasser (10.000 ppm) unter Nutzung verschieden großer
Heterocalixarene als Sensorbeschichtung
Abbildung 3.12: Vergleich der Frequenzänderung bei Beaufschlagung der Sensorschicht mit
Ammoniak (1000 ppm) und Wasser (10.000 ppm) unter Nutzung verschiedenartiger
Makrocyclen und ihrer Komplexe als Sensorbeschichtung
Abbildung 3.13: Vergleich der Frequenzänderung bei Beaufschlagung der Sensorschicht mit
Ammoniak (1000 ppm) und Wasser (10.000 ppm) unter Nutzung verschiedener
Cryptophane als Sensorbeschichtung
Abbildung 4.1: Erzeugung definierter Gaskonzentrationen nach dem Volumenstromprinzip.
Schaubild frei nach [Pic90]30
Abbildung 4.2: Gleichgewichtswasserdampfkonzentration als Funktion der
Gaskühlertemperatur bei 1013 mbar31
Abbildung 4.3: Funktionsprinzip der verwendeten Massenflußregler
Abbildung 4.4: Die Komponenten der 12-fach Meßkammer
Abbildung 4.5: Foto der 12-fach-Meßkammer. Rechts unten ist zur Veranschaulichung ein für
die Meßkammer verwendbarere Einzelquarz (Fa. FOQ Piezotechnik, Bad Rappenau)
abgebildet34

Abbildung 4.6: Elektrischer Schaltplan zur Meßdatenerfassung und Steuerung (Übersicht, MFC 1, 2, 3 = Massenflußregler 1, 2, 3; R 1, 2, 3 = Relais 1, 2, 3; A/D =
Analog/Digital-Wandler)35
Abbildung 5.1: Layout des 6-fach-QMB-Sensor-Arrays der Fa. FOQ
Abbildung 5.2: Das 6-fach-QMB-Sensor-Array der Fa. FOQ mit Oszillatorplatine und
Gasanschlüssen37
Abbildung 5.3: Isothermenmodell des Temperaturmodulationsbetriebs für die Sensorsubstanz DM189
Abbildung 5.4: Temperatur der Quarzoberfläche und Sensorsignal einer unbeschichteten
Resonatorzone bei variierender Heizspannung. (Die Oberflächentemperatur wurde berührungsslos mit einem IR-Thermometer zwischen den mittleren Resonatorzonen bestimmt.)
Abbildung 5.5: Zeitlicher Verlauf des Sensorsignals eines mit DM189 beschichteten Sensorelements (Schichtdicke 20 kHz) im TM-Modus für die Ammoniakkonzentrationen 0, 100 und 1000 ppm
Abbildung 5.6: Ammoniakkennlinien eines DM189-beschichteten Sensorelements
(Schichtdicke 20 kHz) bei verschiedenen Wasserkonzentrationen. Vergleich von TM-
Modus und Spülgasmodus42
Abbildung 5.7: Einfluß der Wasserkonzentration ($c_{\rm H2O}$) auf die Ammoniakempfindlichkeit
(dS/dc) eines DM189-beschichteten Sensorelements für den Spülgasmodus und den TM-
Modus
Abbildung 5.8: Wasserkennlinie eines Pvpyrr-beschichteten Sensorelements (Schichtdicke ca.
20 kHz) im TM-Modus und im Spülgasmodus
Abbildung 5.9: Frequenzhub eines DM189-beschichteten Sensorelements im TM-Modus bei
den angegebenen Ammoniakkonzentrationen. (Zur Korrektur wurde der Frequenzhub
eines benachbarten unbeschichteten Sensorelements verwendet.)
Abbildung 7.1: Funktion der Frequenzzählerplatine
Abbildung 8.1: Auswahlkriterien für die geeignete Signalauswertung (Quelle: [Nie96])49
Abbildung 8.2: Signal des Sensorelements HKR 4b als Funktion der Ammoniak- und
Wasserkonzentration
Abbildung 8.3: Graphische Veranschaulichung der PLS-Analyse (abgewandelt nach [Nie96]).
Abbildung 8.4: Bestimmung der optimalen Modelldimension mittels ,Cross-Validation' (Quelle: [Nie96])
Abbildung 9.1: Funktionsweise des Elektro-Spray-Verfahrens (nach [Wig97])55
Abbildung 9.2: Schematischer Aufbau der Elektro-Spray-Apparatur
Abbildung 9.3: Foto der Elektro-Spray-Apparatur
Abbildung 10.1: Aufbau der Absorberheizung – Foto und Schema. (Der Heizdraht und ein Cr-
Ni-Cr Thermoelement sind eingebettet in das Absorbermaterial. Das Absorbermaterial
wird durch Quarzwollepfropfen im Glasrohr gehalten.)
Abbildung 10.2: Temperaturverhalten des Absorbers beim Aufheizen und Abkühlen. (Zum
Zeitpunkt $t = 3$ min wird die Heizspannung von 3,2 V eingeschaltet, zum Zeitpunkt $t = 8$

min wird die Heizspannung wieder ausgeschaltet. Der Absorber wird mit 200 ml
technischer Luft pro Minute durchspült.)
Abbildung 10.3: Schema des Meßaufbaus zur Charakterisierung des Absorbers
Abbildung 10.4: Ammoniakdesorptions-Peaks gemessen mit einem ammoniakempfindlichen
QMB-Sensorelement und parallel mit dem FT-IR-Spektrometer bei Variation der
Ammoniakeingangskonzentration und der Absorptionszeit
Abbildung 10.5: Typischer zeitlicher Verlauf der thermischen Desorption von Ammoniak
gemessen mit dem FT-IR-Spektrometer. (Ammoniakeingangskonzentration = 100 ppm,
Gasfluß = 200 ml/min, Absorptionszeit = 15 min. Die extrapolierte Peakhöhe ent 60
Abbildung 10.6: Ammoniakdesorptions-Peaks in Abhängigkeit von der
Ammoniakeingangskonzentration und der Absorptionszeit (an den betreffenden Peaks
jeweils in Minuten angegeben, gemessen mit dem FT-IR-Spektrometer; Gasfluß = 200
ml/min)62
Abbildung 10.7: Ammoniakdesorptions-Peaks in Abhängigkeit von der
Wasserhintergrundkonzentration gemessen mit dem FT-IR-Spektrometer (Gasfluß =
200 ml/min)63
Abbildung 10.8: Die Ammoniakkennlinie eines TSC-beschichteten QMB-Sensorelements mit
vorgeschalteter Anreicherung für drei verschiedene Wasserhintergrundkonzentrationen
(Zum Vergleich ist rechts unten die Kennlinie des selben Sensorelements ohne
Anreicherung eingezeichnet; Zu beachten ist die unterschiedliche Skalierung64
Abbildung 11.1: Schema des Kondensationsexperiments. (Definition der Meßgrößen siehe
Text
Abbildung 11.2: Temperaturabhängigkeit des Absorptionskoeffizienten λ von Ammoniak in
Wasser
Abbildung 11.3: Meßaufbau zur Konzentrationsbestimmung nach einem Meßgaskühler 67
Abbildung 11.4: Berechnete (Linien) und gemessene (Symbole) Methankonzentration nach
dem Meßgaskühler für die Eingangstaupunkte 50, 60, 70 °C
Abbildung 11.5: Berechnete (Linien) und gemessene (Symbole) Ammoniakkonzentration
hinter dem Meßgaskühler70
Abbildung 12.1: Schematischer Aufbau eines photoakustischen Gasmonitors (Quelle:
Betriebsanleitung B&K)72
Abbildung 12.2: Photo der Meßbox
Abbildung 12.3: Der verwendete Lagerraum für Festmist: Foto und Schemazeichnung
(Quelle: [Röm00])74
Abbildung 12.4: Die verwendete Referenzanalytik: FT-IR Spektrometer und photoakustischer
Gasmonitor
Abbildung 12.5: Ammoniakmessung an Festmist mit einem TSC und DSMZ-beschichteten
HKR-Sensor-Modul. Referenzanalytik = FT-IR Spektrometer. PLS1-Auswertung
berücksichtigt nur Signale des Sensor-Arrays. PLS2-Auswertung berücksichtigt
zusätzlich die mit dem FT-IR Spektrometer ermittelte Wasserkonzentration
Abbildung 12.6: Korrelation der nach dem PLS2-Modell berechneten
Ammoniakkonzentrationen mit den Referenzwerten (Korrelationskoeffizienten $R = \frac{1}{2}$
0,97)76

Abbildung 12.7: Korrelation der PLS-Vorhersagewerte mit den Referenzwerten für					
Ammoniak (Das PLS-Modell wurde mit den Array-Daten aus dem Praxisversuch					
kalibriert; Korrelationskoeffizient $R = 0.91$)					
Abbildung 12.8: Korrelation der PLS-Vorhersagewerte mit den Referenzwerten für					
Wasserdampf (Das PLS-Modell wurde mit den Array-Daten aus dem Praxisversuch					
kalibriert; Regressionskoeffizient $R = 0.96$)					
Abbildung 12.9: Vergleich der PLS-Vorhersagewerte mit den Referenzdaten für Ammoniak					
(PLS-Modell kalibriert mit Array-Daten aus einer nachträglichen Laborkalibrierung;					
Regressionsgerade: $y = 0.8x-38$; $R = 0.79$)					
Abbildung 12.10: Ort der Probennahme in einem Hühnerstall für den Praxistest79					
Abbildung 12.11: Signal eines Pvpyrr-beschichteten Sensorelementes im TM-Modus					
verglichen mit der Referenzwasserkonzentration, gemessen mit dem photoakustischen					
Gasmonitor (Der Korrelationskoeffizient hat den Wert $R = 0.82$)					
Abbildung 12.12: Staubgeschützter Behälter für den Off-Line-Langzeitversuch 80					
Abbildung 12.13 Reaktion des TSC-beschichteten Einzelquarzes auf 10.000 ppm Ammoniak					
viermal in Folge nach einer Lagerungsdauer von 0 bzw. 42 Tagen					
Abbildung 12.14: Sensorreaktion auf 1000 ppm Ammoniak in Abhängigkeit von der					
Lagerungsdauer (Lagerungstemperatur = 50 °C; die Schichtdicken der Quarze HB, DA,					
HY entsprechen jeweils einem Frequenzhub von 19,7 kHz; 20,6 kHz und 26 kHz) 82					
Abbildung 13.1: Schematischer Querschnitt durch einen Metalloxidsensor					
Abbildung 13.2: Zeitverhalten eines ammoniakempfindlichen Chemowiderstandes (Praxistest					
3)84					
Abbildung 14.1: Signalaufbereitung					
Abbildung 14.2: Vorder- und Rückansicht des RS232/LON-Konverters					
Abbildung 14.3: Aufbau eines LON-Netzwerkes für die Stallklimatisierung					
Abbildung 14.4: Veranschaulichung der Parameter zur Klimaregelung nach der					
Ammoniakkonzentration (100 % Lüfterleistung entspricht der ohne Berücksichtigung					
der Ammoniakkonzentration berechneten Lüfterleistung)90					

Tabellenverzeichnis

Tabelle	2.1:	In	der	landwirtschaflichen	Nutztierhaltung	auftretende	Spurengase,
Em	issions	raten	, Kon	zentrationen und Au	swirkungen – Die	absoluten E	missionsraten
bez	iehen s	ich a	uf Eu	ropa	•••••		11
Tabelle 4	4.1: Üb	ersic	ht übe	er die verwendeten Ma	ssenflußregler		32
Tabelle 4	4.2: Üb	ersic	ht übe	er die verwendeten Prü	ifgase		33
Tabelle 1	10.1: O	ptimi	ierung	gsparameter der Anreid	cherung		63
Tabelle 1	12.1: V	or- u	nd Na	achteile der verwendet	en Referenzmeßger	äte	70
Tabelle 1	12.2: S ₁	pezifi	ikatio	n der Komponenten de	es FT-IR Spektroen	nters	71
Tabelle 1	12.3: S ₁	pezifi	ikatio	nen der IR-Gaszelle			71
Tabelle 1	12.4: Ü	bersi	cht üb	oer die optischen Filter	des FT-IR Spektro	meters	72
Tabelle 1	13.1: S ₁	pezifi	ikatio	nen des kommerzielle	n Ammoniaksensor	s auf Metallo	xidbasis83
Tabelle 1	13 2: Ü	herbl	lick iil	ber die für diese Arbei	t relevanten Chemo	widerstände	85

1 Kurzfassung

Im Rahmen des MULTIGAS-Projektes wurde ein Sensorsystem entwickelt, bestehend aus einem beheizbaren Sensor-Array (monolithisch auf Quarzsubstrat), der Auswerteelektronik und der Sensor-Peripherie. Durch Beschichtung des Sensor-Arrays mit carbonsäurefunktionalisierten Cryptophanen (TSC) und Clathratbildnern (DM189), Hetrocalixarenen und Polyvinylpyrrolidon konnte ein Sensor realisiert werden, der im Spülgas-Modus eine Nachweisgrenze für Ammoniak von ca. 10 ppm erreicht; die Ammoniakempfindlichkeit beträgt ca. 0,25 Hz/ppm. Die Wasserquerkompensation erfolgt mit einem monolithisch auf dem Array integrierten Wassersensor. Der integrierte Wassersensor weist eine Meßgenauigkeit von ca. 500 ppm und ist damit ähnlich genau wie kommerzielle Feuchtefühler. Die Ammoniakempfindlichkeit im Spülgas-Modus ist ausreichend für den Einsatz des Geräts als Schwellenwertsensor.

Zur Erhöhung der Ammoniakempfindlichkeit wurde das aus der Gaschromatographie bekannte Purge and Trap-Verfahrens für das Sensor-Array adaptiert. Auf diese Weise konnte ein Anreicherungsverfahren entwickelt werden, mit dem sich die Ammoniakempfindlichkeit des Sensorarrays unter Laborbedingungen um 2 Größenordnungen erhöhen läßt.

Die einzelnen Meilensteine der Sensorentwicklungen sollen im folgenden nochmal kurz skizziert werden.

Neue Synthesekonzepte in der organischen Chemie führten zu einer deutlichen Verbesserung der Selektivität und Temperaturstabilität ammoniaksensitiver Materialien. Die Synthesen konnten soweit opimiert werden, daß die relevanten Sensorsubstanzen in ausreichender Reinheit und Ausbeute für die Produktion von Sensor-Arrays zur Verfügung stehen.

Für Gassensoren wurde ein Universalprüfstand konzipiert und aufgebaut. Mit Hilfe dieses Prüfstandes ist es möglich, unterschiedliche Substanzen auf ihre Tauglichkeit für die chemische Sensorik zu prüfen. Bemerkenswert ist dabei vor allem der hohe Durchsatz. – 12 unterschiedliche Substanzen können unter gleichen Meßbedingungen vermessen werden¹. Darüber hinaus können Gassensoren und Sensor-Peripherie den unterschiedlichsten Tests (Dichtigkeit, Strömungs- und Temperaturabhängigkeit der Signale) unterzogen werden. Außerdem stehen mehrere Schnittstellen zur Verfügung zur Ansteuerung von Heizungen, Thermostaten und Magnetventilen.

Im Rahmen des MULTIGAS-Projektes wurde neben den konventionellen Beschichtungsverfahren das Elektrospray-Verfahren verwendet und weiterentwickelt. Das Elektrospray-Verfahren weist einige Vorteile gegenüber den konventionellen Präparationmethoden auf.

Die eigentliche Sensor-Hardware wurde ausgehend vom Sensor-Modul der Fa. HKR Sensorsysteme vollständig überarbeitet. Hervorzuheben ist dabei besonders die Neuentwicklung eines beheizbaren Sensor-Arrays durch die Firma FOQ Piezotechnik, mit dem eine deutliche Signalstabilisierung und Steigerung der Ammoniakempfindlichkeit erzielt werden konnte. Außerdem ist durch den TM-Modus eine drastische Vereinfachung der Sensorperipherie möglich mit positiven Effekten für die Störanfälligkeit und die Kosten des Sensorsystems. Die neu

-

¹ Es können auch mehrere 12-fach-Meßkammern parallel betrieben werden.

entwickelte Oszillatorelektronik erlaubt eine deutliche Erweiterung der Palette potentieller Sensorsubstanzen.

Zur Auswirkung eines Meßgaskühlers in der Meßleitung auf die gemessene Gaskonzentration wurde eine ausführliche theoretische und experimentelle Studie durchgeführt. Aus dieser Studie können wichtige Schlußfolgerungen für die Meßpraxis gezogen werden.

Für die Praxisversuche wurde eine modular aufgebaute Meßbox entwickelt, mit der das Sensor-Array in verschiedenen Betriebsmodi getestet werden kann. In mehreren Praxisversuchen konnte die Praxistauglichkeit des entwickelten Meßsystems nachgewiesen werden.

Schließlich wurde die Stallklimaregelung für die Implementierung eines Schadgassensors vorbereitet.

2 Einleitung und Problemstellung

2.1 Bedarf der Landwirtschaft an einer kostengünstigen Schadgassensorik

Die Landwirtschaft stellt eine bedeutende Quelle für biogene Schadgase dar. Dabei ist innerhalb der Landwirtschaft die landwirtschaftliche Nutztierhaltung der wesentliche Emittent dieser Gase. Die wichtigsten biogenen Schadgase sind in Tabelle 2.1 mit den absoluten Emissionsraten für die EU und den relativen Beiträgen der Landwirtschaft zusammengestellt.

Tabelle 2.1: In der landwirtschaflichen Nutztierhaltung auftretende Spurengase, Emissionsraten, Konzentrationen und Auswirkungen – Die absoluten Emissionsraten beziehen sich auf Europa

Gas	Emissions-	Anteil der Land-	Mittlere	Auswirkung
	Rate	wirtschaft	Konz.	
	$(kt/a)^2$	an der Emissions-	(ppm) ⁴	
		Rate (%) ³		
Ammoniak	3400	95	8,5	Toxisch für Menschen,
				Tier, Pflanzen
				Eutrophierung
				Versauerung der Böden
				indirekt über Nitrat
Kohlendioxid	21100	0,7	1000	Erstickung
Lachgas	427	30	0,5	Treibhauseffekt
Methan	9100	30	11,7	Treibhauseffekt
Schwefel-	k. A.	k. A.	0,54	Toxisch für Menschen,
wasserstoff				Tier, Pflanzen
Geruch	k. A.	k. A.	k. A.	Geruchsbelästigung
stoffe				

² http://www.eea.dk/Locate/Databases/AirEmis/ca90no/default.htm

³ http://www.eea.dk/Locate/Databases/AirEmis/ca90no/default.htm

⁴ Werte aus [Hah98]