The Effect of Time Interval on Waste Cooking Palm Oil Injection for Carbon Nanotubes Production

Article Preview

Abstract:

Carbon nanotubes (CNTs) were successfully synthesized using waste cooking palm oil (WCPO) as precursor by modified double-stages thermal chemical vapor deposition set-up. The total amount of 30 ml WCPO precursor was consumed during the experiment with 5.33 wt% ferrocene as catalyst. Precursor volume of 2 ml was injected continuously for different time intervals of 5, 8, 10 and 12 minutes respectively. The effect of time interval between injections on the production of CNTs were systematically studied using field emission scanning electron microscopy, micro-Raman spectroscopy and current-voltage (I-V) measurement system. It was detected that the differences in time interval of injections resulted in different quality and diameter of CNTs produced. Sample produced at 10 minutes of time interval of injection gave the smallest tubes diameter in the range of 39.45-49.01 nm and good crystallinity of 0.69 ID/IG ratio. This sample also gave the best I-V characteristic with conductivity of 6.06 x 10-1 S/cm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-98

Citation:

Online since:

June 2015

Export:

Price:

* - Corresponding Author

[1] S. Iijima, Helical microtubulus of graphitic carbon, Nature 354 (1991) 56-58.

Google Scholar

[2] R. Ansari, S. Malakpour, M. Faghihnasiri, S. Ajori, Structural and elastic properties of carbon nanotubes containing fe atoms using first principles, Superlattices Microstruct. 6 (2013) 220-226.

DOI: 10.1016/j.spmi.2013.09.027

Google Scholar

[3] X. Zhang, Q. Li, Y. Tu, Y. Li, J. Y. Coulter, L. Zheng et al., Strong carbon-nanotube fibers spun from long carbon nanotube arrays, Wiley, Weinheim, 2007, pp.244-248.

DOI: 10.1002/smll.200600368

Google Scholar

[4] H. Zhidong, F. Alberto, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A Review, Prog. Polym. Sci. 36 (2010) 914-944.

Google Scholar

[5] A. A. Azira, H. Dayang, A. B. Suriani, M. Rusop, Effect of multi-walled carbon nanotubes on the properties of natural rubber nanocomposites, Adv. Mater. Res. 832 (2014) 338-343.

DOI: 10.4028/www.scientific.net/amr.832.338

Google Scholar

[6] O. Renata, O. Andrej, Recent applications of carbon nanotubes in hydrogen production and storage, Fuel 90 (2011) 3123-3140.

DOI: 10.1016/j.fuel.2011.06.051

Google Scholar

[7] R. B. Prabhakar, Electrical properties and applications of carbon nanotube structure, J. Nanosci. Nanotechnol. 7 (2007) 1-29.

Google Scholar

[8] N. A. Asli, M. S. Shamsudin, A. N. Falina, M. S. Azmina, A. B. Suriani, M. Rusop, S. Abdullah, Field electron emission properties of vertically aligned carbon nanotubes deposited on a nanostructured porous silicon template: the hidden role of the hydrocarbon/catalyst ratio, Microelectron. Eng. 108 (2013) 86-92.

DOI: 10.1016/j.mee.2013.02.095

Google Scholar

[9] M. S. Azmina, A. B. Suriani, A. N. Falina, M. Salina, M. Rusop, Temperature effects on the production of carbon nanotubes from palm oil by thermal chemical vapour deposition method, Adv. Mater. Res. 364 (2012) 359-362.

DOI: 10.4028/www.scientific.net/amr.364.359

Google Scholar

[10] M. S. Azmina, A. B. Suriani, A. N. Falina, M. Salina, J. Rosly, M. Rusop, Preparation of palm oil based carbon nanotubes at various ferrocene concentration, Adv. Mater. Res. 364 (2012) 408-411.

DOI: 10.4028/www.scientific.net/amr.364.408

Google Scholar

[11] M. S. Azmina, A. B. Suriani, M. Salina, A. A. Azira, A. R. Dalila, N. A. asli et al., Variety of bio-hydrocarbon precursors for the synthesis of carbon nanotubes, Nano Hyb. 2 (2012) 43-63.

DOI: 10.4028/www.scientific.net/nh.2.43

Google Scholar

[12] A. B. Suriani, A. A. Azira, A. F. Nik, R. M. Nor, M. Rusop, Synthesis of vertically aligned carbon nanotubes using natural palm oil as precursor, Mater. Lett. 63 (2009) 2704-2706.

DOI: 10.1016/j.matlet.2009.09.048

Google Scholar

[13] A. B. Suriani, R. M. Nor, M. Rusop, Vertically aligned carbon nanotubes synthesized from waste cooking palm oil, J. Ceram. Soc. Jpn. 118 (2010) 963-968.

DOI: 10.2109/jcersj2.118.963

Google Scholar

[14] A. N. Falina, A. B. Suriani, M. S. Azmina, M.S. Salina, A. R. Dalila, M. N. Roslan, M. Rusop, Structural characteristics and field electron emission properties of carbon nanotubes synthesized from waste cooking palm oil, J. Sci. Technol. 59 (2012) 93-97.

DOI: 10.1109/icedsa.2012.6507792

Google Scholar

[15] K. S. Dhilip, P. K. Ayer, P. K. Giri, Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies, Diamond Relat. Mater. 19 (2010) 1281-1288.

DOI: 10.1016/j.diamond.2010.06.003

Google Scholar

[16] D. Bitko, T. F. Rosenbaum, Quantum critical behaviour for a model magnet, Phys. Rev. Lett. 77 (1996) 940-943.

DOI: 10.1103/physrevlett.77.940

Google Scholar

[17] S. Ilani, P. L. McEuen, Electron transport in carbon nanotubes, Annu. Rev. Condens. Matter Phys. 1 (2010) 1-25.

DOI: 10.1146/annurev-conmatphys-070909-103928

Google Scholar

[18] A. Korkin, P. S. Krstic, J. C. Wells, Nanotechnology for Electronics, Photonics and Renewable Energy, Springer, London, 2010.

Google Scholar