Conductivity and Dielectric Study of Polylactic Acid- Lithium Perchlorate Solid Polymer Electrolyte Film

Article Preview

Abstract:

The solid polymer electrolyte (SPE) consists of polylactic acid (PLA) with different compositions of lithium perchlorate (LiClO4) were prepared by using the solution casting method. The conductivity and dielectric properties of the SPE system were studied by using an impedance spectroscopy technique with a frequency ranging from 0.1 Hz to 100 MHz. The optimum composition of the LiClO4 in the PLA based electrolyte system is 50 %. The highest ionic conductivity value of the PLA-LiClO4 electrolyte is 2.66 x 10-5 Scm-1. The dielectric permittivity, ɛ′ shows high magnitude in the lower frequency due to electrode polarization (EP) effect and become to decrease at high frequency. The magnitude of ɛ′ increases up to 50 % of LiClO4 in the electrolyte system. The loss tangent was used to measure the relaxation time of the electrolyte system. The shortest relaxation time is PLA- LiClO4 polymer electrolyte system is 7.98 × 10−6 s. The electric modulus, M′ and M′', increases with frequency, indicating that the force of charge carriers increases in depletion and accumulation regions at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-109

Citation:

Online since:

December 2022

Export:

Price:

* - Corresponding Author

[1] S. B. Aziz, T. J. Woo, M. F. Z. Kadir, and H. M. Ahmed, A conceptual review on polymer electrolytes and ion transport models,, J. Sci. Adv. Mater. Devices, vol. 3, no. 1, p.1–17, (2018).

DOI: 10.1016/j.jsamd.2018.01.002

Google Scholar

[2] V. S. Kumaran, H. M. Ng, S. Ramesh, K. Ramesh, B. Vengadaesvaran, and A. Numan, The conductivity and dielectric studies of solid polymer electrolytes based on poly ( acrylamide-co-acrylic acid ) doped with sodium iodide,, (2018).

DOI: 10.1007/s11581-018-2448-z

Google Scholar

[3] J. Cardoso, G. Vázquez, O. Soria-Arteche, R. Cruz, and I. González, Ionic conductivity of polymer electrolytes,, Macromol. Symp., vol. 283–284, no. 1, p.205–210, (2009).

DOI: 10.1002/masy.200950927

Google Scholar

[4] F. M. Gray, Polymer Electrolyte- Based Devices,, in Solid Polymer Electrolyte, VCH Publishers, Inc., 1991, p.2–3.

Google Scholar

[5] N. Naga, Y. Yoshida, K. Noguchi, and S. Murase, Crystallization of amorphous poly ( lactic acid ) induced by vapor of acetone to form high crystallinity and transparency specimen,, vol. 2013, no. May, p.29–33, (2013).

DOI: 10.4236/ojpchem.2013.32006

Google Scholar

[6] S. I. A. Halim, C. H. Chan, and T. Winie, Thermal, conductivity and molecular interaction studies of poly(ethylene oxide)/poly(methyl acrylate) solid polymer electrolytes,, Macromol. Symp., vol. 371, no. 1, p.114–124, 2017,.

DOI: 10.1002/masy.201600050

Google Scholar

[7] R. D. Lipsa and N. Tudorachi, Poly ( vinyl alcohol )/ Poly ( lactic acid ) blends biodegradable films doped with colloidal silver, no. May, (2008).

DOI: 10.1515/epoly.2009.9.1.1439

Google Scholar

[8] A. Sofia, L. Machado, I. G. De, A. V. De Sá, A. Vera, and A. Machado, Biodegradable polymernanocomposites for packaging applications. Elsevier Inc., (2017).

DOI: 10.1016/b978-0-12-804302-8.00010-8

Google Scholar

[9] S. G. & E. S. Pradeepa Prabakaran, Ramesh Prabhu Manimuthu, Plasticized polymer electrolyte membranes based on PEO/PVdF-HFP for use as an effective electrolyte in lithium-ion batteries,, Chinese J. Polym. Sci., vol. 35, p.407–421, (2017).

DOI: 10.1007/s10118-017-1906-9

Google Scholar

[10] K. P. Radha, S. Subramanian, and M. Hema, Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA : NH 4 F,, no. October, 2013,.

Google Scholar

[11] A. R. Polu and R. Kumar, AC impedance and dielectric spectroscopic studies of Mg2+ ion conducting PVA-PEG blended polymer electrolytes,, Bull. Mater. Sci., vol. 34, no. 5, p.1063–1067, 2011,.

DOI: 10.1007/s12034-011-0132-2

Google Scholar

[12] Z. Osman, M. I. Mohd Ghazali, L. Othman, and K. B. Md Isa, AC ionic conductivity and DC polarization method of lithium ion transport in PMMA-LiBF 4 gel polymer electrolytes,, Results Phys., vol. 2, p.1–4, 2012,.

DOI: 10.1016/j.rinp.2011.12.001

Google Scholar

[13] J. Gurusiddappa, W. Madhuri, R. P. Suvarna, and K. P. Dasan, Conductivity and dielectric behavior of polyethylene oxide-lithium perchlorate solid polymer electrolyte films,, Indian J. Adv. Chem. Sci., vol. 4, no. 1, p.14–19, (2016).

Google Scholar

[14] S. S. devi S. Siva devi, S. S. S.Selvasekarapandian, S. K. S.Karthikeyan, N. V. N.Vijaya, F. K. M. Genova, and C. S. C.Sanjeeviraja, Structural and AC impedance analysis of blend polymer electrolyte based on PVA and PAN,, Int. J. Sci. Res., vol. 2, no. 10, p.1–3, 2012,.

DOI: 10.15373/22778179/oct2013/121

Google Scholar

[15] A. Saxena and B. Bhattacharya, Comparative study on electrical behavior of silicon/fullerene/CuI dispersed composite polymer electrolytes,, Macromol. Symp., vol. 388, no. 1, p.1–4, 2019,.

DOI: 10.1002/masy.201900043

Google Scholar

[16] F. M. Gray, Solid Polymer Electrolytes. New York: VCH Publishers, Inc., (1991).

Google Scholar

[17] L. So, Conductivity studies of biopolymer electrolyte based on potato starch/chitosan blend doped with LiCF3SO3,, J. Teknol., vol. 7, p.1–5, (2015).

DOI: 10.11113/jt.v75.5163

Google Scholar

[18] P. Kesharwani, D. K. Sahu, Y. K. Mahipal, and R. C. Agrawal, Conductivity enhancement in K+-ion conducting dry solid polymer electrolyte (SPE): [PEO: KNO3]: A consequence of KI dispersal and nano-ionic effect,, Mater. Chem. Phys., vol. 193, no. June, p.524–531, 2017,.

DOI: 10.1016/j.matchemphys.2017.03.015

Google Scholar

[19] N. S. Salleh, S. B. Aziz, Z. Aspanut, and M. F. Z. Kadir, Electrical impedance and conduction mechanism analysis of biopolymer electrolytes based on methyl cellulose doped with ammonium iodide,, Ionics (Kiel)., 2016,.

DOI: 10.1007/s11581-016-1731-0

Google Scholar

[20] S. F. Ayub, A. F. A. , Khuzaimah Nazir, S. I. Y. Saaidb, M. Z. A. Yahyacd, and A. M. M. Aliad, Ionic conductivity of MG30-PEMA blend solid polymer electrolyte,, Sci. Res. J., vol. 12, no. 2, p.83–90, (2015).

DOI: 10.24191/srj.v12i2.9395

Google Scholar

[21] Y. Badali, Ş. Altındal, and İ. Uslu, Dielectric properties, electrical modulus and current transport mechanisms of Au/ZnO/n-Si structures,, Prog. Nat. Sci. Mater. Int., vol. 28, no. 3, p.325–331, 2018,.

DOI: 10.1016/j.pnsc.2018.05.003

Google Scholar

[22] A. Arya and A. L. Sharma, Structural, electrical properties and dielectric relaxations in Na+ ion conducting solid polymer electrolyte,, J. Phys. Condens. Matter, p.1–57, (2018).

DOI: 10.1088/1361-648x/aab466

Google Scholar

[23] N. Tripathi, A. Shukla, A. K. Thakur, and D. T. Marx, Dielectric modulus and conductivity scaling approach to the analysis of ion transport in solid polymer electrolytes,, Polym. Eng. Sci., vol. 60, no. 2, p.297–305, 2020,.

DOI: 10.1002/pen.25283

Google Scholar