Influence of Cubic Structured-ZnSnO3 Immersion Time to the Performance of Humidity Sensor

Article Preview

Abstract:

ZnSnO3 thin film was deposited at different deposition time (0.5 h, 2 h, 4 h and 6 h) using sol-gel immersion method and the electrical, optical and structural properties of this film was investigated. This research involved the preparation of nanostructured ZnO thin film by using RF magnetron sputtering, preparation of ZnSnO3 sol-gel solution, metal contact deposition and characterization of humidity sensor. The thin film was characterized using current-voltage (I-V) measurement (Keithley 2400) and field emission scanning electron microscopy (FESEM) (JEOL JSM 6701F) for electrical and structural properties respectively. The sensor was characterized using I-V measurement in a humidity chamber (ESPEC SH-261) and the chamber has been set at room temperature with varied relative humidity (% RH), in the range of 40-90% RH. The film prepared with a deposition time of 2 h shows better sensitivity for humidity sensor. The FESEM investigation shows that crystal size increases with the increasing deposition time.

You might also be interested in these eBooks

Info:

Periodical:

Nano Hybrids (Volume 2)

Pages:

1-11

Citation:

Online since:

August 2012

Export:

[1] P.P.L. Regtien, Humidity sensors, Meas. Sci. Technol. Vol. 23(1) (2012) 010103, IOP Publishing, UK. (doi: 10. 1088/0957-0233/23/1/010103).

DOI: 10.1088/0957-0233/23/1/010103

Google Scholar

[2] Y. Zeng, K. Zhang, X. Wang, Y. Sui, B. Zou, W. Zheng, G. Zou, Rapid and selective H2S detection of hierarchical ZnSnO3 nanocages, Sensors and Actuators B 159 (2011) 245-250.

DOI: 10.1016/j.snb.2011.06.080

Google Scholar

[3] M. Tsaroucha, Y. Aksu, E. Irran, M. Driess, Synthesis of Stannyl-Substituted Zn4O4 Cubanes as Single-Source Precursors for Amorphous Tin-Doped ZnO and Zn2SnO4 Nanocrystals and Their Potential for Thin Film Field Effect Transistor Applications, Chem. Mater. 23 (2011).

DOI: 10.1021/cm200282w

Google Scholar

[4] Y. -Y. Choi, K. -H. Choi, H. Lee, H. Lee, J. -W. Kang, H. -K. Kim, Nano-sized Ag-inserted amorphous ZnSnO3 multilayer electrodes for cost-efficient inverted organic solar cells, Sol. Energ. Mat. Sol. C. 95 (2011) 1615-1623.

DOI: 10.1016/j.solmat.2011.01.013

Google Scholar

[5] B.C. Yadav, R.C. Yadav, P.K. Dwivedi, Sol–gel processed (Mg–Zn–Ti) oxide nanocomposite film deposited on prism base as an opto-electronic humidity sensor, Sensors Actuat B-Chem 148 (2010) 413-419.

DOI: 10.1016/j.snb.2010.05.046

Google Scholar

[6] B.C. Yadav, N. Verma, S. Singh, Nanocrystalline SnO2–TiO2 thin film deposited on base of equilateral prism as an opto-electronic humidity sensor, Optics & Laser Technology 44 (2012) 1681-1688.

DOI: 10.1016/j.optlastec.2011.12.041

Google Scholar

[7] Q. Yuan, N. Li, J. Tu, X. Li, R. Wang, T. Zhang, C. Shao, Preparation and humidity sensitive property of mesoporous ZnO–SiO2 composite, Sensors Actuat. B-Chem 149 (2010) 413-419.

DOI: 10.1016/j.snb.2010.06.036

Google Scholar

[8] A. Sivapunniyam, N. Wiromrat, M. Tay, Z. Myint, J. Dutta, High performance liquefied petroleum gas sensing based on nanostructures of zinc oxide and zinc stannate, Sensors Actuat B-Chem 157 (2011) 232-239.

DOI: 10.1016/j.snb.2011.03.055

Google Scholar

[9] N.D. Md Sin, M.Z. Musa, M. Rusop, Effect of R. F power to the properties of ZnO Thin Films Deposited by Magnetron Sputtering, Adv. Mat. Rese. 364 (2011) 119-123.

DOI: 10.4028/www.scientific.net/amr.364.119

Google Scholar

[10] M. Parthibavarman, V. Hariharan, C. Sekar, High-sensitivity humidity sensor based on SnO2 nanoparticles synthesized by microwave irradiation method, Mat. Sci. Eng. C 31 (2012) 840-844.

DOI: 10.1016/j.msec.2011.01.002

Google Scholar

[11] D. Bauskar, B.B. Kale, P. Patil, Synthesis and humidity sensing properties of ZnSnO3 cubic crystallites, Sensors Actuat B-Chem 161 (2011) 396-400.

DOI: 10.1016/j.snb.2011.10.050

Google Scholar

[12] H. Fan, S. Ai, P. Ju, Room temperature synthesis of zinc hydroxystannate hollow core-shell microspheres and their hydrothermal growth of hollow core-shell polyhedral microcrystals, CrystEngComm 13 (2011) 113-117.

DOI: 10.1039/c0ce00050g

Google Scholar