Performance of Ultraviolet Photoconductive Sensor Based on Aluminium-Doped Zinc Oxide Nanorod-Nanoflake Network Thin Film Using Aluminium Contacts

Article Preview

Abstract:

In this research, we fabricated UV photoconductive sensor using aluminium (Al)-doped ZnO nanorod-nanoflake network thin film. These nanostructures were deposited on the seed-layer-coated glass substrate using sonicated sol-gel immersion method. By using Al contacts, it was found that the performance of the UV photoconductive sensor is very good. The responsivity of the device was 46.4 mA/W with sensitivity of 17.5 under 365-nm UV light (5 mW/cm2) at bias voltage of 10 V. Our study revealed that these nanostructures are very promising material for the UV photoconductive sensor applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

298-302

Citation:

Online since:

November 2013

Export:

Price:

[1] M. H. Mamat, N. N. Hafizah and M. Rusop, Fabrication of thin, dense and small-diameter zinc oxide nanorod array-based ultraviolet photoconductive sensors with high sensitivity by catalyst-free radio frequency magnetron sputtering, Materials Letters (2013) 215-218.

DOI: 10.1016/j.matlet.2012.11.105

Google Scholar

[2] M. H. Mamat, S. W. A. Wan, M. Z. Musa, Z. Khusaimi, M. F. Malek, S. Muhamad, D. M. Sin and M. Rusop, Effect of Oxygen Flow Rate on the Properties of Nanocolumnar ZnO Thin Films Prepared Using Radio Frequency Magnetron Sputtering System for Ultraviolet Sensor Applications, Advanced Materials Research (2012) 1-6.

DOI: 10.4028/www.scientific.net/amr.364.1

Google Scholar

[3] O. Lupan, G. Chai, L. Chow, G. A. Emelchenko, H. Heinrich, V. V. Ursaki, A. N. Gruzintsev, I. M. Tiginyanu and A. N. Redkin, Ultraviolet photoconductive sensor based on single ZnO nanowire, physica status solidi (a) (2010) 1735-1740.

DOI: 10.1002/pssa.200983706

Google Scholar

[4] M. H. Mamat, Z. Khusaimi, M. Z. Musa, M. Z. Sahdan and M. Rusop, Novel synthesis of aligned Zinc oxide nanorods on a glass substrate by sonicated sol-gel immersion, Materials Letters (2010) 1211-1214.

DOI: 10.1016/j.matlet.2010.02.053

Google Scholar

[5] M. H. Mamat, Z. Khusaimi, M. M. Zahidi, S. A. Bakar, M. Z. Yusop, M. Tanemura and M. R. Mahmood, Effects of aluminium doping and electrode distance on the performance of aligned zinc oxide nanorod array-based ultraviolet photoconductive sensors, Japanese Journal of Applied Physics (2012) 06FE04.

DOI: 10.1143/jjap.51.06fe04

Google Scholar

[6] M. H. Mamat, Z. Khusaimi, M. M. Zahidi and M. R. Mahmood, Performance of an Ultraviolet Photoconductive Sensor Using Well-Aligned Aluminium-Doped Zinc-Oxide Nanorod Arrays Annealed in an Air and Oxygen Environment, Japanese Journal of Applied Physics (2011) 06GF05.

DOI: 10.7567/jjap.50.06gf05

Google Scholar

[7] M. H. Mamat, N. I. Ishak, Z. Khusaimi, M. M. Zahidi, M. H. Abdullah, S. Muhamad, N. D. M. Sin and M. R. Mahmood, Thickness-dependent characteristics of aluminium-doped zinc oxide nanorod-array-based, ultraviolet photoconductive sensors, Japanese Journal of Applied Physics (2012) 06FF03.

DOI: 10.7567/jjap.51.06ff03

Google Scholar

[8] M. H. Mamat, Z. Khusaimi, M. Z. Musa, M. F. Malek and M. Rusop, Fabrication of ultraviolet photoconductive sensor using a novel aluminium-doped zinc oxide nanorod-nanoflake network thin film prepared via ultrasonic-assisted sol-gel and immersion methods, Sensors and Actuators A: Physical (2011) 241-247.

DOI: 10.1016/j.sna.2011.07.002

Google Scholar

[9] M. H. Mamat, Z. Khusaimi, M. M. Zahidi, S. A. Bakar, Y. M. Siran, S. A. M. Rejab, A. J. Asis, S. Tahiruddin, S. Abdullah and M. R. Mahmood, Controllable Growth of Vertically Aligned Aluminum-Doped Zinc Oxide Nanorod Arrays by Sonicated Sol-Gel Immersion Method depending on Precursor Solution Volumes, Japanese Journal of Applied Physics (2011) 06GH04.

DOI: 10.1143/jjap.50.06gh04

Google Scholar

[10] M. H. Mamat, M. I. Che Khalin, N. N. H. Nik Mohammad, Z. Khusaimi, N. D. Md Sin, S. S. Shariffudin, M. Mohamed Zahidi and M. R. Mahmood, Effects of Annealing Environments on the Solution-Grown, Aligned Aluminium-Doped Zinc Oxide Nanorod-Array-Based Ultraviolet Photoconductive Sensor, Journal of Nanomaterials (2012) Article ID 189279.

DOI: 10.1155/2012/189279

Google Scholar

[11] M. H. Mamat, M. Z. Sahdan, Z. Khusaimi, A. Z. Ahmed, S. Abdullah and M. Rusop, Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications, Optical Materials (2010) 696-699.

DOI: 10.1016/j.optmat.2009.12.005

Google Scholar

[12] M. H. Mamat, M. Z. Sahdan, S. Amizam, H. A. Rafaie, Z. Khusaimi and M. Rusop, Optical and electrical properties of aluminum doped zinc oxide thin films at various doping concentrations, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan (2009) 1263-1267.

DOI: 10.2109/jcersj2.117.1263

Google Scholar

[13] C.-C. Ting, Structure, Morphology, and Optical Properties of the Compact, Vertically-Aligned ZnO Nanorod Thin Films by the Solution-Growth Technique, Nanorods (2012) 33-50.

DOI: 10.5772/35533

Google Scholar

[14] C.-C. Ting, C.-H. Li, C.-Y. Kuo, C.-C. Hsu, H.-C. Wang and M.-H. Yang, Compact and vertically-aligned ZnO nanorod thin films by the low-temperature solution method, Thin Solid Films (2010) 4156-4162.

DOI: 10.1016/j.tsf.2009.11.082

Google Scholar

[15] C.-J. Chang and E.-H. Kuo, Light-trapping effects and dye adsorption of ZnO hemisphere-array surface containing growth-hindered nanorods, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2010) 22-29.

DOI: 10.1016/j.colsurfa.2010.04.003

Google Scholar

[16] Y. K. Su, S. M. Peng, L. W. Ji, C. Z. Wu, W. B. Cheng and C. H. Liu, Ultraviolet ZnO Nanorod Photosensors, Langmuir (2009) 603-606.

DOI: 10.1021/la902171j

Google Scholar

[17] X. G. Zheng, Q. S. Li, W. Hu, D. Chen, N. Zhang, M. J. Shi, J. J. Wang and L. C. Zhang, Photoconductive properties of ZnO thin films grown by pulsed laser deposition, Journal of Luminescence 198-201.

DOI: 10.1016/j.jlumin.2006.01.090

Google Scholar