Growth of Self-Catalyzed ZnO Heterostructures Using Thermal Chemical Vapor Deposition Method

Article Preview

Abstract:

ZnO heterostructures have been successfully synthesized using thermal chemical vapor deposition method. Zinc powder and oxygen were used as the starting materials, while argon gas was supplied as the carrier gas. Different types of nanostructures were deposited on layer-by-layer ZnO seeded catalyst; which its structures depended on the position of the substrates during the deposition process. Substrates at position C which is located 3 cm from the source shows uniformly distributed ZnO nanorods. XRD pattern also shows that sample C shows (0 0 2) diffraction peak. PL spectra indicates that the ZnO have two peaks, which is UV peak centered at 380 nm and visible peak centered at about 550 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

338-342

Citation:

Online since:

March 2013

Export:

Price:

[1] H. K. Liang, S. F. Yu, H. Y. Yang, Directional and controllable edge-emitting ZnO ultraviolet random laser diodes, Appl. Phys. Lett. 96 (2010) 101116-101116-3.

DOI: 10.1063/1.3356221

Google Scholar

[2] L. Qian, Y. Zheng, K. R. Choudhury, D. Bera, F. So, J. Xue, P. H. Holloway, Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages, Nanotoday. 5 (2010) 384-389.

DOI: 10.1016/j.nantod.2010.08.010

Google Scholar

[3] A. Cheng, Y. Tzeng, Y. Zhou, M. Park, T. Wu, C. Shannon, D. Wang, W. Lee, Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye-sensitized solar cell fabrication, Appl. Phys. Lett. 92 (2008) 092113-092113-3.

DOI: 10.1063/1.2889502

Google Scholar

[4] J. Xu, Q. Pan, Y. Shun, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuators B. 66 (2000) 277-279.

DOI: 10.1016/s0925-4005(00)00381-6

Google Scholar

[5] T.L. Yang, D.H. Zhang, J. Ma, H.L. Ma, Y. Chen, Transparent conducting ZnO: Al films deposited on organic substrates deposited by rf magnetron-sputtering, Thin Solid Films. 326 (1998) 60-62.

DOI: 10.1016/s0040-6090(98)00763-9

Google Scholar

[6] Y. Lin, Z. Zhang, Z. Tang, F. Yuan, J. Li, Characterisation of ZnO‐based varistors prepared from nanometre Precursor powders, Adv. Funct. Mater. 9 (1999) 205-209.

DOI: 10.1002/1099-0712(199909/10)9:5<205::aid-amo383>3.0.co;2-8

Google Scholar

[7] J. Sengupta, R.K. Sahoo, K.K. Bardhan, C.D. Mukherjee, Influence of annealing temperature on the structural, topographical and optical properties of sol-gel derived ZnO thin films, Mater. Lett. 65 (2011) 2572-2574.

DOI: 10.1016/j.matlet.2011.06.021

Google Scholar

[8] L. Xu, G. Zheng, J. Miao, and Fenglin Xian, Dependence of structural and optical properties of sol-gel derived ZnO thin films on sol concentration, Appl. Surf. Sci. 258 (2012) 7760-7765.

DOI: 10.1016/j.apsusc.2012.04.137

Google Scholar

[9] M. Karaliunas, T. Serevicius, E. Kuokstis, S. Jursenas, S. Ting, J. Huang, C. Yang, Optical Characterization of MBE-Grown ZnO Epilayers, Adv. Mater. Res. 222 (2011) 86-89.

DOI: 10.4028/www.scientific.net/amr.222.86

Google Scholar

[10] J. Wu, and S. Liu, Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition, Adv. Mater. 14 (2002) 215-218.

DOI: 10.1002/1521-4095(20020205)14:3<215::aid-adma215>3.0.co;2-j

Google Scholar

[11] S. Choopun, N. Hongsith, S. Tanunchai, T. Chairuangsri, C. Krua-in, S. Singkarat, T. Vilaithong, P. Mangkorntong, N. Mangkorntong, Single-crystalline ZnO nanobelts by RF sputtering, J. Cryst. Growth. 282(2005) 365-369.

DOI: 10.1016/j.jcrysgro.2005.05.020

Google Scholar

[12] X. Kong, X. Sun, X. Li, and Y. Li, Catalytic growth of ZnO nanotubes, Mater. Chem. Phys. Vol. 82 (2003) 997-1001.

Google Scholar

[13] B.J. Chen, X.W. Sun, C.X. Xu, Fabrication of zinc oxide nanostructures on gold-coated silicon substrate by thermal chemical reactions vapor transport deposition in air, Ceram. Int. 30 (2004) 1725-1729.

DOI: 10.1016/j.ceramint.2003.12.140

Google Scholar

[14] S. N. Cha, B. G. Song, J. E. Jang, J. E. Jung, I.T. Han, J. H. Ha, J. P. Hong, D. J. Kang and J. M. Kim, Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer, Nanotechnology. 19 (2008).

DOI: 10.1088/0957-4484/19/23/235601

Google Scholar

[15] L. Wang, X. Zhang, S. Zha, G. Zhou, Y. Zhou, J. Qi, Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives, Appl. Phys. Lett. 86 (2005) 024108.

DOI: 10.1063/1.1851607

Google Scholar

[16] C. Wongchoosuk, K. Subannajui, A. Menzel, I. A. Burshtein, S. Tamir, Y. Lifshitz, M. Zacharias, Controlled Synthesis of ZnO Nanostructures: The Role of Source and Substrate Temperatures, J. Phys. Chem. C. 115 (2011) 757-761.

DOI: 10.1021/jp110416v

Google Scholar

[17] X. H. Sun, S. Lam, T. K. Sham, F. Heigl, A. Jurgensen, N. B. Wong, Synthesis and Synchrotron Light-Induced Luminescence of ZnO Nanostructures: Nanowires, Nanoneedles, Nanoflowers, and Tubular Whiskers, J. Phys. Chem. 109 (2004) 3120-3125.

DOI: 10.1021/jp044926v

Google Scholar

[18] S. S. Shariffudin, M. H. Mamat, S. H. Herman and M. Rusop: submitted to Journal of Nanomaterials (2012).

Google Scholar

[19] X. Liao and X. Zhang, Zinc Oxide Nanostructures and Their Coreâˆ'Shell Luminescence Properties, J. Phys. Chem. C. 111 (2007) 9081-9085.

DOI: 10.1021/jp0663208

Google Scholar

[20] S. O'Brien, L.H.K. Koh, and Gabriel M. Crean, ZnO thin films prepared by a single step sol-gel process, Thin Solid Films. 516 (2008) 1391-1395.

DOI: 10.1016/j.tsf.2007.03.160

Google Scholar