Mass Production of Carbon Nanotubes and its Future Applications: A Review

Article Preview

Abstract:

This paper reviews the mass production of carbon nanotubes via chemical vapor deposition method using conventional and bio-hydrocarbon precursors. Its applications in nanocomposite material and energy storage are also briefly reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-87

Citation:

Online since:

June 2015

Export:

Price:

* - Corresponding Author

[1] S. Niraj, M. Jiazhi, T. W. Yeow, Carbon nanotube-based sensors, J. Nanosci. Nanotechnol. 6 (2006) 573-590.

Google Scholar

[2] L. Wei, M. L. Charles, Nanoelectronics from the bottom up, Nat. Mater. 6 (2007) 841-850.

Google Scholar

[3] Y. Jiang, A. Kazinda, T. Chang, L. Lin, Flexible energy storage devices based on carbon nanotube forests with built-in metal electrodes, Sens. Actuators, A 195 (2013) 224-230.

DOI: 10.1016/j.sna.2012.07.007

Google Scholar

[4] C. Lei, L. Constantina, Activated carbon-carbon nanotube nanocomposite coatings for supercapacitor application, Surf. Coat. Technol. 232 (2013) 326-330.

DOI: 10.1016/j.surfcoat.2013.05.027

Google Scholar

[5] K. Mukul, Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, J. Nanosci. Nanotechnol. 10 (2010) 3739-3758.

DOI: 10.1166/jnn.2010.2939

Google Scholar

[6] C. D. Scott, S. Arepalli, P. Nikolaev, R. E. Smalley, Growth mechanism for single-wall carbon nanotubes in a laser ablation process, Appl. Phys., A 72 (2001) 573-580.

DOI: 10.1007/s003390100761

Google Scholar

[7] M. S. Senthil Saravanan, Techno-economics of carbon nanotubes produced by open air arc discharge method, Int. J. Eng. Sci. Technol. 2 (2010) 100-108.

DOI: 10.4314/ijest.v2i5.60128

Google Scholar

[8] D. Zhang, D. Wei, Q. Li, X. Ge, X. Guo, Z. Xie, W. Ding, High performance catalytic distillation using CNTs-based holistic catalyst for production of high quality biodiesel, Sci. Rep. (2014) 1-5.

DOI: 10.1038/srep04021

Google Scholar

[9] M. Neeraj et al, Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes, J. Anal. Appl. Pyrolysis 94 (2012) 91-98.

Google Scholar

[10] M. S. Azmina, A. B. Suriani, M. Salina, A. A. Azira, A. R. Dalila, N. A. Asli, J. Rosly, M. N. Roslan, M. Rusop, Variety of bio-hydrocarbon precursors for the synthesis of carbon nanotubes, Nano Hyb. 2 (2012) 43-63.

DOI: 10.4028/www.scientific.net/nh.2.43

Google Scholar

[11] S. B. Martin et al., Carbon nanotubes by plasma-enhance chemical vapor deposition, Pure Appl. Chem. 78 (2006) 1117-1125.

Google Scholar

[12] M. Kumar, Y. Ando, Single-wall and multi-wall carbon nanotubes from camphor-a botanical hydrocarbon, Diamond Relat. Mater. 12 (2003) 1845-1850.

DOI: 10.1016/s0925-9635(03)00217-6

Google Scholar

[13] A. B. Suriani, A. A. Azira, S. F. Nik, Roslan Md Nor and M. Rusop, Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor, Mater. Lett. 63 (2009) 2704-2706.

DOI: 10.1016/j.matlet.2009.09.048

Google Scholar

[14] K. Aswati, R. Kumar, R. S. Tiwari, O. N. Srivastava, Large scale synthesis of bundles of aligned carbon nanotubes using natural precursor: turpentine oil, J. Exp. Nanosci. 5 (2010) 498-508.

DOI: 10.1080/17458081003664159

Google Scholar

[15] A. B. Suriani, M. N. Roslan, M. Rusop, Vertically aligned carbon nanotubes synthesized from waste cooking palm oil, J. Ceram. Soc. Jpn. 118 (2010) 963-968.

DOI: 10.2109/jcersj2.118.963

Google Scholar

[16] A. B. Suriani, A. R. Dalila, A. Mohamed, M. H. Mamat, M. Salina, M. S. Rosmi, J. Rosly, M. N. Roslan, M. Rusop, Vertically aligned carbon nanotubes synthesized from waste chicken fat, Mater. Lett. 101 (2013) 61-64.

DOI: 10.1016/j.matlet.2013.03.075

Google Scholar

[17] W. W. Liu, A. Azizan, S. P. Chai, A. Rahman, C. T. Tye, The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesized by chemical vapor deposition, Physica E 43 (2011) 1535-1542.

DOI: 10.1016/j.physe.2011.05.012

Google Scholar

[18] W. M. Yeoh, K. Y. Lee, S. P. Chai, K. T. Lee, A. R. Mohamed, Synthesis of high purity multi-walled carbon nanotubes over Co-Mo/Mgo catalyst by catalytic chemical vapor deposition of methane, New Carbon Mater. 24 (2009) 119-123.

DOI: 10.1016/s1872-5805(08)60041-4

Google Scholar

[19] S. P. Chai, K. Y. Lee, S. Ichikawa, A. R. Mohamed, Synthesis of carbon nanotubes by methane decomposition over Co-Mo/Al2O3: process study and optimization using response surface methodology, Appl. Catal., A 396 (2011) 52-58.

DOI: 10.1016/j.apcata.2011.01.038

Google Scholar

[20] W. M. Yeoh, K. Y. Lee, S. P. Chai, K. T. Lee, A. R. Mohamed, Effective synthesis of carbon nanotubes via catalytic decomposition of methane: influence of calcination temperature on metal-support interaction of Co-Mo/Mgo catalyst, J. Phys. Chem. Solids 74 (2013) 1553-1559.

DOI: 10.1016/j.jpcs.2013.05.023

Google Scholar

[21] J. Kong, A. C. Alan, H. Dai, Chemical vapor deposition of methane for single walled carbon nanotubes, Chem. Phys. Lett. 292 (1998) 567-574.

DOI: 10.1016/s0009-2614(98)00745-3

Google Scholar

[22] L. Yu, Y. Lv, Y. Zhao, Z. Chen, Scalable preparation of carbon nanotubes by thermal decomposition of phenol with high carbon utilizing rate, Mater. Lett. 64 (2010) 2145-2147.

DOI: 10.1016/j.matlet.2010.06.068

Google Scholar

[23] L. M. Manocha, V. Jignesh, S. Manocha, Role of metal catalyst and substrate site for the growth of carbon nanomaterials, Carbon 6 (2005) 79-85.

Google Scholar

[24] M. Kumar, Y. Ando, Carbon nanotubes from camphor: an environment-friendly nanotechnology, J. Phys. 61 (2007) 643-646.

DOI: 10.1088/1742-6596/61/1/129

Google Scholar

[25] S. Swati et al., Synthesis of carbon nanotubes using olive oil and its application in dye sensitized solar cell, Int. J. Renew. Energy Res. 2 (2012) 274-279.

Google Scholar

[26] A. R. Afre, T. Soga, T. Jimbo, M. Kumar, Y. Ando, M. Sharon, Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine oil, Chem. Phys. Lett. 414 (2005) 6-10.

DOI: 10.1016/j.cplett.2005.08.040

Google Scholar

[27] S. Kumari, A. Kumar, P. R. Sengupta, P. K. Dutta, R. B. Mathur, Improving the mechanical and thermal properties of semi-coke base carbon/copper composites reinforced using carbon nanotubes, Submitted to Adv. Mater. Lett.

DOI: 10.5185/amlett.2013.10546

Google Scholar

[28] S. Yellampalli, Carbon Nanotubes-Polymer Nanocomposites, Intech, Croatia, 2011.

Google Scholar

[29] L. C. Stephanie, Nanostructured carbon for energy storage and conversion, Nano Energy 1 (2012) 195-200.

Google Scholar

[30] R. B. Prabhakar, Electrical properties and applications of carbon nanotubes structure, Journal of Nanoscience and Nanotechnology, 7 (2007) 1-29.

Google Scholar

[31] D. Qian, E. C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76 (2000) 2868-2870.

DOI: 10.1063/1.126500

Google Scholar

[32] M. Cadek, J. N. Coleman, V. Barron, K. Hedicke, W. J. Blau, Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites, Appl. Phys. Lett. 81 (2002) 5123-5125.

DOI: 10.1063/1.1533118

Google Scholar

[33] A. A. Azira, D. Habibah, A. B. Suriani, M. Rusop, Effect of multi-wall carbon nanotubes on the properties of natural rubber nanocomposites, Adv. Mater. Res. 832 (2014) 338-343.

DOI: 10.4028/www.scientific.net/amr.832.338

Google Scholar

[34] P. M. Ajayan, O. Z. Zhou, Application of carbon nanotubes topics, Appl. Phys. 80 (2001) 391-425.

Google Scholar

[35] S. Trasatti, P. Kurzweil, Electrochemical supercapacitor as versatile energy stores, Platinum Met. Rev. 38 (1994) 46-56.

Google Scholar

[36] C. Zheng, W. Qian, C. Cui, G. Xu, M. Zhao, G. Tian, F. Wei, Carbon nanotubes for supercapacitors: consideration of cost and chemical vapor deposition techniques, J. Nat. Gas Chem. 21 (2012) 233-240.

DOI: 10.1016/s1003-9953(11)60358-7

Google Scholar

[37] J. Chen, C. Jia, Z. Wan, Novel hybrid nanocomposite based on poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material for supercapacitor, Synth. Met. 189 (2014) 69-76.

DOI: 10.1016/j.synthmet.2014.01.001

Google Scholar

[38] J. M. Boyea, R. E. Camacho. S. P. Turano, W. J.Ready, Carbon nanotube-based Supercapacitor: Technologies and Markets, Nanotechnol. Law Bus. 4 (2007) 585-593.

Google Scholar