Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Continental rifting at pre-existing lithospheric weaknesses

Abstract

Continental rifting is the poorly understood thermomechanical process by which continents break up and new ocean basins form. Two dominant styles of continental rifting are recognized1. Crevice style rifts are characterized by initial graben formation, local uplift of the graben shoulders, and little or no volcanism. Arch-volcanic rifts exhibit an initial doming of the crust, extensive volcanism, and late-stage graben formation. The prevailing expla-nation for the two styles is that crevice rifts form in response to regional horizontal stresses, principally derived from the inter-action of the lithospheric plates along their edges, whereas arch-volcanic rifts are thought to be the result of mantle convection currents which upwell directly beneath the rift axis2. We propose an alternative working model of continental rifting in which both styles initiate in response to regional horizontal stresses. The different surface expressions of the two styles are explained in terms of differences in the mode of failure at different kinds of pre-existing weaknesses in the continental lithosphere, rather than differences in the nature of the driving forces involved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Milanovsky, E. E. Tectonophysics 15, 65–70 (1972).

    Article  ADS  Google Scholar 

  2. Sengör, A. M. & Burke, K. Geophys. Res. Lett. 5, 419–421 (1978).

    Article  ADS  Google Scholar 

  3. Wilson, J. T. Nature 207, 343–347 (1965).

    Article  ADS  Google Scholar 

  4. McConnell, R. B. Bull. geol. Soc. Am. 83, 2549–2572 (1972).

    Article  Google Scholar 

  5. King, B. C. in Tectonics and Geophysies of Continental Rifts (eds Ramberg, I. B. & Neumann, E. R.) 347–350 (Reidel, Dordrecht, 1978).

    Book  Google Scholar 

  6. Fuchs, K. in Approaches to Taphrogenesis (eds Illies, J. H. & Fuchs, K.) 420–432 (Schweizerbart, Stuttgart, 1974).

    Google Scholar 

  7. Illies, J. H. in Tectonics and Geophysics of Continental Rifts (eds Ramberg, I. B. & Neumann, E. R.) 63–71 (Reidel, Dordrecht, 1978).

    Book  Google Scholar 

  8. Sykes, L. R. Rev. Geophys. Space Phys. 16, 621–688 (1978).

    Article  ADS  Google Scholar 

  9. Brace, W. F. & Kohlstedt, D. L. J. geophys. Res. 85, 6248–6252 (1980).

    Article  ADS  Google Scholar 

  10. Meissner, R. The Continental Crust, 162–167 (Academic, New York, 1986).

    Google Scholar 

  11. Pollack, H. N. Earth planet. Sci. Lett. 80, 175–182 (1986).

    Article  ADS  Google Scholar 

  12. Ballard, S. & Pollack, H. N. Earth planet. Sci. Lett. 85, 253–264 (1987).

    Article  ADS  Google Scholar 

  13. Vink, G. E., Morgan, W. J. & Zhao, W. J. geophys. Res. 89, 10072–10076 (1984).

    Article  ADS  Google Scholar 

  14. Dewey, J. F. in The Nature of the Lower Continental Crust (eds Dawson, J. B., Carswell, D. A., Hall, J. & Wedepohl, K. H.) 71–78 (Geological Society, London, 1986).

    Google Scholar 

  15. Chapple, W. M. Bull. geol. Soc. Am. 89, 1189–1198 (1978).

    Article  Google Scholar 

  16. Kirby, S. H. Rev. Geophys. Space Phys. 21, 1458–1487 (1983).

    Article  ADS  Google Scholar 

  17. Zienkiewicz, O. C. & Godbole, P. N. in Finite Elements in Fluids Vol. 1, Ch. 2 (eds Gallagher, R. H., Oden, J. T., Taylor, C. & Zienkiewicz, O. C.) (Wiley, New York, 1975).

    Google Scholar 

  18. Zienkiewicz, O. C. The Finite Element Method 93–118 (McGraw-Hill, London, 1977).

    Google Scholar 

  19. Walcott, A. B. J. geophys. Res. 75, 3941–3954 (1970).

    Article  ADS  Google Scholar 

  20. Huebner, K. H. & Thornton, E. A. The Finite Element Method for Engineers 423–427 (Wiley, New York, 1982).

    MATH  Google Scholar 

  21. Buck, W. R. Earth planet. Sci. Lett. 77, 362–372 (1986).

    Article  ADS  Google Scholar 

  22. Ringwood, A. E. Composition and Petrology of the Earth's Mantle 150–169 (McGraw-Hill, New York, 1975).

    Google Scholar 

  23. Barberi, F., Santacroe, R. & Varet, J. in Continental and Oceanic Rifts. Geodyn. Ser. Vol. 8 (ed. Palmason, G.) 293–309 (AGU, Washington, D.C., 1982).

    Google Scholar 

  24. Mohr, P. Trans. Am. geophys. Un. 68, 721–730 (1987).

    Article  ADS  Google Scholar 

  25. Jones, C. H. Tectonics 6, 449–473 (1987).

    Article  ADS  Google Scholar 

  26. Kerr, R. A. Science 239, 978–979 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Burchfiel, B. C., Hodges, K. V. & Royden, L. H. J. geophys. Res. 92, 10422–10426 (1987).

    Article  ADS  Google Scholar 

  28. Rowley, D. B. & Sahagian, D. Geology 14, 32–35 (1986).

    Article  ADS  Google Scholar 

  29. Wernicke, B. Can. J. Earth Sci. 22, 108–125 (1984).

    Article  Google Scholar 

  30. Lister, G. S., Etheridge, M. A. & Symonds, P. A. Geology 14, 246–250 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunbar, J., Sawyer, D. Continental rifting at pre-existing lithospheric weaknesses. Nature 333, 450–452 (1988). https://doi.org/10.1038/333450a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333450a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing