Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

More rapid polar ozone depletion through the reaction of HOCI with HCI on polar stratospheric clouds

Abstract

THE direct reaction of HOC1 with HC1, known to occur in liquid water1 and on glass surfaces2, has now been measured on surfaces similar to polar stratospheric clouds3,4 and is shown here to play a critical part in polar ozone loss. Two keys to understanding the chemistry of the Antarctic ozone hole5–7 are, one, the recognition that reactions on polar stratospheric clouds transform HC1 into more reactive species denoted by ClOx(refs 8–12) and, two, the discovery of the ClO-dimer (C12O2) mechanism that rapidly catalyses destruction of O3(refs 13–15). Observations of high levels of OClO and ClO in the springtime Antarctic stratosphere16–19 confirm that most of the available chlorine is in the form of ClOx (refs 20, 21). But current photochemical models22,23 have difficulty converting HC1 to ClOx rapidly enough in early spring to account fully for the observations5–7,20,21. Here I show, using a chemical model, that the direct reaction of HOC1 with HC1 provides the missing mechanism. As alternative sources of nitrogen-containing oxidants, such as N2O5 and ClONO2, have been converted in the late autumn to inactive HNO3 by known reactions on the sulphate-layer aerosols24–27, the reaction of HOC1 with HC1 on polar stratospheric clouds becomes the most important pathway for releasing that stratospheric chlorine which goes into polar night as HC1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stumm, W. & Morgan, J. J. Aquatic Chemistry (Wiley, New York, 1981).

    Google Scholar 

  2. Molina, M. J., Ishiwata, T. & Molina, L. T. J. phys. Chem. 84, 821–825 (1980).

    Article  CAS  Google Scholar 

  3. Hanson, D. R. & Ravishankara, A. R. J. phys. Chem. (submitted).

  4. Abbatt, J. P. D. & Molina, M. J. Geophys. Res. Lett. (submitted).

  5. Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Nature 315, 207–210 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Stolarski, R. S. et al. Nature 322, 808–811 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Hofmann, D. J. et al. Nature 326, 59–62 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Rowland, F. S., Sato, H., Khwaja, H. & Elliott, S. M. J. phys. Chem. 90, 1985–1988 (1986).

    Article  CAS  Google Scholar 

  9. Molina, M. J., Tso, T. L., Molina, L. T. & Fang, F. C. Y. Science 238, 1253–1258 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Tolbert, M. A., Rossi, M. J., Malhotra, R. & Golden, D. M. Science 238, 1258–1261 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. Nature 321, 755–758 (1986).

    Article  ADS  CAS  Google Scholar 

  12. McElroy, M. B., Salawitch, R. J., Wofsy, S. C. & Logan, J. A. Nature 321, 759–762 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Molina, L. T. & Molina, M. J. J. phys. Chem. 91, 433–436 (1986).

    Article  Google Scholar 

  14. Hayman, G. D., Davies, J. M. & Cox, R. A. Geophys. Res. Lett. 13, 1347–1350 (1988).

    Article  ADS  Google Scholar 

  15. Sander, S. P., Friedl, R. R. & Yng, Y. L. Science 245, 1095–1098 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Solomon, S., Mount, G. H., Saunders, R. W. & Schmeltekopf, A. L. J. geophys. Res. 92, 8329–8388 (1987).

    Article  ADS  CAS  Google Scholar 

  17. de Zafra, R. L. et al. Nature 329, 408–411 (1987).

    Article  ADS  Google Scholar 

  18. Brune, W. H., Anderson, J. G. & Chan, K. R. J. geophys. Res. 94, 16649–16663 (1989).

    Article  ADS  Google Scholar 

  19. Anderson, J. G., Brune, W. H. & Proffitt, M. H. J. geophys. Res. 94, 11465–11479 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Anderson, J. G., Brune, W. H. & Toohey, D. W. Science 251, 39–46 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Brune, W. H. et al. Science 252, 1260–1266 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Rodriguez, J. M. et al. J. geophys. Res. 94, 16683–16703 (1989).

    Article  ADS  Google Scholar 

  23. Austin, J. et al. J. geophys. Res. 94, 16717–16735 (1989).

    Article  ADS  Google Scholar 

  24. Mozurkewich, M. & Calvert, J. G. J. geophys. Res. 93, 15889–15896 (1988).

    Article  ADS  Google Scholar 

  25. Tolbert, M. A., Rossi, M. J. & Golden, D. M. Geophys. Res. Lett. 15, 847–850 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Van Doren, J. M. et al. J. phys. Chem. 95, 1684–1689 (1991).

    Article  CAS  Google Scholar 

  27. Hanson, D. R. & Ravishankara, A. R. J. geophys. Res. 96, 17307–17314 (1991).

    Article  ADS  CAS  Google Scholar 

  28. Prather, M. J. & Rodriguez, J. M. Geophys. Res. Lett. 15, 1–4 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Leu, M. T. Geophys. Res. Lett. 15, 17–20 (1988).

    Article  ADS  CAS  Google Scholar 

  30. Leu, M. T. Geophys. Res. Lett. 15, 851–854 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Quinlan, M. A., Reihs, C. M., Golden, D. M. & Tolbert, M. A. J. phys. Chem. 94, 3255–3260 (1990).

    Article  CAS  Google Scholar 

  32. Van Doren, J. M. et al. J. phys. Chem. 94, 3265–3269 (1990).

    Article  CAS  Google Scholar 

  33. Hanson, D. R. & Ravishankara, A. R. J. geophys. Res. 96, 5081–5090 (1991).

    Article  ADS  CAS  Google Scholar 

  34. Hofmann, D. J. & Solomon, S. J. geophys. Res. 94, 5029–5041 (1989).

    Article  ADS  CAS  Google Scholar 

  35. Brasseur, G. P., Granier, C. & Walters, S. Nature 348, 626–628 (1990).

    Article  ADS  CAS  Google Scholar 

  36. Mather, J. H. & Brune, W. H. Geophys. Res. Lett. 17, 1283–1286 (1990).

    Article  ADS  CAS  Google Scholar 

  37. Rodriguez, J. M., Ko, M. K. W. & Sze, N. D. Nature 352, 134–137 (1991).

    Article  ADS  CAS  Google Scholar 

  38. Keys, J. G. et al. Geophys. Res. Lett. 13, 1260–1263 (1986).

    Article  ADS  CAS  Google Scholar 

  39. Fahey, D. W. et al. Nature 344, 321–324 (1990).

    Article  ADS  CAS  Google Scholar 

  40. Toon, O. B., Browell, E. V., Kinne, S. & Jordan, J. Geophys. Res. Lett. 17, 393–396 (1990).

    Article  ADS  Google Scholar 

  41. Toon, G. C. & Farmer, C. B. Geophys. Res. Lett. 16, 1375–1377 (1989).

    Article  ADS  CAS  Google Scholar 

  42. Jones, R. L. et al. J. geophys. Res. 94, 11529–11558 (1989).

    Article  ADS  Google Scholar 

  43. Prather, M. J. & Jaffe, A. H. J. geophys. Res. 95, 3473–3492 (1990).

    Article  ADS  Google Scholar 

  44. deMore, W. B. et al. JPL 90-1 NASA Jet Propulsion Laboratory, 1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prather, M. More rapid polar ozone depletion through the reaction of HOCI with HCI on polar stratospheric clouds. Nature 355, 534–537 (1992). https://doi.org/10.1038/355534a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355534a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing