Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers

Abstract

The availability and toxicity of trace metals in fresh water are known to be regulated by the complexation of free metal ions with dissolved organic matter1,2,3. The potential role of inorganic sulphides in binding trace metals has been largely ignored because of the reduced persistence of sulphides in these oxic waters. However, nanomolar concentrations of copper and zinc sulphides have been observed in four rivers in Connecticut and Maryland4,5. Here we report dissolved (< 0.2 µm particle diameter) sulphide concentrations ranging up to 600 nM, with more than 90% being complexed by copper, iron and zinc. These complexes account for up to 20% of the total dissolved Fe and Zn and 45% of the total dissolved Cu. Fourier transform mass spectrometry reveals that these complexes are not simple M(HS)+ protonated species6,7 but are higher-order unprotonated clusters (M3S3, M4S 6, M2S4), similar to those found in laboratory solutions8,9,10 and bio-inorganic molecules11. These extended structures have high stability constants8,10 and are resistant to oxidation and dissociation10,12, which may help control the toxicity of these and other less abundant, but more toxic, trace metals, such as silver, cadmium and mercury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative FTMS data obtained from the Broadkill River at Milton, Delaware.

Similar content being viewed by others

References

  1. Breault, R., Colman, J., Akien, G. & McKnight, D. Copper speciation and binding by organic matter in copper-contaminated streamwater. Environ. Sci. Technol. 30, 3477–3486 (1996).

    Article  CAS  ADS  Google Scholar 

  2. Xue, H., Oestreich, A., Kistler, D. & Sigg, L. Free cupric ion concentrations and Cu complexation in selected Swiss lakes and rivers. Aquat. Sci. 58, 69– 87 (1996).

    Article  Google Scholar 

  3. Xue, H. & Sunda, W. Comparison of [Cu2+] measurements in lake water determined by ligand exchange and cathodic stripping voltammetry and by ion-selective electrode. Environ. Sci. Technol. 31, 1902–1909 ( 1997).

    Article  CAS  ADS  Google Scholar 

  4. Rozan, T. F., Benoit, G. & Luther III, G. W. Measuring metal sulfide complexes in oxic river waters with square wave voltammetry. Environ. Sci. Technol. 33, 3021–3026 ( 1999).

    Article  CAS  ADS  Google Scholar 

  5. Rozan, T. F. & Benoit, G. Geochemical factors controlling free Cu ion concentrations in river water. Geochim. Cosmochim. Acta 19/20, 3311–3319 ( 1999).

    Article  ADS  Google Scholar 

  6. Dyrssen, D. Sulfide complexation in surface seawater. Mar. Chem. 24, 143–153 (1988).

    Article  CAS  Google Scholar 

  7. Al-Farawati, R. & van den Berg, C. M. G. Metal-sulfide complexation in seawater. Mar. Chem. 63, 331–352 (1999).

    Article  CAS  Google Scholar 

  8. Luther III, G. W., Rickard, D. T., Theberge, S. M. & Olroyd, A. Determination of metal (bi)sulfide stability constants of Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ by voltammetric methods. Environ. Sci. Technol. 30, 671– 679 (1996).

    Article  CAS  ADS  Google Scholar 

  9. Helz, G. R, Charnock, J. M., Vaughan, D. J. & Garner, C. D. Multinuclearity of aqueous copper and zinc bisulfide complexes—an EXAFS investigation. Geochim. Cosmochim. Acta 57, 15– 25 (1993).

    Article  CAS  ADS  Google Scholar 

  10. Luther III, G. W., Theberge, S. M. & Rickard, D. T. Evidence for aqueous clusters as intermediates during zinc sulfide formation. Geochim. Cosmochim. Acta 19/20, 3159–3169 ( 1999).

    Article  ADS  Google Scholar 

  11. Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853–1858 (1998).

    Article  CAS  ADS  Google Scholar 

  12. Vazquez, F., Zhang, J.-Z. & Millero, F. J. Effect of metals on the rate of the oxidation of H2S in seawater. Geophy. Res. Lett. 16, 1363–1366 (1989).

    Article  ADS  Google Scholar 

  13. Theberge, S. M. & Luther III, G. W. Determination of electrochemical properties of a soluble aqueous FeS species present in sulfidic solutions. Aquat. Geochem. 3, 1 –21 (1997).

    Article  Google Scholar 

  14. Henneke, E., Luther III, G. W., deLange, G. J. & Hoefs, J. Sulphur speciation in anoxic hypersaline sediments from the eastern Mediterranean Sea. Geochim. Cosmochim. Acta 61, 307– 321 (1996).

    Article  ADS  Google Scholar 

  15. Rozan, T. F., Theberge, S. M. & Luther III, G. W. Quantifying elemental sulfur (S), bisulfide (HS-) and polysulfides (S2-x ) using a voltammetric method. Anal. Chim. Acta 415, 175–184 (2000).

    Article  CAS  Google Scholar 

  16. Luther III, G. W. Pyrite synthesis via polysulfide compounds. Geochim. Cosmochim. Acta 55, 2839– 2849 (1991).

    Article  CAS  ADS  Google Scholar 

  17. Rickard, D., Oldroyd, A. & Cramp, A. Voltammetric evidence for soluble FeS complexes in anoxic estuarine muds. Estuaries 22, 693– 701 (1999).

    Article  CAS  Google Scholar 

  18. Croot, P. L., Moffett, J. W. & Luther III, G. W. Polarographic determination of half-wave potentials for copper-organic complexes in seawater. Mar. Chem. 67, 219–232 ( 1999).

    Article  CAS  Google Scholar 

  19. Sunda, W. G. & Huntsman, S. A. Processes regulating cellular metal accumulation and physiological effects: Phytoplankton as model systems. Sci. Tot. Environ. 219, 165– 181 (1998).

    Article  CAS  Google Scholar 

  20. Knauer, K., Behra, R. & Sigg, L. Adsorption and uptake of copper by the green alga Scenedesmus subspicatus (Chlorophyta). J. Phycol. 33, 596– 601 (1997).

    Article  CAS  Google Scholar 

  21. Kim, S. D., Ma, H. Z., Allen, H. E. & Cha, D. K. Influence of dissolved organic matter on the toxicity of copper to Ceriodaphnia dubia: Effect of complexation kinetics. Environ. Toxicol. Chem. 18 , 2433–2437 (1999).

    Article  CAS  Google Scholar 

  22. Walsh, R. S., Cutter, R. S., Dunstan, W. M., Radford-Knoery, J. & Elder, J. T. The biogeochemistry of hydrogen-sulfide–phytoplankton production in the surface ocean. Limnol. Oceanogr. 39, 941–948 (1994).

    Article  CAS  ADS  Google Scholar 

  23. Ditoro, D. M. et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ. Sci. Technol. 26, 96–101 (1992).

    Article  CAS  ADS  Google Scholar 

  24. Theberge, S. M. Investigations of Metal-sulfide Complexes and Clusters: a Multimethod Approach. Thesis, Univ. Delaware (1999).

    Google Scholar 

  25. OPUS utility isotope program, version 3.1. (Micromass Co., Manchester, 1993).

Download references

Acknowledgements

This work was supported by an NSF Postdoctoral award (T.F.R.), the Photographic & Imaging Manufactures Association, Inc., and a NOAA Sea Grant (G.W.L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim F. Rozan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozan, T., Lassman, M., Ridge, D. et al. Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers. Nature 406, 879–882 (2000). https://doi.org/10.1038/35022561

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35022561

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing