Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of a DNA base-excision product resembling a cisplatin inter-strand adduct

Abstract

Base-excision of a self-complementary oligonucleotide with central G:T mismatches by the G:T/U-specific mismatch DNA glycosylase (MUG), generates an unusual DNA structure which is remarkably similar in conformation to an interstrand DNA adduct of the anti-tumor drug cis -diamminedichloroplatinum. The abasic sugars generated by excision of the mismatched thymines are extruded from the double-helix, and the 'widowed' deoxyguanosines rotate so that their N7 and O6 groups protrude into the minor groove of the duplex and restack in an interleaved intercalative geometry, generating a kink in the helix axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of MUG–DNA base-excision product complex.
Figure 2: Rotation and restacking of the widowed deoxyguanosines and extrusion of the abasic sugars.
Figure 3: Comparison with interstrand cisplatin adduct.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lindahl, T. & Karlström, O. Biochemistry 12, 5151– 5154 (1973).

    Article  CAS  Google Scholar 

  2. Lindahl, T. & Nyberg, B. Biochemistry 13, 3405– 3410 (1974).

    Article  CAS  Google Scholar 

  3. Nakabeppu, Y., Kondo, H. & Sekiguchi, M. J. Biol. Chem. 259, 3723– 3729 (1984).

    Google Scholar 

  4. Sakumi, K. et al. J. Biol. Chem. 261, 5761– 5766 (1986).

    Google Scholar 

  5. Bjoras, M., Klungland, A., Johansen, R.F. & Seeberg, E. Biochemistry 34, 4577– 4582 (1995).

    Article  CAS  Google Scholar 

  6. Nedderman, P. & Jiricny, J. J. Biol. Chem. 268, 21218– 21224 (1993).

    Google Scholar 

  7. Dianov, G. & Lindahl, T. Curr. Biol. 4, 1069– 1076 (1994).

    Article  CAS  Google Scholar 

  8. Barrett, T.E. et al. Cell 92, 117– 129 ( 1998).

    Article  CAS  Google Scholar 

  9. Gallinari, P. & Jiricny, J. Nature 383, 735– 738 (1996).

    Article  CAS  Google Scholar 

  10. Seeberg, E., Eide, L. & Bjørås, M. Trends Biochem. Sci. 20, 391– 397 (1995).

    Article  CAS  Google Scholar 

  11. Mol, C.D., Kuo, C.F., Thayer, M.M., Cunningham, R.P. & Tainer, J.A. Nature 374, 381– 386 (1995).

    Article  CAS  Google Scholar 

  12. Gorman, M.A. et al. EMBO J. 16, 6548– 6558 ( 1997).

    Article  CAS  Google Scholar 

  13. Slupphaug, G. et al. Nature 384, 87– 91 ( 1996).

    Article  CAS  Google Scholar 

  14. Cuniasse, P. et al. Nucleic Acids Res. 15, 8003– 8022 (1987).

    Article  CAS  Google Scholar 

  15. Kalnik, M.W., Chang, C.N., Johnson, F., Grollman, A.P. & Patel, D.J. Biochemistry 28, 3373– 3383 (1989).

    Article  CAS  Google Scholar 

  16. Manoharan, M., Ransom, S.C., Mazumder, A. & Gerlt, J.A. J. Am. Chem. Soc. 110, 1620– 1622 ( 1988).

    Article  CAS  Google Scholar 

  17. Goljer, I., Kumar, S. & Bolton, P.H. J. Biol. Chem. 270, 22980– 22987 (1995).

    Article  CAS  Google Scholar 

  18. Wang, K.Y., Parker, S.A., Goljer, I. & Bolton, P.H. Biochemistry 36, 11629– 11639 ( 1997).

    Article  CAS  Google Scholar 

  19. Huang, H., Zhu, L., Reid, B.R., Drobny, G.P. & Hopkins, P.B. Science 270, 1842– 1845 (1995).

    Article  CAS  Google Scholar 

  20. Leslie, A.G.W. Mosflm users guide (MRC-Laboratory of Molecular Biology, Cambridge, UK, 1995).

    Google Scholar 

  21. CCP4. Acta Crystallogr. D 50, 760– 763 (1994).

  22. Navaza, J. Acta Crystallogr. A 50, 157– 163 ( 1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for assistance with data collection and the Ludwig Institute for Cancer Research and the CLRC Daresbury Laboratory for provision of X-ray diffraction facilities. We are particularly grateful to P. Hopkins and S. Thor Sigurdsson for making the coordinates of the cisplatin adduct available to us. This work was supported by the Cancer Research Campaign, as well as by the Schweizerische Krebsliga (J.J.) and the Julius Müller Stiftung (J.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence H. Pearl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrett, T., Savva, R., Barlow, T. et al. Structure of a DNA base-excision product resembling a cisplatin inter-strand adduct. Nat Struct Mol Biol 5, 697–701 (1998). https://doi.org/10.1038/1394

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1394

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing