Skip to main content
Log in

Diagnosing deep convection from global analyses

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

Convection, a sub-gridscale process, is coupled to the gridscale motions via the averaged budget equations. In this study atmospheric convection is represented by the vertical eddy flux of equivalent temperature, referred to asconvective flux. It is demonstrated with a thermodynamic diagnostic model for an atmospheric column (DIAMOD) that the convective flux can, with tolerable error, be diagnosed from daily global gridscale analyses. These yield the gridscale budget of equivalent temperature. The budget is the observable quantity, it is in balance with the unobservable convective flux. We reproduce the known result that in convectively active atmospheric columns the budget is negative in lower and positive in upper layers. The corresponding vertical mean slope of the budget controls the convective strength; the slope is strongly negative for deep convection.

In the global mean column the convective flux converges upward throughout the entire atmosphere. In actual convective situations, however, the flux diverges in lower layers, reaches highest intensity somewhere between 700–500 hPa and converges in the upper atmosphere. We find maximum fluxes around 600 W/m2 in individual tropical columns and extreme fluxes exceeding 1000 W/m2 in midlatitude columns. In the monthly mean however, the convective flux is clearly larger in the tropics; it also reaches to significantly higher levels in the tropics than in midlatitudes. While these qualitative results are invariant against using both routine analysis and reanalysis data from different sources (ECMWF and NCEP) our results change quantitatively when changing the data sources. We attribute this effect to differences in the sub-gridscale parameterization implicit in the objective data assimilation of the weather centres which are not completely removed by the incoming observation data in the final analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, A., Schubert, W. H., 1974: Interaction of a cumulus cloud ensemble with the large-scale environment Part I.J. Atmos. Sci.,31, 674–701.

    Google Scholar 

  • Betts, A. K., 1974: Further comments on “a comparison of the equivalent potential temperature and the static energy”.J. Atmos. Sci.,31, 1713–1715.

    Google Scholar 

  • Betts, A. K., 1978: Convection in the tropics. In: Shaw, D. B. (Ed.)Meteorology Over the Tropical Oceans. Bracknell: Roy. Meteor. Soc., pp. 105–132.

    Google Scholar 

  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis.Quart. J. Roy. Meteor. Soc.,112, 677–691.

    Google Scholar 

  • Betts, A. K., 1997: The parameterization of deep convection. In: Smith, R. K. (Ed.)Physics and Parameterization of Moist Atmospheric Convection, pp. 255–279. NATO ASI Series.

  • Betts, A. K., Miller, M. J., 1986: A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air mass datasets.Quart. J. Roy. Meteor. Soc.,112, 693–706.

    Google Scholar 

  • Binder, P., Schär, C., 1996: MAP design proposal, 2nd edn. Available from MAP data centre, ETH Zürich, Switzerland.

  • Calanca, P., Fortelius, C. 1996: Representation of model data and evaluation of diagnostic equations is pressure coordinates.Tellus,48A, 756–766.

    Google Scholar 

  • Dorninger, M., 1997:Der konvektive Wärmefluß bei verschiedenen synoptischen Lagen. Ph.D. thesis, University of Vienna, 162pp.

  • Dorninger, M., Ehrendorfer, M., Hantel, M., Rubel, F., Wang, Y., 1992: A thermodynamic diagnostic model for the atmosphere. Part I: Analysis of the August 1991 rain episode in Austria.Meteorol. Z., N. F.,1, 87–121.

    Google Scholar 

  • Dorninger, M., Hantel, M., 1996: Total convective heat fluxes for different weather situationsMAP Newsletter 5, 20–21.

    Google Scholar 

  • Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front.Mon. Wea. Rev.,121, 1493–1513.

    Google Scholar 

  • Emanuel, K. A., Raymond, D. J., (eds.), 1993:The Representation of Cumulus Convection in Numerical Models, Vol. 24.Meteorol. Monographs. AMS, 246 pp.

  • Emeis, S., 1986: Subsynoptic vertical energy fluxes in midlatitude cyclones.Meteorol. Rdsch.,39, 161–172.

    Google Scholar 

  • Gibson, J. K., Kållberg, P., Uppala, S., 1996: The ECMWF Re-Analysis (ERA) project.ECMWF Newsletter,73, 7–17.

    Google Scholar 

  • Gregory, D., 1997: The mass flux approach to the parameterization of deep convection. In: Smith, R. K. (Ed.).The Physics and Parameterization of Moist Atmospheric Convection. NATO ASI Series.

  • Haimberger, L., Hantel, M., 1996: Convection driven by the linearized gridscale moist enthalpy budget. In: Staniforth, A. (ed.)Research Activities in Atmospheric, and Oceanic Modelling, Rept. No. 23, pp. 2.12–2.13. WMO.

  • Haimberger, L., Hantel, M., Dorninger, M., 1995: A thermodynamic diagnostic model for the atmosphere. Part III: DIAMOD with orography and new error model.Meteorol. Z., N. F.,4, 162–182.

    Google Scholar 

  • Hantel, M., 1987: Subsynoptic vertical heat fluxes from high resolution synoptic budgets.Meteorol. Atmos. Phys.,36, 24–44.

    Google Scholar 

  • Hantel, M., Dedenbach, D., Hüster, H., 1976: Energy streamfunctions in the vertical-meridional plane for the northern atmosphere.J. Atmos. Sci.,33, 617–631.

    Google Scholar 

  • Hantel, M., Dorninger, M., 1996: Diagnostic test of the ECMWF physics package. Final Report of ECMWF special project, available from ECMWF.

  • Hantel, M., Ehrendorfer, M. Haimberger, L., 1993: A thermodynamic diagnostic model for the atmosphere. Part II: the general theory and its consequences.Meteorol. Z., N. F.,2, 255–271.

    Google Scholar 

  • Hantel, M., Hamelbeck, F., 1998: Convective activity quantified by sub-gridscale fluxes.Physics and Chemistry of the Earth,22 (in print).

  • Hoskins, B. J., Hsu, H. H., James, I. N., Masutani, M., Sardeshmukh, P. D., White, G. H., (1989) Diagnostics of the global atmospheric circulation (based on ECMWF analyses 1979–1989). ICSU/WMO/WCRP, WCRP-27, WMO/TD-No. 326, Geneva, October 1989, 217 pp.

  • Hubert, L. F., Krueger, A., Winston, J., 1969: The double intertropical convergence zone-fact or fiction?J. Atmos. Sci.,26, 771–773.

    Google Scholar 

  • Jakob, C., 1994: The impact of the new cloud scheme on ECMWF's integrated forecasting system (IFS). In:Proceedings of ECMWF/GEWEX workshop on modelling validation and assimilation of clouds. ECMWF, Reading U. K.

    Google Scholar 

  • Johnson, R. H., 1976: The role of convective-scale precipitation downdrafts in cumulus and synoptic scale interactions.J. Atmos. Sci.,33, 1890–1910.

    Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Jawoniak, J., Mo, K. C., Ropelewski, C., Wand, J., Leetmaa, A., Reynolds, R., Jene, R., Joseph, D., 1996: The NCEP/NCAR 40-year reanalysis project.Bull. Amer. Meteorol. Soc.,77, 437–471.

    Google Scholar 

  • Kanamitsu, M., 1989: Description of the NMC global data assimilation and forecast system.Wea. Forecasting,4, 335–342.

    Google Scholar 

  • Kley, D., Crutzen, P. J., Smith, H. G. J., Vömel, H., Oltmans, S., Grassl, H., Ramanathan, V., 1996: Observations of near-zero Ozone levels over the convective pacific: Effects on air chemistry.Sciences,274, 230–233.

    Google Scholar 

  • Kornfield, J., Hasler, A. F., Hanson, K. Suomi, V., 1967: Photographic cloud climatology from ESA III and V computer produced mosaics.Bull. Amer. Meteor. Soc.,48, 878–883.

    Google Scholar 

  • Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection.J. Atmos. Sci.,22, 40–63.

    Google Scholar 

  • Kuo, Y. H., Anthes, R. A., 1984: Mesoscale budgets of heat and moisture in a convective system over the central United States.Mon. Wea. Rev.,112, 1482–1497.

    Google Scholar 

  • Lin, X., Johnson, R. H., 1996: Heating, moistening, and rainfall over the western pacific warm pool during TOGA-COARE.J. Atmos. Sci.,53, 3367–3383.

    Google Scholar 

  • Lorenz, E. N., 1967:The Nature and Theory of the General Circulation of the Atmosphere, Vol. 218.TP.115. WMO, 161 pp.

  • Manabe, S., Strickler, R., 1964: Thermal equilibrium of the atmosphere with a convective adjustment.J. Atmos. Sci.,21, 361–385.

    Google Scholar 

  • Matsumoto, S., 1967: Budget analysis on the sea effect snow observed along the Japan sea coastal area.J. Meteor Soc. Jap.,45, 53–63.

    Google Scholar 

  • Ninomiya, K., 1968: Heat, and water budget over the Japan sea and the Japan islands in winter seasons. — With special emphasis on the relation among the supply from the sea surface, the convective transfer and the heavy snowfall.J. Meteor. Soc. Jap.,46, 343–372.

    Google Scholar 

  • Ninomiya, K., 1971: Dynamical analysis of outflow from tornado-producing thunder-storms as revealed by ATS III pictures.J. Appl. Meteor.,10, 275–294.

    Google Scholar 

  • Oort, A. H., Rasmusson, E. M., Rasmusson, 1970: On the annual variation of the monthly mean meridional circulation.Mon. Wea. Rev.,98, 423–442.

    Google Scholar 

  • Pan, H. L., Wu, W. S., 1994: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. InPreprints, Tenth Conference on Numerical Weather Prediction, Portland, OR, pp. 96–98. Amer. Meteor. Soc.

  • Peixóto, J. P., Oort A. H., 1992:Physics of Climate. American Institute of Physics, 520 pp.

  • Post, M. J., Fairall, C. W., Snider, J. B., Han, Y., White, A. B., Ecklund, W. L., Weickmann, K. M., Quinn, P. K., Cooper, D. I., Sekelsky, S. M., McIntosh, R. E., Minnett, P., Knuteson, R. O., 1997: The combined sensor program: An air-sea science mission in the central and western pacific ocean.Bull. Amer. Meteor. Soc.,78, 2797–2815.

    Google Scholar 

  • Riehl, H., 1950: On the role of the tropics in the general circulation of the atmosphere.Tellus,2, 1–17.

    Google Scholar 

  • Riehl, H., 1979:Weather and Climate in the Tropics. Academic Press, 611 pp.

  • Riehl, H., Malkus, J. S., 1958: On the heat balance in the equatorial trough zone.Geophysica 6, 503–538.

    Google Scholar 

  • Riehl, H., Malkus, J. S., 1961: Some aspects of hurricane Daisy, 1958.Tellus,13, 181–213.

    Google Scholar 

  • Riehl, H., Yeh, T. C., Malkus, J. S., La Seur, N. E., 1951: The north-east trade of the Pacific Ocean.Quart. J. Roy Meteor. Soc.,77, 598–626.

    Google Scholar 

  • Rossow, W. J., Schiffer, R. A., 1991: ISCCP cloud data products.Bull. Amer. Meteor. Soc.,72, 2–20.

    Google Scholar 

  • Tiedtke, M., 1989 comprehensive mass flux scheme for cumulus parameterization in large-scale models.Mon. Wea. Rev.,117, 1779–1800.

    Google Scholar 

  • Trenberth, K. E., 1995: Truncation and use of model-coordinate data.Tellus,47A, 287–303.

    Google Scholar 

  • Velden, C. S., Young, J. A., 1994: Satellite observations during TOGA COARE: Large scale descriptive overview.Mon. Wea. Rev.,122, 2426–2441.

    Google Scholar 

  • Webster, P. J., Lucas, R., 1992: TOGA COARE:The coupled ocean-atmosphere response experiment.Bull. Amer. Meteor. Soc.,73, 1377–1416.

    Google Scholar 

  • Yanai, M., Esbensen, S., Chu, J. H.: 1973: Determination of bulk properties of tropical cloud cluster from largescale heat and moisture budgets.J. Atmos. Sci.,30, 611–627.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 12 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hantel, M., Haimberger, L. Diagnosing deep convection from global analyses. Meteorl. Atmos. Phys. 67, 135–152 (1998). https://doi.org/10.1007/BF01277506

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01277506

Keywords

Navigation