Skip to main content
Log in

Kinetic study on the equilibrium between membrane-bound and free photoreceptor G-protein

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Formation of the complex between photoreceptor G-protein (G) and photoactivated rhodopsin (R M ) leads to a change in the light scattering of the disk membranes (binding signal or signalP). The signal measured on isolated disks (so-calledP D signal) is exactly stoichiometric in its final level to bound G-protein but its kinetics are much slower than theR M G binding reaction. In this study on isolated disks, recombined with G-protein, we analyzed theP D -signal level and kinetics as a function of flash intensity and compared it to theR M G-complex formation monitored spectroscopically (by extra metarhodopsin II). The basic observation is that the initial slopes of theP D signals decrease with flash intensity when the signals are normalized to the same final level. This finding prevents an explanation of the scattering signal by a slow postponed reaction of theR M G complex. We propose to interpret the scattering change as a redistribution of G-protein between a membrane-bound and a solved state. The process is driven by the complexation of membrane-bound G to flash-activated rhodopsin (R M ). The experimental evidence for this two-state model is the following: (1) The intensity dependence of the initial rate of theP D signal is explained by the model. Under the assumption of a bimolecular reaction of free G with sites at the membrane, equal to rhodopsin in their concentration, the measured rates yield aK D of 10−5 M. (2) Evaluation of the extra MII kinetics yields a biphasic rise at saturating flashes. The measured rates fit to the supply of free and membrane-bound G-protein for the reaction withR M . (3) Quantitative estimation of the expected scattering intensity changes gives a comprehensive description of binding signal and dissociation signal by the gain and loss of G-protein scattering mass. (4) The temperature dependence of theP D -signal rate leads to an activation energy of the membrane-association process ofE a =44 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer, P.J., Mavromatti, E. 1980. Interaction of Ficoll with bovine disc membranes.Biophys. Struct. Mech. [Suppl.]6:116

    Google Scholar 

  • Bennett, N., Dupont, Y. 1985. The G-protein of retinal rod outer segments (Transducin): Mechanism of interaction with rhodopsin and nucleotides.J. Biol. Chem. 260:4156–4168

    PubMed  Google Scholar 

  • Bennett, N., Michel-Villaz, M., Kühn, H. 1982. Light-induced interaction between rhodopsin and the GTP-binding protein. Metharhodopsin II is the major photoproduct involved.Eur. J. Biochem. 127:97–103

    PubMed  Google Scholar 

  • Daemen, F.J.M. 1973. Vertebrate rod outer segment membranes.Biochim. Biophys. Acta 300:255–288

    PubMed  Google Scholar 

  • Emeis, D., Hofmann, K.P. 1981. Shift in the relation between flash-induced metarhodopsin I and metharhodopsin II within the first 10% rhodopsin bleaching in bovine disc membranes.FEBS Lett. 136:201–207

    PubMed  Google Scholar 

  • Emeis, D., Kühn, H., Reichert, J., Hofmann, K.P. 1982. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium.FEBS Lett. 143:29–34

    PubMed  Google Scholar 

  • Fung, B.K.K. 1983. Characterisation of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits.J. Biol. Chem. 258:10495–10502

    PubMed  Google Scholar 

  • Fung, B.K.K., Hurley, J.B., Stryer, L. 1981. Flow of information in the light-triggered cyclic nucleotide cascade of vision.Proc. Natl. Acad. Sci. USA 78:152–156

    PubMed  Google Scholar 

  • Fung, B.K.K., Stryer, L. 1980. Photolysed rhodopsin catalyses the exchange of GTP for bound GDP in retinal rod outer segments.Proc. Natl. Acad. Sci. USA 77:2500–2504

    PubMed  Google Scholar 

  • Hofmann, K.P., Emeis, D. 1981. Comparative kinetic light-scattering and-absorption photometry.Biophys. Struct. Mech. 8:23–34

    Google Scholar 

  • Hofmann, K.P., Schleicher, A., Emeis, D., Reichert, J. 1981. Light-induced axial and radial shrinkage effects and changes of the refractive index in isolated bovine rod outer segments and disc vesicles. Physical analysis of near-infrared scattering changes.Biophys. Struct. Mech. 8:67–93

    PubMed  Google Scholar 

  • Hofmann, K.P., Uhl, R., Hoffmann, W., Kreutz, W. 1976. Measurement of fast light-induced light-scattering and-absorption changes in rod outer segments of vertebrate light sensitive rod cells.Biophys. Struct. Mech. 2:61–77

    PubMed  Google Scholar 

  • Hulst, H.C. van de 1957. The Scattering of Light and Other Electromagnetic Radiation. Academic, New York

    Google Scholar 

  • Kühn, H. 1980. Light- and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes.Nature (London) 283:587–589

    Google Scholar 

  • Kühn, H., Bennett, N., Michel-Villaz, M., Chabre, M. 1981. Interaction between photoexcited rhodopsin and GTP-binding protein: Kinetic and stoichiometric analysis from lightscattering changes.Proc. Natl. Acad. Sci. USA 18:6873–6877

    Google Scholar 

  • Liebman, P.A., Jagger, W.S., Kaplan, M.W., Bargoot, F.G. 1974. Membrane structure changes in rod outer segments associated with rhodopsin bleaching.Nature (London) 251:31–36

    Google Scholar 

  • Liebman, P.A., Sitaramayya, A. 1984. Role of G-protein/receptor interaction in amplified phosphodiesterase activation of retinal rods.Adv. Cyclic Nucl. Res. 17:215–225

    Google Scholar 

  • Matthews, R.G., Hubbard, R., Brown, P.-K., Wald, G. 1963. Tautomeric forms of metarhodopsin.J. Gen. Physiol. 47:215–240

    PubMed  Google Scholar 

  • Michel-Villaz, M., Brisson, A., Chapron, Y. 1984. Physical analysis of light-scattering changes in bovine photoreceptor membrane suspensions.Biophys. J. 46:655–662

    PubMed  Google Scholar 

  • Reichert, J. 1984. Der Einflus von Sulfhydryl-Modifikationen auf die primäre Protein-Wechselwirkung an der Photoreceptor-Membran. Dissertation, University of Freiburg

  • Schleicher, A., Hofmann, K.P. 1984. In situ monitoring of membrane-bound reactions by kinetic light-scattering.In: Spectroscopy of Biological Molecules. C. Sandorfy and T. Theophanides, editors. Reidel, Dordrecht

    Google Scholar 

  • Smith, H.G., Jr., Stubbs, G.W., Litman, B.J., 1975. The isolation and purification of osmotically intact discs from retinal rod outer segments.Exp. Eye Res. 20:211–217

    PubMed  Google Scholar 

  • Vuong, T.M., Chabre, M., Stryer, L. 1984. Millisecond activation of transducin in the cyclic nucleotide cascade of vision.Nature (London) 311:659–661

    Google Scholar 

  • Wedler, G. 1982. Lehrbuch der physikalischen Chemie. Verlag Chemie, Weinheim

    Google Scholar 

  • Wheeler, G.L., Bitensky, M.V. 1977. A light-induced GTPase in vertebrate photoreceptors: Regulation of light-activated cyclic-GMP phosphodiesterase.Proc. Natl. Acad. Sci. USA 74:4238–4242

    PubMed  Google Scholar 

  • Yee, R., Liebman, P.A. 1978. Light-activated phosphodiesterase of the rod outer segments. Kinetics and parameters of activation and deactivation.J. Biol. Chem. 253:8902–8909

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleicher, A., Hofmann, KP. Kinetic study on the equilibrium between membrane-bound and free photoreceptor G-protein. J. Membrain Biol. 95, 271–281 (1987). https://doi.org/10.1007/BF01869489

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869489

Key words

Navigation