Skip to main content
Log in

Biogeochemical nutrient cycles and nutrient management strategies

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Nutrient loading by riverine input into estuarine systems has increased by 6–50 times for the N load from pristine conditions to present, whereas a 18–180 times increase has been observed in the P load. Reductions in the ratio of N to P delivery has also occurred with time. In a review of nutrient limitation in estuarine systems, it is shown that many estuarine systems display P limitation in the spring, switching to N limitation in the summer with some estuaries displaying dissolved silicate limitation of the spring diatom bloom. Historical and recent changes in nutrient loading and their effect on nutrient limitation have intensified the debate on the control of nutrient delivery to estuaries from both agricultural and point sources, and as to what nutrient (N or P) should be managed for in estuarine systems. It is hypothesized that potential reductions in P may help oxygen depletion especially in deep estuaries and reduce fast growing macrophytes such as Ulva sp., although P reductions probably will have little effect on summer chlorophyll concentrations, an important recreational management goal. Reductions in N loading should reduce summer chlorophyll concentrations and improve the conditions for submerged aquatic vegetation and thus improve ecosystem functioning. Finally, if only P reductions are pursued, that is if we are able to reduce P such that it is limiting year around in estuarine systems, it is likely that the export of N from estuarine systems would increase to the bordering N-limited marine systems, thus only exporting the problem of enhanced production with eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, A., S. Hajdu, P. Haecky, J. Kuparinen & J. Wikner, 1996. Succession and growth limitation of phytoplankton in the Gulf of Bothnian (Baltic Sea). Mar. Biol. 126: 791-801.

    Google Scholar 

  • Billen, G., C. Lancelot & M. Meybeck, 1991. N, P, and Si retention along the aquatic continuum from land to ocean. In R. F. C. Mantoura, J.-M. Martin & R. Wollast (eds), Ocean Margin Processes in Global Change. John Wiley & Sons: 19-44.

  • Billen, G. & J. Garnier, 1997. The Phison River plume: coastal eutrophication in response to changes in land use and water management in the watershed. Aquat. Microbiol. Ecol. 13: 3-17.

    Google Scholar 

  • Borum, J., 1996. Shallow waters and land/sea boundaries. In Eutrophication in Coastal Marine Ecosystems, Coastal and Estuarine Studies, Vol. 52, Amer. Geophys. Union, Washington, D. C.: 179-203.

    Google Scholar 

  • Boynton, W. R., W. M. Kemp & C. W. Keefe, 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. In Estuarine Comparisons, Academic Press: 69-90.

  • Boynton, W. R., J. H. Garber, R. Summers & W. M. Kemp, 1995. Inputs, transformations and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18: 285-314.

    Google Scholar 

  • Brattberg, G., 1986. Decreased phosphorus loading changes phytoplankton composition and biomass in the Stockholm archipelago. Vatten 42: 141-153.

    Google Scholar 

  • Caraco, N., J. Cole & G. E. Likens, 1989. Evidence for a sulfate-controlled phosphorus release from sediments of aquatic systems. Nature 341: 316-318.

    Google Scholar 

  • Caraco, N., J. Cole & G. E. Likens, 1990. A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry 9: 277-290.

    Google Scholar 

  • Chapra, S. C., 1977. Total phosphorus model for the Great Lakes. J. Envir. Eng. Div., ASCE, 103: 147-161.

    Google Scholar 

  • Cloern, J. E., 1999. The relative importance of light and nutrient limitation of phytoplankton growth: A simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquat. Ecol. 33: 3-15.

    Google Scholar 

  • Conley, D. J. & T. C. Malone, 1992. Annual cycle of dissolved silicate in Chesapeake Bay: Implications for the production and fate of phytoplankton biomass. Mar. Ecol. Prog. Ser. 81: 121-128.

    Google Scholar 

  • Conley, D. J., C. L. Schelske & E. F. Stoermer, 1993. Modification of silica biogeochemistry with eutrophication in aquatic systems. Mar. Ecol. Prog. Ser. 101: 179-192.

    Google Scholar 

  • D'Elia, C. F., J. G. Sanders & W. R. Boynton, 1986. Nutrient enrichment studies in a coastal plain estuary: Phytoplankton growth in large-scale continuous cultures. Can. J. Fish. aquat. Sci. 43: 397-406.

    Google Scholar 

  • D'Elia, C. F., 1987. Too much of a good thing. Nutrient enrichment of Chesapeake Bay. Environment 29: 6-11, 30-33.

    Google Scholar 

  • Del Amo, Y., O. Le Pape, P. Tréguer, B. Quéguiner, A. Ménesguen & A. Aminot, 1997. Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. I. Seasonal evolution of nutrient limitation for the diatom-dominated phytoplankton of the Bay of Brest (France). Mar. Ecol. Prog. Ser. 161: 213-224.

    Google Scholar 

  • Duarte, C. M., 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87-112

    Google Scholar 

  • Elser, J. J., E. R. Marzolf & C. R. Goldman, 1990. Phosphorus and nitrogen limitation of phytoplankton growth and the freshwaters of North America: A review and critique of experimental enrichments. Can. J. Fish. aquat. Sci. 47: 1468-1477.

    Google Scholar 

  • Elmgren, R. & U. Larsson, 1997. Himmerfjärden. Changes in a nutrient loaded coastal ecosystem in the Baltic. Swedish Environmental Protection Agency, Stockholm: 197 pp. (in Swedish).

    Google Scholar 

  • Gallegos, C. L. & T. E. Jordan, 1997. Seasonal progression of factors limiting phytoplankton pigment biomass in the Rhode River estuary, Maryland (U.S.A.). II. Modeling N versus P limitation. Mar. Ecol. Prog. Ser. 161: 199-212.

    Google Scholar 

  • Granéli, E., K. Wallström, U. Larsson, W. Granéli & R. Elmgren, 1990. Nutrient limitation of primary production in the Baltic Sea Area. Ambio 19: 142-151.

    Google Scholar 

  • Hecky, R. E. & P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments. A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33: 796-822.

    Google Scholar 

  • Hedin, L. O., J. J. Armesto & A. H. Johnson, 1995. Patterns of nutrient loss from unpolluted, old-growth temperate forests: Evaluation of biogeochemical theory. Ecology 76: 493-509.

    Google Scholar 

  • Howarth, R.W., 1988. Nutrient limitation of net primary production in marine ecosystems. Ann. Rev. Ecol. Sys. 19: 89-110.

    Google Scholar 

  • Howarth, R. W., R. Marino, J. Lane & J. J. Cole, 1988. Nitrogen fixation in freshwater, estuarine and marine ecosystems. 1. Rates and importance. Limnol. Oceanogr. 33: 669-687.

    Google Scholar 

  • Howarth, R. W., D. Swaney, R. Marino, T. Butler & C. R. Chu, 1995. Turbulence does not prevent nitrogen fixation by plankton in estuaries and coastal seas (reply to the comment of Paerl et al.). Limnol. Oceanogr. 40: 639-643.

    Google Scholar 

  • Jensen, H. S., P. B. Mortensen, F. Ø. Andersen, E. Rasmussen & A. Jensen, 1995. Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnol. Oceanogr. 40: 908-917.

    Google Scholar 

  • Kaas, H., F. Møhlenberg, A. Josefson, B. Rasmussen, D. Krause-Jensen, H. S. Jensen, L. Svendsen, J. Windolf, A. L. Middelboe, K. Sand-Jensen & M. F. Pedersen, 1996. Marine områder. Danske fjorde-status over miljøstand, årsagssammenhænge og udvikling. Danish Ministry of the Environment Rapport Nr. 179, Roskilde, Denmark: 205 pp. (in Danish).

  • Larsson, U., R. Elmgren & F. Wulff, 1985. Eutrophication and the Baltic Sea: Causes and consequences. Ambio 14: 9-14.

    Google Scholar 

  • Maestrini, S. Y., M. Balode, C. Béchemin, I. Purina & C. Vérite, 1997. Nutrients limiting the algal growth potential (AGP) in the Gulf of Riga, eastern Baltic Sea, in spring and early summer 1996. La mer 35: 49-68.

    Google Scholar 

  • Mallin, M. A. & H. W. Paerl, 1994. Commentary on primary productivity and nutrient limitation in the Neuse River Estuary, North Carolina, U.S.A. Mar. Ecol. Prog. Ser. 111: 311-312.

    Google Scholar 

  • Malone, T. C., W. M. Kemp, H. W. Ducklow, W. R. Boynton, J. H. Tuttle & R. B. Jones. 1986. Lateral variation in the production and fate of phytoplankton in a partially stratified estuary. Mar. Ecol. Prog. Ser. 32: 149-160.

    Google Scholar 

  • Malone, T. C., D. J. Conley, T. R. Fisher, P. M. Glibert, L. W. Harding, Jr. & K. G. Sellner, 1996. Scales of nutrient limited phytoplankton productivity in Chesapeake Bay. Estuaries 19: 371-385.

    Google Scholar 

  • Meybeck, M. & R. Helmer, 1989. The quality of rivers: from pristine stage to global pollution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 75: 283-309.

    Google Scholar 

  • Nixon S.W., J. R. Kelly, B. N. Furnas, C. A. Oviatt & S. S. Hale, 1980. Phosphorus regeneration and the metabolism of coastal marine bottom communities. In K. R. Tenore & B. C. Coull (eds), Marine Benthic Dynamics. Univ. S. Carolina Press, Columbia, SC: 219-242.

    Google Scholar 

  • Nixon, S.W. et al. (15 co-authors), 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 35: 141-180.

    Google Scholar 

  • Nixon, S. W., 1995. Coastal marine eutrophication: A definition, social causes and future concerns. Ophelia 41: 199-219.

    Google Scholar 

  • Nixon, S. W., 1997. Prehistoric nutrient inputs and productivity in Narragansett Bay. Estuaries 20: 253-261.

    Google Scholar 

  • Oviatt, C., P. Doering, B. Nowicki, L. Reed, J. Cole & J. Frithsen, 1995. An ecosystem level experiment on nutrient limitation in temperate coastal marine environments. Mar. Ecol. Prog. Ser. 116: 171-179.

    Google Scholar 

  • Paerl, H. W., J. L. Pickney & S. A. Kucera, 1995. Clarification of the structural and functional roles of heterocysts and anoxic microzones in the control of pelagic nitrogen fixation. Limnol. Oceanogr. 40: 634-638.

    Google Scholar 

  • Pedersen, M. F. & J. Borum, 1996. Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar. Ecol. Prog. Ser. 142: 261-272.

    Google Scholar 

  • Pennock, J. R. & J. H. Sharp, 1994. Temporal alternation between light-and nutrient-limitation of phytoplankton in a coastal plain estuary. Mar. Ecol. Prog. Ser. 111: 275-288.

    Google Scholar 

  • Prairie, Y. T., C. M. Duarte & J. Kalff, 1989. Unifying nutrientchlorophyll relationships in lakes. Can. J. Fish. aquat. Sci. 46: 1176-1182.

    Google Scholar 

  • Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of sea-water. In M. N. Hill (ed.), The Sea. John Wiley & Sons, New York: 12-37.

    Google Scholar 

  • Rysgaard, S., P. B. Christensen & L. P. Nielsen, 1995. Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna. Mar. Ecol. Prog. Ser. 126: 111-121.

    Google Scholar 

  • Ryther, J. H. & W. M. Dunstan, 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171: 1008-1013.

    Google Scholar 

  • Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquat. Bot. 41: 137-175.

    Google Scholar 

  • Selmer, J.-S. & L. Rydberg, 1993. Effects of nutrient discharge by river water and waste water on the nitrogen dynamics in the archipelago of Göteborg, Sweden. Mar. Ecol. Prog. Ser. 92: 119-133.

    Google Scholar 

  • Schindler, D. W., 1974. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184: 897-899.

    Google Scholar 

  • Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 33: 702-724.

    Google Scholar 

  • Stålnacke, P., A. Grimvall, K. Sundblad & A. Tonderski, 1998. Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970-1993. J. Envir. Monit. Assem.

  • Taylor, D., S. Nixon, S. Granger & B. Buckley, 1995. Nutrient limitation and the eutrophication of coastal lagoons. Mar. Ecol. Prog. Ser. 127: 235-244.

    Google Scholar 

  • Tréguer, P., D. M. Nelson, A. J. van Bennekom, D. J. DeMaster, A. Leynaert & B. Quéguiner, 1995. The silica balance in the world ocean: a reestimate. Science 268: 375-379.

    Google Scholar 

  • Vollenweider, R. A., 1976. Advances in defining critical loading levels of phosphorus in lake eutrophication. Mem. Ist. ital. Idrobiol. 33: 53-83.

    Google Scholar 

  • Wassmann, P., 1991. Dynamics of primary production and sedimentation in shallow fjords and polls of western Norway. Oceanogr. mar. Biol. Annu. Rev. 29: 87-154.

    Google Scholar 

  • Webb, K. L., 1988. Comment on "Nutrient limitation of phytoplankton growth in brackish coastal ponds" by Caraco, Tamse, Boutros and Valiela (1987). Can. J. Fish. aquat. Sci. 45: 380-381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conley, D.J. Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia 410, 87–96 (1999). https://doi.org/10.1023/A:1003784504005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003784504005

Navigation