Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleotide mimicry in the crystal structure of the uracil-DNA glycosylase–uracil glycosylase inhibitor protein complex

Abstract

The Bacillus subtilis bacteriophages PBS-1 and PBS-2 protect their uracil-containing DNA by expressing an inhibitor protein (UGI) which inactivates the host uracil-DNA glycosylase (UDGase) base-excision repair enzyme. Also, PBS1/2 UGI efficiently inactivates UDGases from other biological sources, including the enzyme from herpes simplex virus type-1 (HSV-1). The crystal structure of the HSV-1 UDGase–PBS1 UGI complex at 2.7 Å reveals an α-β-α sandwich structure for UGI which interacts with conserved regions of UDGase involved in DNA binding, and directly mimics protein–DNA interactions observed in the UDGase–oligonucleotide complex. The inhibitor completely blocks access to the active site of UDGase, but makes no direct contact with the uracil-binding pocket itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Takahashi, I. & Marmur, J. Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonudeic acid of a transducng phage for Bacillus subtilis. Nature 197, 794–795.

    Article  CAS  Google Scholar 

  2. Tomita, F. & Takahashi, I. A novel enzyme, dCTP deaminase, found in Bacillus subtilis infected with phage PBS1. Biochem. Biophys. Acta. 179, 18–27 (1969).

    CAS  PubMed  Google Scholar 

  3. Price, A.R. & Fogt, S.M. Deoxythymidylate phosphohydrolase induced by bacteriophage PB52 during infection of Bacillus subtilis. J. biol. Chem. 248, 1372–1380 (1973).

    CAS  PubMed  Google Scholar 

  4. Price, A.R. & Frato, J. Bacillus subtilis deoxyuridinetriphosphatase and its bacteriaphage PBS2 induced inhibitor. J. biol. Chem. 250, 8804–8811 (1975).

    CAS  PubMed  Google Scholar 

  5. Hitzeman, R.A. & Price, A.R. Bacillus subtilis bacteriophage PBS2-induced DNA polymerase. J. biol. Chem. 253, 8518–8525 (1978).

    CAS  PubMed  Google Scholar 

  6. Cone, R., Bonura, T. & Friedberg, E.C. Inhibitor of uracil-DNA glycosylase induced by bacterophage PBS2. Purification and preliminary characterisation, J. biol.Chem. 255, 10354–10358 (1980).

    CAS  PubMed  Google Scholar 

  7. Savva, R. & Pearl, L.H. Cloning and expression of the uracil-DNA glycosylase inhibitor from bacteriophage PBS-1, and crystallisation of a uracil-DNA glycosylase-uracil-DNA glycosylase inhibitor complex. Proteins: Struct. Funct. Genet., in the press.

  8. Wang, Z. and Mosbaugh, D.W. Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. biol. Chem. 264, 1163–1171 (1989).

    CAS  PubMed  Google Scholar 

  9. Wang, Z. & Mosbaugh, D.W. Uracil-DNA glycosylase inhibitor of bacteriophage PBS2: cloning and effects of expression of the inhibitor gene in Escherichia coli. J. Bacteriology. 170, 1082–1091 (1988).

    Article  CAS  Google Scholar 

  10. Winters, T.A. & Williams, M.V. Use of the PBS uracil-DNA glycosylase inhibitor to differentiate the uracil-DNA glycosylase activities encoded by Herpes Simplex Virus types 1 and 2. J. virol. Meth. 29, 33–242 (1990).

    Article  Google Scholar 

  11. Savva, R., McAuley-Hecht, K., Brown, T. & Pearl, L.H. The structural basis of specific uracil base-excision repair by uracil-DNA glycosylase. Nature 373, 487–493 (1995).

    Article  CAS  Google Scholar 

  12. Mol, C.D. et al. Crystal structure and mutational analysis of human uracil-DNA glycosylase-structural basis for specificity and catalysis. Cell 80, 869–875 (1995).

    Article  CAS  Google Scholar 

  13. Waksman, G. et al. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptide. Nature 358, 646–653.

  14. Sevcik, J., Hill, C.P., Dauter, Z., Wilson, K.S. Complex of ribonuclease from Streptomyces aureofaciens with 2′-GMP at 1.7Å resolution. Acta. Crystallogr. 49, 257–271 (1993).

    CAS  Google Scholar 

  15. Stubbs, M.T. et al The refined 2.4 Å X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 9, 1939–1947.

  16. Balasubramanian, S., Beger, R.D., Bennet, S.E., Mosbaugh, D.W. & Bolton, P.H. Secondary structure of uracil-DNA glycosylase inhibitor protein. J. biol. Chem. 270, 296–303 (1995).

    Article  CAS  Google Scholar 

  17. Bennet, S.E., Schimerlik, M.I. & Mosbaugh, D.W. Kinetics of the uracil-DNA glycosylase/inhibitor protein association. Ung interaction with Ugi, nucleotides and uracil compounds. J. biol. Chem. 268, 26879–26885 (1993).

    Google Scholar 

  18. Savva, R. & Pearl, L.H. Crystallisation and preliminary X-ray analysis of the uracil-DNA glycosylase DNA repari enyzyme from herpes simplex virus type-1. J. molec. Biol. 234, 910–912 (1993).

    Article  CAS  Google Scholar 

  19. Chayen, N.E., Shaw Stewart, P.D., Maeder, D.L. & Blow, D.M. An automated system for microbatch protein crystallization and screening. J. Appl. Crystallogr. 23, 287–302 (1990).

    Article  Google Scholar 

  20. Leslie, A.G.W. Mosflm Users Guide, (MRC-LMB, Cambridge, UK, 1994).

    Google Scholar 

  21. Collaborative Computation Project, No. 4, Acta Cryst. D50, 760–763 (1994).

  22. Navaza, J. AMoRE-an automated package for molecular replacement. Acta Crystallogr. A50, 157–163 (1994).

    Article  CAS  Google Scholar 

  23. Brunger, A.T. X-PLOR Version 3.1 A system for X-ray crystallography and NMR (Yale University Press, New Haven, CT, USA, 1992).

    Google Scholar 

  24. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. 42, 140–149.

    Article  Google Scholar 

  25. Laskowski, R.J., MacArthur, M.W., Moss, D.S. & Thornton, J.W. PROCHECK-a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–290.

    Article  CAS  Google Scholar 

  26. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for builiding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  27. Kraulis, P.J. MOLSCRIPT-a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Merritt, E.A. & Murphy, M.E.P. Raster3D Version 20-a program for photorealistic molecular graphics. Acta Crystallogr. 50, 869–873 (1994).

    CAS  Google Scholar 

  29. Nicholls, A., Bharadwaj, R. & Honig, B. GRASP-graphical representation and analysis of surface properties. Biophys. J. 64, A116 (1993).

    Google Scholar 

  30. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions, Prot. Engng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

  31. Engh, R.A. & Huber, R. Accurate bond and angle parameters for X-ray protein-structure refinement. Acta Crystallogr. A47, 392–400.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savva, R., Pearl, L. Nucleotide mimicry in the crystal structure of the uracil-DNA glycosylase–uracil glycosylase inhibitor protein complex. Nat Struct Mol Biol 2, 752–757 (1995). https://doi.org/10.1038/nsb0995-752

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0995-752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing