Skip to main content
Log in

Whole-cell potassium current in rabbit corneal epithelium activated by fenamates

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Rabbit corneal epithelium contains a large-conductance, potassium-selective channel, which is a major contributor to the whole-cell current. In perforated-patch recordings of the macroscopic current, the isolated cells studied had resting voltages of −41±20 mV and capacitances of 5.8±2.6 pF (mean + sd for n=255). Activation of the channels was weakly voltage dependent. They opened at about −100 mV and reached an open probability of about 0.2 at +100 mV. The current was blocked by millimolar concentrations of external Ba2+ and quinidine. Diltiazem also blocked when applied to the external surface of the membrane. Nonsteroidal anti-inflammatory agents of the fenamate group were powerful activators of the channel at submillimolar concentrations when applied either to the inside or the outside of the channels. The mechanism of action which leads to his activation is not yet known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, N. 1971. The origin of the basal cell potential in frog corneal epithelium. J. Physiol, 219:57–75

    Google Scholar 

  • Akaike, N., Hori, M. 1970. Effect of anions and cations on membrane potential of rabbit corneal epithelium. Am. J. Physiol. 219:1811–1818

    Google Scholar 

  • Candia, O.A., Cook, P. 1986. Na+-K+ pump stoichiometry and basolateral membrane permeability of frog corneal epithelium. Am. J. Physiol. 250:F850-F859

    Google Scholar 

  • Candia, O.A., Grillone, L.R., Chu, T.-C. 1986. Forskolin effects on frog and rabbit corneal epithelium ion transport. Am. J. Physiol. 251:C448-C454

    Google Scholar 

  • Candia, O.A., Schoen, H.F. 1978. Selective effects of bumetanide on chloride transport in bullfrog cornea. Am. J. Physiol. 234:F297-F301

    Google Scholar 

  • Clausen, C., Reinach, P.S., Marcus, D.C. 1986. Membrane transport parameters in frog corneal epithelium measured using impedance analysis techniques. J. Membrane Biol. 91:213–225

    Google Scholar 

  • Ehlers, N. 1970. Intracellular potentials of the corneal epithelium. Ada Physiol. Scand. 78:471–477

    Google Scholar 

  • Fee, J.P., Edelhauser, H.F. 1970. Intracellular electrical potentials in the rabbit corneal epithelium. Exp. Eye Res. 9:233–240

    Google Scholar 

  • Gogelein, H., Dahlem, D., Englert, H.C., Lang, H.J. 1990. Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas. FEBS Lett. 268:79–82

    Google Scholar 

  • Gogelein, H., Pfannmuller, B. 1989. The nonselective cation channel in the basolateral membrane of rat exocrine pancreas. Pfluegers Arch. 413:287–298

    Google Scholar 

  • Huff, J.W., Reinach, P.S. 1985. Mechanism of inhibition of net ion transport across frog corneal epithelium by calcium channel antagonists. J. Membrane Biol. 85:215–223

    Google Scholar 

  • Keys, C., Nelson, S., Deutsch, W., Rae, J. 1986. Patch clamp recordings from mammalian corneal epithelium. Invest. Ophthalmol. Vis. Sci. 27:350a

    Google Scholar 

  • Klyce, S.D. 1972. Electrical profiles in the corneal epithelium. J. Physiol. 226:407–429

    Google Scholar 

  • Klyce, S.D. 1973. Relationship of epithelial membrane potentials to corneal potential. Exp. Eye Res. 15:567–575

    Google Scholar 

  • Klyce, S.D. 1975. Transport of Na, Cl, and water by the rabbit corneal epithelium at resting potential. Am. J. Physiol. 228:1446–1452

    Google Scholar 

  • Klyce, S.D., Crosson, C.E. 1985. Transport processes across the rabbit corneal epithelium: A review. Curr. Eye Res. 4:323–331

    Google Scholar 

  • Knauf, P.A., Mann, N.A. 1984. Use of niflumic acid to determine the nature of the asymmetry of the human erythrocyte anion exchange system. J. Gen. Physiol. 83:703–725

    Google Scholar 

  • Lewis, G.N., Sargent, L.W. 1909. Potentials between liquids. J. Am. Chem. Soc. 31:363–367

    Google Scholar 

  • Marshall, W.S., Hanrahan, J.W. 1991. Anion channels in the apical membrane of mammalian corneal epithelium primary cultures. Invest. Ophthalmol. Vis. Sci. 32:1562–1568

    Google Scholar 

  • Marshall, W.S., Klyce, S.D. 1984. Cellular mode of serotonin action on Cl transport in the rabbit corneal epithelium. Biochim. Biophys. Acta 778:139–143

    Google Scholar 

  • Nagel, W., Carrasquer, G. 1989. Effect of loop diuretics on bullfrog cornea epithelium. Am. J. Physiol. 256:C750-C755

    Google Scholar 

  • Rae, J.L., Dewey, J., Rae, J.S. 1992. The large conductance potassium channel of rabbit corneal epithelium is blocked by quinidine. Invest. Ophthalmol. Vis. Sci. 33:286–290

    Google Scholar 

  • Rae, J.L., Dewey, J., Rae, J.S., Nesler, M., Cooper, K. 1990. Single potassium channels in corneal epithelium. Invest. Ophthalmol. Vis. Sci. 31:1799–1809

    Google Scholar 

  • Rae, J.L., Levis, R.A., Eisenberg, R.S. 1988. Ionic channels in ocular epithelia. In: Ion Channels. T. Narahashi, editor, pp. 283–327. Plenum, New York

    Google Scholar 

  • Reinach, P.S. 1985. Roles of cyclic AMP and Ca in epithelial ion transport across corneal epithelium: A review. Curr. Eye Res. 4:385–391

    Google Scholar 

  • Reinach, P.S., Candia, O.A., Alvarez, L.J. 1979. Energetic requirements of active transepithelial Na and Cl transport in the isolated bullfrog cornea. Exp. Eye Res. 29:637–646

    Google Scholar 

  • Reinach, P., Nagel, W. 1984. Basolateral membrane K conductance of frog corneal epithelium. Fed. Proc. 43:893a

    Google Scholar 

  • Reinach, P., Nagel, W. 1985. Implications of an anomalous intracellular electrical response in bullfrog corneal epithelium. J. Membrane Biol. 87:201–209

    Google Scholar 

  • Reinach, P.S., Schoen, H.F. 1990. NPPB inhibits the basolateral membrane K+ conductance in the isolated bullfrog cornea. Biochim. Biophys. Acta 1026:13–20

    Google Scholar 

  • Reinach, P.S., Thurman, C., Klemperer, G. 1987. Basolateral membrane K permselectivity and regulation in bullfrog cornea epithelium. J. Membrane Biol. 99:205–213

    Google Scholar 

  • Reuss, L., Reinach, P., Weinman, S.A., Grady, T.P. 1983. Intracellular ion activities and Cl transport mechanisms in bullfrog corneal epithelium. Am. J. Physiol. 244:C336-C347

    Google Scholar 

  • Terada, H., Muraoka, S., Fujita, T. 1974. Structure-activity relationships of fenamic acids. J. Med. Chem. 17:330–334

    Google Scholar 

  • Wangemann, P., Wittner, M., Di Stefano, A., Englert, H.C., Lang, HJ., Schlatter, E., Greger, R. 1986. Cl-channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pfluegers Arch. 407:S128-S141

    Google Scholar 

  • White, M.M., Aylwin, M. 1990. Niflumic and flufenamic acids are potent reversible blockers of Ca2+-activated Cl channels in Xenopus oocytes. Mol. Pharmacol. 37:720–724

    Google Scholar 

  • Wiederholt, M., Koch, M. 1978. Intracellular potentials of isolated rabbit and human corneal epithelium. Exp. Eye Res. 26:629–640

    Google Scholar 

  • Wolosin, J.M. 1988. Regeneration of resistance and ion transport in rabbit corneal epithelium after induced surface cell exfoliation. J. Membrane Biol. 104:45–55

    Google Scholar 

  • Wolosin, J.M., Candia, O.A. 1987a. Cl secretagogues increase basolateral K+ conductance of frog corneal epithelium. Am. J. Physiol. 253:C555-C560

    Google Scholar 

  • Wolosin, J.M., Candia, O.A. 1987b. Volume regulatory decrease in corneal epithelium. Ann. NY Acad. Sci. 494:296–298

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are grateful to Erika Wohlfiel for secretarial help, Helen Hendrickson for cell preparation, and Joan Rae for software development. This work was supported by NIH grants EY06005 and EY03282 and an unrestricted award from Research to Prevent Blindness.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rae, J.L., Farrugia, G. Whole-cell potassium current in rabbit corneal epithelium activated by fenamates. J. Membarin Biol. 129, 81–97 (1992). https://doi.org/10.1007/BF00232057

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232057

Key Words

Navigation