Skip to main content
Log in

Kinetics and Mechanism of Zinc Ion-Mediated Degradation of Cephalosporins in Tromethamine Solution

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Earlier studies of the hydrolysis and aminolysis of penicillin, in the presence of zinc ion and tromethamine (Tris), revealed a very rapid catalysis mediated by a ternary complex in which the metal ion brought the reactants into close proximity in a suitable configuration for reaction. In the present work similar studies with a group of cephalosporins show not only much slower rates of reaction but a different mechanism in which the zinc ion–tromethamine complex functions as a nucleophile in a bimolecular reaction. Evidence for the differences in mechanism includes not only the different dependence of rate upon tromethamine concentration, but comparable rates of reaction of methyl esters of a penicillin and a cephalosporin and the reaction products observed by high-performance liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. A. Schwartz. Bioorg. Chem. 11:4–18 (1982).

    Google Scholar 

  2. H. Tomida and M. A. Schwartz. J. Pharm. Sci. 72:331–335 (1983).

    Google Scholar 

  3. G. V. Fazakerley and G. E. Jackson. J. Inorg. Nucl. Chem. 37:2371–2375 (1975).

    Google Scholar 

  4. N. P. Gensmantel, E. W. Gowling, and M. I. Page. J. Chem. Soc. Perkin Trans. II:335–342 (1978).

    Google Scholar 

  5. N. P. Gensmantel, D. McLellan, J. J. Morris, M. I. Page, P. Proctor, and G. S. Randahawa. In G. I. Gregory (ed.), Recent Advances in the Chemistry of β-Lactam Antibiotics, Burlington House, London, 1980, pp. 227–239.

    Google Scholar 

  6. N. P. Gensmantel, P. Proctor, and M. I. Page. J. Chem. Soc. Perkin Trans. II:1725–1732 (1980).

    Google Scholar 

  7. T. Yamana and A. Tsuji. J. Pharm. Sci. 65:1563–1574 (1976).

    Google Scholar 

  8. E. A. Guggenheim. Philos. Mag. 2:538–543 (1926).

    Google Scholar 

  9. J. M. T. Hamilton-Miller, G. G. F. Newton, and E. P. Abraham. Biochem. J. 116:371–384 (1970).

    Google Scholar 

  10. J. M. T. Hamilton-Miller, E. Richards, and E. P. Abraham. Biochem. J. 116:385–395 (1970).

    Google Scholar 

  11. H. Bundgaard. Arch. Pharm. Chem. Sci. Ed. 3:94–123 (1975).

    Google Scholar 

  12. A. Tsuji, T. Yamana, E. Miyamoto, and E. Kiya. J. Pharm. Pharmacol. 27:580–587 (1975).

    Google Scholar 

  13. A. Tsuji, E. Miyamoto, and T. Yamana. J. Pharm. Sci. 68:616–621 (1979).

    Google Scholar 

  14. D. P. Hanlon, D. S. Watt, and E. W. Westhead. Anal. Biochem. 16:225–233 (1966).

    Google Scholar 

  15. R. L. Dotson. J. Inorg. Nucl. Chem. 34:3131–3138 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomida, H., Kohashi, K., Tsuruta, Y. et al. Kinetics and Mechanism of Zinc Ion-Mediated Degradation of Cephalosporins in Tromethamine Solution. Pharm Res 4, 214–219 (1987). https://doi.org/10.1023/A:1016404111054

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016404111054

Navigation