Skip to main content
Log in

Calcium/calmodulin-dependent inhibition of microtubule assembly by brain synaptic junction

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of synaptic junction (SJ) on microtubule assembly was examined. After preincubation with ATP at 37°C, rat SJ decreased the initial velocity and the extent of the porcine brain microtubule assembly (initiated by the addition of GTP) in a Ca2+/calmodulin (CaM)-dependent manner. The degree of the inhibition reached 35% of the control assembly (0-min preincubation) after 20-min preincubation with ATP. There was no inhibition either with heat-treated SJ, at 0°C, or in the presence of EGTA or W-7 (CaM antagonist). The inhibition was due neither to protease(s) nor CaM contaminating the preparations. Free Ca2+ concentration level required for the inhibition of microtubule assembly was 10−6 M. Phosphorylation of microtubule proteins was inhibited by SJ in a Ca2+/CaM-dependent manner, and the inhibition occurred in a physiological increase range of intracellular Ca2+ concentration (10−6M) The heat-treated SJ caused no inhibition. The result suggested that the microtubule assembly in the postsynaptic region was regulated by a Ca2+/CaM-dependent protein kinase associated with SJ; i. e., major postsynaptic density protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CaM:

calmodulin

DTT:

dithiothreitol

MAPs:

microtubule-associated proteins

MES:

2-(N-morphorino)ethanesulfonic acid

mPSDp:

major postsynaptic density protein

PSD:

postsynaptic density

SDS PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

W-7:

N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride

References

  1. Berman, R. F., Hullihan, J. P., Kinnier, W. J., andWilson, J. E. 1984. In vivo phospohorylation of postsynaptic density proteins. Neuroscience, 13:965–971.

    Google Scholar 

  2. Carlin, R. K., andSiekivitz, P. 1983. Plasticity in the central nervous system: do synapses divide? Proc. Natl. Acad. Sci. USA 80, 3517–3521.

    Google Scholar 

  3. Cotman, C. W., andTaylor, D. 1972. Isolation and structural studies on synaptic complexes from rat brain. J. Cell Biol. 55:696–711.

    Google Scholar 

  4. Crick, F. 1982. Do dendritic spines twitch?. Trends Neurosci. 5:44–46.

    Google Scholar 

  5. DeLorenzo, R. J., Gonzalez, B., Goldenring, J., Bowling, A., andJacobson, R. 1982. Ca2+-calmodulin tubulin kinase system and its role in mediating the Ca2+ signal in brain. Pages 255–286,in,H. Gispen, andA. Routtenberg (eds.), Brain phosphoproteins; characterization and Function Progress in Brain Research, Vol. 56, Elsevier, Amsterdam-New York.

    Google Scholar 

  6. Eccles, J. C. 1983. Calcium in long-term potentiation as a model for memory. Neuroscience 10:1071–1081.

    Google Scholar 

  7. Fifkova, E., andvan Harreveld, A. 1977. Long-term morphological changes in dendritic spines of dentate grannular cells following stimulation of the entorhinal area. J. Neurocytol. 6:211–230.

    Google Scholar 

  8. Goldenring, J. R., McGuire, Jr. J. S., andDeLorenzo, R. J. 1984. Identification of the major postsynaptic density protein as homologous with the major calmodulin-binding subunit of a calmodulin-dependent protein kinase. J. Neurochem., 42:1077–1084.

    Google Scholar 

  9. Ihara, Y., Fujii, T., Arai, T., Tanaka R., andKaziro, Y. 1979. The presence of an adenosine-5′-triphosphatase dependent on 6S tubulin and calcium ions in rat brain microtubules. J. Biochem. (Tokyo) 86:587–590.

    Google Scholar 

  10. Jameson, L., Frey, T., Zeeberg, B., Dallorf, F., andCaplow, M. 1980. Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry. 19:2472–2479.

    Google Scholar 

  11. Kakiuchi, S., andSobue, K. 1981. Ca2+-and calmodulin-dependent flip-flop mechanism in microtubule assembly-disassembly. FEBS lett., 132:141–143.

    Google Scholar 

  12. Katz, A. M., Repke, D. I., Upshaw, J. E., andPolascik, M. A. 1970. Characterization of dog cardiac microsomes; use of zonal centrifugation to fractionate fragmented sarcoplasmic reticulum, (Na++K+)-activated ATPase and mitochondrial fragments. Biochim. Biophys. Acta, 205:473–490.

    Google Scholar 

  13. Kelly, P. T., McGuiness, T. L., andGreengard, P. 1984. Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase. Proc. Nat. Acad. Sci. USA 81:945–949.

    Google Scholar 

  14. Kennedy, M. B., Bennet, M. K., andErondu, N. E. 1983. Biochemical and immunochemical evidence that the “major postsynaptic density protein”, is a subunit of a calmodulin-dependent protein kinase. Proc. Nat. Acad. Sci USA 80:7357–7361.

    Google Scholar 

  15. Kumagai, H., andNishida, E. 1979. The interactions between calcium-dependent regulator protein of cyclic nucleotide phosphodiesterase and microtubule proteins. II. association of calcium-dependent regulator protein with tubulin dimer. J. Biochem., 85:1267–1274.

    Google Scholar 

  16. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227:680–685.

    Google Scholar 

  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  18. Nieto-Sampedro, M., Hoff, S. F. andCotman, C. W. 1982. Perforated postsynaptic densities: probable intermediates in synapse turnover. Proc. Natl. Acad. Sci. USA 79:5718–5722.

    Google Scholar 

  19. Nishida, E., Kumagai, H., Ohtsuki, I., andSakai, H. 1979. The interactions between calcium-dependent regulator protein of cyclic nucleotide phosphodiesterase and microtubule progeins. I. Effect of calcium-dependent regulator protein on the calcium sensitivity of microtubule assembly. J. Biochem. 85:1257–1266.

    Google Scholar 

  20. Rutledge, L. T. 1978. The effect of denervation and stimulation upon synaptic ultrastructure. J. Comp. Neurol. 178:117–128.

    Google Scholar 

  21. Shelanski, M. L., Gaskin, F., andCantor, C. R. 1973. Microtubule assembly in the absence of added nucleotides. Proc. Nat. Acad. Sci. USA 70:765–768.

    Google Scholar 

  22. Shields, S. M., Vernon, P. J., andKelly, P. T. 1984. Autophosphorylation of calmodulin-kinase II in synaptic junctions modulates endogenous kinase activity. J. Neurochem., 43:1599–1609.

    Google Scholar 

  23. Sobue, K., Fujita, M., Muramoto, Y., andKakiuchi, S. 1981. The calmodulin-binding protein in microtubules is tau factor. FEBS Lett., 132:137–140.

    Google Scholar 

  24. Van Harreveld, A., andFifkova, E. 1975. Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation. Exp. Neurol. 49:736–749.

    Google Scholar 

  25. Vrensen, G., andCardozo, J. N., 1981. Changes in size and shape of synaptic connections after visual training: an ultrastructural approach of synaptic plasticity. Brain Res. 218:79–97.

    Google Scholar 

  26. Yamamoto, H., Fukunaga, K., Tanaka, E., andMiyamoto, E. 1983. Ca2+- and calmodulin-dependent phosphorylation of microtubule-associated protein 2 and τ-factor, and inhibition of microtubule assembly. J. Neurochem. 41:1119–1125.

    Google Scholar 

  27. Yamauchi, T., andFujisawa, H. 1983. Disassembly of microtubules by the action of calmodulin-dependent protein kinase (kinase II) which occurs only in the brain tissues. Biochem. Biophys. Res. Commun. 110:287–291.

    Google Scholar 

  28. Yazawa, M., Sakuma, M., andYagi, K. 1980. Calmodulins from muscles of marine invertebrates, scallop and sea anemone. Comparison with calmodulins from rabbit skeletal muscle and pig brain. J. Biochem. (Tokyo) 87:1313–1320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Fujii, T. & Tanaka, R. Calcium/calmodulin-dependent inhibition of microtubule assembly by brain synaptic junction. Neurochem Res 11, 543–555 (1986). https://doi.org/10.1007/BF00965324

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965324

Keywords

Navigation