Skip to main content
Log in

Influence of small-scale turbulence and large-scale mixing on phytoplankton primary production

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To test the hypotheses that as well small scale turbulence aslarge scale vertical mixing cannot be neglected whenquantifying primary production especially in shallowpolymictic lakes, experiments were run on three differentscales. (1) To achieve more natural conditions in bottles usedfor in situ incubation measurements of primaryproduction, bottle stirrers were designed and tested in situ. The operation of the bottle stirrers guaranteed ahomogeneous distribution of seston in the samples duringincubation. Stirring increased primary production of planktonfrom a eutrophic lake significantly only when buoyantcyanobacteria were dominant. (2) To investigate the influenceof turbulent mixing on primary production under controlledconditions, a circulating water column was maintained in largemesocosms. The comparison of static and dynamic in situmeasurements of primary production revealed a distinctincrease of production by mixing. (3) To find out theimportance of mixing form, primary production was measured inthe shallow, eutrophic, polymictic lake Müggelsee bymoving water samples up and down with bottle lifts in twodifferent ways. The two simulated motions (linear andcircular) result in a different integral light supply of theenclosed phytoplankton. The higher light supply duringcircular movement in comparison to linear movement resulted inhigher primary production in the circulating bottles comparedto the bottles that were moved in a linearfashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behrendt, H., 1989a. Devices for turbulence simulation during in-situ measurements of biological processes in aquatic ecosystems, I. A simple stirrer for bottles of different volume. Acta hydrophys. Berlin 33: 5–8.

    Google Scholar 

  • Behrendt, H., 1989b. Devices for turbulence simulation during in-situ measurements of biological processes in aquatic ecosystems, II. A bottle lift for simulation of vertical movements in natural Waters. Acta hydrophys. Berlin 33: 9–14.

    Google Scholar 

  • Behrendt, H., B. Nixdorf & W. G. Pagenkopf, 1993. Phenomenological description of polymixis and influence on oxygen budget and phosphorus release in lake Müggelsee. Int. Revue ges. Hydrobiol. 78: 411–421.

    Google Scholar 

  • Benndorf, J. & H. Baumert, 1981. Modellvorstellungen zum Einfluß der Durchmischung des Wasserkörpers auf die phytoplanktische Primärproduktion. In Unger, K. & G. Stöcker (eds), Biophysikalische Ökologie und Ökosystemforschung. Akademie-Verlag, Berlin: 333–345.

    Google Scholar 

  • Denman, K. L. & A. E. Gargett, 1983. Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnol. Oceanogr. 28: 801–815.

    Google Scholar 

  • Deutsche Einheitsverfahren, 1983–1993. Deutsche Einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung. Verlag Chemie GmbH, Weinheim.

    Google Scholar 

  • Dokulil, M., & L. Hammer & D. H. Jewson, 1978. Vergleichende Untersuchungen zur Primärproduktion des Phytoplanktons im Neusiedlersee. O2, 14C und Experimente mit künstlicher Zirkulation. Biol. Forsch. Inst. Burgenland 29: 60–73.

    Google Scholar 

  • Doty, M. S. & M. Oguri, 1958. Selected features of the isotopic carbon primary productivity technique. Rapp. Cons. Explor. Mer 144: 47–55.

    Google Scholar 

  • Driescher, E., & H. Behrendt, G. Schellenberger & R. Stellmacher, 1993. Lake Müggelsee and its environment–natural conditions and anthropogenic impacts. Int. Revue ges. Hydrobiol. 78: 327–343.

    Google Scholar 

  • Falkowski, P. G. & C. D. Wirick, 1981. A simulation model of the effects of vertical mixing on primary productivity. Mar. Biol. 65: 69–75.

    Google Scholar 

  • Farmer, D. M. & M. Takahashi, 1982. Effects of vertical mixing on photosynthetic responses. Jap. J. Limnol. 43: 173–181.

    Google Scholar 

  • Franks, P. J. S. & J. Marra, 1994. A simple new formulation for phytoplankton photoresponse and an application in a wind-driven mixed-layer model. Mar. Ecol. Progr. Ser. 111: 143–153.

    Google Scholar 

  • Gächter, R., A. Mares & M. M. Tilzer, 1984. Determination of phytoplankton production by the radiocarbon method: a comparison between the acidification and bubbling method (ABM) and the filtration technique. J. Plankton Res. 6: 359–364.

    Google Scholar 

  • Gallegos, C. L. & T. Platt, 1982. Phytoplankton production and water motion in surface mixed layers. Deep Sea Res. 29: 65–76.

    Google Scholar 

  • Gelbrecht, J., G. Henrion & R. Henrion, 1987. Zur Bestimmung des gesamten anorganischen Kohlenstoffes in natürlichen Gewässern durch Titration mit Salzsäure. Acta hydrochim. hydrobiol. 15: 19–28.

    Google Scholar 

  • Grobbelaar, J. U., 1989. Do light/dark cycles of medium frequency enhance phytoplankton productivity? J. appl. Phycol. 1: 333–340.

    Google Scholar 

  • Grobbelaar, J. U., 1994. Turbulence in mass algal cultures and the role of light dark fluctuations. J. appl. Phycol. 6: 331–335.

    Google Scholar 

  • Guillard, R. R. L. & C. J. Lorenzen, 1972. Yellow-green algae with chlorophyllide c. J. Phycol. 8: 10–14.

    Google Scholar 

  • Harris, G. P., 1980. The measurement of photosynthesis in natural populations of phytoplankton. In Morris, I. (ed.), The physiological ecology of phytoplankton, Blackwell Scientific Publications, Oxford: 129–187.

    Google Scholar 

  • Henley, W. J., 1993. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29: 729–739.

    Google Scholar 

  • Jewson, D. H. & R. B. Wood, 1975. Some effects on integral photosynthesis of artificial circulation of phytoplankton through light gradients. Verh. int. Ver. Limnol. 19: 1037–1044.

    Google Scholar 

  • Joiris, C. & A. Bertels, 1985. Incubation under fluctuating light conditions provides values much closer to real in situprimary production. Bull. mar. Sci, 37: 620–625.

    Google Scholar 

  • Kromkamp, J., F. Schanz, M. Rijkeboer, E. Berdalet, B. Kim & H. J. Gons, 1992. Influence of the mixing regime on algal photosynthetic performance in laboratory scale enclosures. Hydrobiologia 238: 111–118.

    Google Scholar 

  • Lampert, W. & C. J. Loose, 1992. Plankton Towers: Bridging the gap between laboratory and field experiments. Arch. Hydrobiol. 126: 53–66.

    Google Scholar 

  • Lohrenz, S. E., 1993. Estimation of primary production by the simulated in situmethod. ICES mar. Sci. Symp. 197: 159–171.

    Google Scholar 

  • MacIntyre, S., 1993. Vertical mixing in a shallow, eutrophic lake: Possible consequences for the light climate of phytoplankton. Limnol. Oceanogr. 38: 798–817.

    Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1989. Water Analysis. Freshwater Biological Association, Ambleside, 120 pp.

    Google Scholar 

  • Madden, C. J. & J. W. Day, Jr., 1992. Induced turbulence in rotating bottles affects phytoplankton productivity measurements in turbid waters. J. Plankton Res. 14: 1171–1191.

    Google Scholar 

  • Maestrini, S. Y., A. Sournia & A. Herbland, 1993. Measuring phytoplankton production in 1992 and the coming years: a dilemma? ICES mar. Sci. Symp. 197: 244–259.

    Google Scholar 

  • Mallin, M. A. & H. W. Paerl, 1992. Effects of variable irradiance on phytoplankton productivity in shallow estuaries. Limnol. Oceanogr. 37: 54–62.

    Google Scholar 

  • Marra, J., 1978a. Phytoplankton photosynthetic response to vertical movement in a mixed layer. Mar. Biol. 46: 203–208.

    Google Scholar 

  • Marra, J., 1978b. Effect of short-term variations in light intensity on photosynthesis of a marine phytoplankter: A laboratory simulation study. Mar. Biol. 46: 191–202.

    Google Scholar 

  • Nixdorf, B. & H. Behrendt, 1991. Discrepancies between O2-and 14C-method resulting from measurements of primary production under consideration of vertical mixing in a shallow eutrophic lake. Verh. int. Ver. Limnol. 24: 1268–1271.

    Google Scholar 

  • Nixdorf, B., H. Behrendt & R. Stellmacher, 1990. Comparison of methods for estimation of integral primary production in shallow aquatic ecosystems with special regard to turbulent mixing. Limnologica 20: 53–56.

    Google Scholar 

  • Nixdorf, B., W. G. Pagenkopf & H. Behrendt, 1992. Diurnal patterns of mixing depth and its influence on primary production in a shallow lake. Int. Revue ges. Hydrobiol. 77: 349–360.

    Google Scholar 

  • Nusch, E. A., 1981. Continuous chlorophyll fluorometry and integral measurement of photosynthetic oxygen production in a eutrophic impoundment. Vom Wasser 57: 297–307.

    Google Scholar 

  • Olofsson, J. A., 1980. The role of microlayers in controlling phytoplankton primary productivity. In: Barica, J. & L. R. Mur (eds), Hypertrophic Ecosystems. Developments in Hydrobiology 2. Dr W. Junk Publishers, The Hague: 83–93.

    Google Scholar 

  • Pahl-Wostl, C., 1992. Dynamic versus static models for photosynthesis. Hydrobiologia 238: 189–196.

    Google Scholar 

  • Platt, T. & S. Sathyendranath, 1993. Fundamental issues inmeasurement of primary production. ICES mar. Sci. Symp. 197: 3–8.

    Google Scholar 

  • Richardson, L. L. & K. D. Stolzenbach, 1995. Phytoplankton cell size and the development of microenvironments. FEMS Microb. Ecol. 16: 185–191.

    Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweiz. Z. Hydrol. 43: 34–62.

    Google Scholar 

  • Savidge, G., 1981. Studies of the effects of small-scale turbulence on phytoplankton. J. mar. biol. Ass. U.K. 61: 477–488.

    Google Scholar 

  • Savidge, G., 1986. Growth and photosynthetic rates of Phaeodactylum tricornutumBOHLIN in a cyclical light field. J. exp. mar. Biol. Ecol. 100: 147–164.

    Google Scholar 

  • Talling, J. F., 1960. Comparative and field studies of photosynthesis by a marine planktonic diatom. Limnol. Oceanogr. 5: 62–77.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Venrick, E. L., J. R. Beers & J. F. Heinbokel, 1977. Possible consequences of containing microplankton for physiological rate measurements. J. exp. mar. Biol. Ecol. 26: 55–76.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses. Springer-Verlag, New York, 391 pp.

    Google Scholar 

  • Yoder, J. A. & S. Bishop, 1985. Effects of mixing-induced irradiance fluctuations on photosynthesis of natural assemblages of coastal phytoplankton. Mar. Biol. 90: 87–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gervais, F., Opitz, D. & Behrendt, H. Influence of small-scale turbulence and large-scale mixing on phytoplankton primary production. Hydrobiologia 342, 95–105 (1997). https://doi.org/10.1023/A:1017009106222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017009106222

Navigation