Skip to main content
Log in

Secondary production of the brackish copepod communities and their contribution to the carbon fluxes in the Westerschelde estuary (The Netherlands)

  • Zooplankton
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The zooplankton community of the brackish part of the Westerschelde estuary (November 1989–October 1990) was dominated by two calanoid copepods, Eurytemora affinis and Acartia tonsa. Eurytemora was present during a longer period of the year and was much more important in terms of total abundances and biomasses than Acartia.

The secondary production of these species was estimated by means of the growth rate method, using weight-specific growth rates obtained from laboratory cultures (Eurytemora) or from the literature (Acartia).

Due to the substantially higher growth rates of Acartia compared to Eurytemora, total yearly productions of both communities were comparable, notwithstanding the large discrepancies in biomass. They amounted to about 5 and 6 g C m−2 y−1 by Acartia and Eurytemora respectively.

The food needed to realise this production was estimated to be about 14 and 17 g C m−2 y−1 by Acartia and Eurytemora respectively. Provided that the copepods are able to selectively ingest the phytoplankton, in situ net production provides sufficient carbon for zooplankton demands for a short period of the year only. As phytoplankton standing stock is very low and net phytoplankton productivity is negative from late fall to early spring, nutritional demands of the copepods have to be fulfilled by other than algal food at least during this period of the year.

Although the copepods in the brackish part can have an important impact on some food items, their contribution to total carbon fluxes in the brackish zone is negligible: each year some 6% of all consumed carbon in the brackish part of the estuary passes through the copepod food web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakker, C. & N. De Pauw, 1975. Comparison of plankton assemblages of identical salinity ranges in estuarine tidal and stagnant environments. II. Zooplankton. Neth. Journ. Sea Res, 9 (2): 145–165.

    Google Scholar 

  • Bakker, C., W. J. Phaff, M.v Ewijk-Rosier & N. De Pauw, 1977. Copepod biomass in an estuarine and a stagnant brackish environment of the S.W. Netherlands. Hydrobiologia, 52 (1): 3–13.

    Google Scholar 

  • Barthel, K. G., 1983. Food uptake and growth efficiecy of Eurytemora affinis (Copepoda: Calanoida). Mar. Biol., 74: 269–274.

    Google Scholar 

  • Bergreen, U., B. Hansen & T. Kiørboe, 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar. Biol., 99: 341–352.

    Google Scholar 

  • Billen, G., C. Lancelot, E. De Becker & P. Servais, 1988. Modelling microbial processes (phyto- and bacterioplankton) in the Schelde Estuary. Hydrobiol. Bull. 22: 43–55.

    Google Scholar 

  • Bradley, B. P., 1975. The anomalous influence of salinity on temperature tolerances of summer and winter populations of the copepod Eurytemora affinis. Biol. Bull., 148: 26–34.

    Google Scholar 

  • Burkill, P. H. and T. F. Kendall, 1982. Production of the copepod Eurytemora affinis in the Bristol Channel. Mar. Ecol. Prog. Ser., 7: 21–31.

    Google Scholar 

  • Castel, J., 1991. Comparative field study of the ecological structure of major european tidal estuaries: the Gironde estuary. Major Biological Processes in European Tidal Estuary. JEEP 92, Plymouth Jan. 29–Feb. 1 1992: 55–67.

  • Castel, J. & J. Veiga, 1990. Distribution and retention of the copepod Eurytemora affinis hirundoides in a turbid estuary. Mar. Biol., 107: 119–128.

    Google Scholar 

  • Durbin, E. G., A. G. Durbin, T. J. Smayda & P. G. Verity, 1983. Food limitation of production by adult Acartia tonsa in Narragansett Bay, Rhode Island. Limnol. Oceanogr. 28 (6): 1199–1213.

    Google Scholar 

  • Duursma, E. K., A. G. A. Mercks & J. Nieuwenhuize, 1988. Exchange processes in estuaries such as the Westerschelde, an overview. Hydrobiol. Bull. 22 (1): 7–20.

    Google Scholar 

  • Escaravage, V. & K. Soetaert, 1993. Estimating secondary production for the brackish Werterschelde copepod population Eurytemora affinis (Poppe) combining experimental data and field observations. Cah. Biol. Mar., 34: 201–214.

    Google Scholar 

  • Gaedke, U., 1990. Population dynamics of the calanoid copepods Eurytemora affinis and Acartia tonsa in the Ems-Dollart-Estuary: a numerical simulation. Arch. Hydrobiol., 118 (2): 185–226.

    Google Scholar 

  • Goosen, N., P. van Rijswijk, J. Peene & J. Kromkamp, 1992. Annual patterns of bacterial production in the Scheldt estuary (SW-Netherlands). Major Biological Processes in European Tidal Estuary. JEEP 92 report, Plymouth Jan. 29–Feb. 1 1992: 109–113.

  • Heinle, D. R., 1969. Temperature and zooplankton. Chesapeake Sci., 10: 186–209.

    Google Scholar 

  • Heinle, D. R. & D. A. Flemer, 1975. Carbon requirements of a population of the estuarine copepod Eurytemora affinis. Mar. Biol. 31: 235–247.

    Google Scholar 

  • Heip, C., M. Vincx & G. Vranken, 1985. The ecology of marine nematodes. Oceanogr. Mar. Biol. Ann. Rev., 23: 399–489.

    Google Scholar 

  • Heip, C., 1988. Biota and abiotic environment in the Westerschelde estuary. Hydrobiol. Bull. 22: 31–34.

    Google Scholar 

  • Hirche, H. J., 1992. Egg production of Eurytemora affinis — effect of k-strategy. Est. coast. Shelf Sci. 35: 395–407.

    Google Scholar 

  • Hummel, H., G. Moerland & C. Bakker, 1988. The concomitant existence of a typical coastal and a detritus food chain in the Westerschelde estuary. Hydrobiol. Bull. 22: 35–41.

    Google Scholar 

  • Huntley, M. E. & M. D. G. Lopez, 1992. Temeperature dependent production of marine copepods: a global synthesis. Am. Nat., 140 (2): 201–242.

    Google Scholar 

  • Kiørboe, T., F. Mohlenberg & F. Hamburger, 1985. Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action. Mar. Ecol Prog. Ser. 26: 85–97.

    Google Scholar 

  • Kimmerer, W. J., 1987. The theory of secondary production calculations for continuously reproducing populations. Limnol. Oceanogr., 32 (1): 1–13.

    Google Scholar 

  • Klein Breteler, W. C. M., H. G. Fransz & S. R. Gonzalez, 1982. Growth and development of four calanoid copepod species under experimental and natural conditions. Neth. J. Sea. Res., 16: 195–207.

    Google Scholar 

  • Klein Breteler, W. C. M. & S. R. Gonzalez, 1988. Influence of temperature and food concentration on body size, weight and lipid content of two calanoid copepod species. Hydrobiologia, 167/168 (Dev. Hydrobiol. 47): 201–210.

    Google Scholar 

  • Kleppel, G. S., 1992. Environmental regulation of feeding and egg production by Acartia tonsa of Southern California. Mar. Biol., 112: 57–65.

    Google Scholar 

  • Kleppel, G. S., 1993. On the diets of calanoid copepods. Mar. Ecol. Prog. Ser. 99: 183–195.

    Google Scholar 

  • Kromkamp, J., J. Peene, P. van Rijswijk, A. Sandee & N. Goosen 1995. Nutrients, light and primary production by phytoplankton and microphytobenthos in the eutrophic, turbid Westerschelde estuary (The Netherlands). Hydrobiologia 311 (Dev. Hydrobiol. 110): 9–19.

    Google Scholar 

  • Landry, M. R., 1978. Population dynamics and production of a planktonic marine copepod, Acartia clausi in a small temperate lagoon on San Juan Island, Washington. Int. Rev. ges. Hydrobiol., 63 (1): 77–119.

    Google Scholar 

  • Lenz, J., 1974. On the amount and size distribution of suspended matter in Kiel Bight. Ber. dt. wiss. Kommn. Meeresforsch., 23: 209–225.

    Google Scholar 

  • Mauchline, J., 1970. The biology of Schistomysis ornata (Crustacea: Misidacea). J. mar. biol. Ass. U.K. 50: 169–175.

    Google Scholar 

  • Miller, C. B, D. R. Heinle & J. K. Johnson, 1977. Growth rules in the marine copepod genus Acartia. Limnol. Oceanogr. 22 (5): 326–335.

    Google Scholar 

  • Parrish, K. K. & D. F. Wilson, 1978. Fecundity studies on Acartia tonsa (Copepoda: Calanoida) in standardized culture. Mar. Biol. 46: 65–81.

    Google Scholar 

  • Poli, J. M. & J. Castel, 1983. Cycle biologique en laboratoire d'un copepode planctonique de l'estuare de la Gironde: Eurytemora hirundoides (Nordquist, 1888). Vie Milieu 33 (2): 79–86.

    Google Scholar 

  • Polishchuk, L. V., 1990. A comment on the ‘theory of secondary production calculations for continuously reproducing populations’ (Kimmerer). Limnol. Oceanogr. 32 (6): 1645–1651.

    Google Scholar 

  • Poulet, S. A., 1983. Factors controlling utilization of non-algal diets by particle-grazing copepods. A review. Oceanol. Acta, 6 (3): 221–234.

    Google Scholar 

  • Parslow, J. & N. C. Sonntag, 1979. Technique of systems identification applied to estimating copepod population parameters. J. Plankt. Res. 1 (2): 137–151.

    Google Scholar 

  • Raymont, J. E. G. & R. S. Miller, 1962. Production of zooplankton with fertilization in an enclosed body of sea water. Int. Rev. Gesam. Hydrobiol., 47: 169–209.

    Google Scholar 

  • Rigler, H. & J. A. Downing, 1984. The calculation of secondary productivity. In: Downing J. A. & F. H. Rigler (eds), A manual on methods for the assessment of secondary productivity in fresh waters: 19–58.

  • Roman, M. R., 1984. Utilization of detritus by the copepod Acartia tonsa. Limnol. Oceanogr., 29 (25): 949–959.

    Google Scholar 

  • Sekigushi, H., I. A. McLaren & C. J. Corkett, 1980. Relationship between growth rate and egg production in the copepod Acartia clausi hudsonica. Mar. Biol. 58: 133–138.

    Google Scholar 

  • Soetaert, K. & P. van Rijswijk, 1993. Spatial and temporal patterns in Westerschelde zooplankton. Mar. Ecol. Prog. Ser., 97: 47–59.

    Google Scholar 

  • Soetaert, K. & P. M. J. Herman, 1994. One foot in the grave: zooplankton drift into the Westerschelde estuary (The Netherlands). Mar. Ecol. Prog. Ser. 105: 19–29.

    Google Scholar 

  • Soetaert, K. & P. M. J. Herman, 1995a. Estimating estuarine residence times in the Westerschelde (The Netherlands) using a box model with fixed dispersion coefficients. Hydrobiologia 311 (Dev. Hydrobiol. 110): 215–224.

    Google Scholar 

  • Soetaert, K. & P. M. J. Herman, 1995b. Carbon flows in the Westerschelde estuary (The Netherlands) evaluated by means of an ecosystem model (MOSES). Hydrobiologia 311 (Dev. Hydrobiol. 110): 247–266.

    Google Scholar 

  • Soetaert, K. & P. M. J. Herman, 1995c. Nitrogen dynamics in the Westerschelde estuary (SW Netherlands) estimated by means of the ecosystem model MOSES. Hydrobiologia 311 (Dev. Hydrobiol. 110): 225–246.

    Google Scholar 

  • Soetaert, K., P. M. J. Herman & J. Kromkamp, 1994. Living in the twilight: estimating net phytoplankton growth in the Westerschelde estuary (The Netherlands) by means of an ecosystem model (MOSES). J. plankt. Res. 16: 1277–1301.

    Google Scholar 

  • Stottrup, J. G. & J. Jensen, 1990. Influence of algal diet on feeding and egg production of the calanoid copepod Acartia tonsa Dana. J. Exp. Mar. Biol. Ecol. 141: 87–105.

    Google Scholar 

  • Tranter, D. J., 1976. Herbivore production. In: D. H. Cushings and J. J. Walsh (eds), The ecology of the seas. Chapter 9: 186–224.

  • Uye, S., 1981. Fecundity studies of neritic copepods Acartia clausi Giesbrecht and A. steueri Smimov: a simple empirical model of daily production. J. exp. mar. Biol. Ecol. 50: 255–271.

    Google Scholar 

  • Vuorinen, I., 1982. The effect of temperature on the rate of development of Eurytemora hirundoides (Nordquist) in laboratory culture. Ann. Zool. Fenn. 19: 129–134.

    Google Scholar 

  • Wollast, R., 1976. Transport et accumulation de polluants dans l'estuaire de l'Escaut. In J. C. Nihoul & R. Wollast (eds). l'Estuaire de l'Escaut. Projet Mer Rapport final. Bruxelles. Service du Premier Ministre 10: 191–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escaravage, V., Soetaert, K. Secondary production of the brackish copepod communities and their contribution to the carbon fluxes in the Westerschelde estuary (The Netherlands). Hydrobiologia 311, 103–114 (1995). https://doi.org/10.1007/BF00008574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008574

Key words

Navigation