Skip to main content
Log in

Turbulent mixing of reactive gases in the convective boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We study the interactions of chemistry and turbulent mixing of tracersin the convective boundary layer with a second-order closure model,including higher order chemistry terms. In order to limit the number of predictive equations we prescribe the profiles for ¯w¯Θ, ¯w¯θ ¯θ and the lengthscale l.

However, for model validation we treat temperature and humidity asinert tracers, and compare the results with profiles observed during theAir Mass Transformation Experiment, and with similarity expressions for thesurface layer. We find good agreement of the mean profiles, but the (co-)variances are slightly underpredicted. Furthermore, the model usesdiagnostic equations expressing third moments of concentration in terms ofsecond moments and their vertical derivatives. They are compared withlarge-eddy model results, showing good agreement and, therefore, thesimplifications are justified.

The model is applied to the transport of two gases subject to one bimolecular reaction. The importance of concentration correlations on themean transformation rate is studied. For two gases diffusing in oppositedirections we find for moderate and fast chemistry a 50% and90% decreased transformation rate due to the negatively correlatedconcentrations. These values are similar to large-eddy results of Schumannand Sykes et al. For two bottom-up tracers we find that the covariance ofboth reactive species is either positive or negative, increasing or reducingthe effective transformation rate depending on the Damköhler number (the ratio of the turbulent and the chemistry timescale). A significantdirect influence of chemistry on the flux divergence is found in bothcases. According to the model the effective transport to mid-levels of theboundary layer is increased when two reactive tracers diffuse in oppositedirections, and decreased in the case of two bottom-up tracers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, J. C., Moor, G D., Lacarrère, P., and Vachat, R. D.: 1976a, 'Turbulent Approximation for Inhomogeneous Flows: Part 1. The Clipping Approximation', J. Atmos. Sci. 33, 476–481.

  • André, J. C., Moor, G.D., Lacarrère, P., and Vachat, R.D.: 1976b, 'Turbulent Approximation for Inhomogeneous Flows: Part 2. The Numerical Simulation of a Penetrative Convection Experiment', J. Atmos. Sci. 33, 482–491.

    Google Scholar 

  • André, J. C., Moor, G. D., Lacarrère, P., Therry, G., and Vachat, R. D.: 1978, 'Modelling the 24-hour Evolution of the Mean and Turbulent Structures of the Planetary Boundary Layer', J. Atmos. Sci. 35, 1,861–1,883.

    Google Scholar 

  • André, J. C., Lacarrère, P., and Traoré, K.: 1982, Pressure Effects on Triple Correlations in Turbulent Convective Flows, Vol. 3 of Turbulent Shear Flows, Springer-Verlag, Berlin, pp. 243–252.

    Google Scholar 

  • Bougeault, P.: 1985, 'The Diurnal Cycle of the Marine Stratocumulus Layer: A Higher-Order Model Study', J. Atmos. Sci., 42, 2,826–2,843.

    Google Scholar 

  • Bougeault, P. and André, J. C.: 1986, 'On the Stability of the Third-Order Turbulence Closure for the Modelling of the Stratocumulus-Topped Boundary Layer', J. Atmos. Sci. 43, 1,574–1,581.

    Google Scholar 

  • Canuto, V. M., Minotti, F., Ronchi, C., and Ypma, R. M.: 1994, 'Third-Order Modelling of the Diffusion of a Passive Tracer in the Convective Boundary Layer', J. Atmos. Sci. 51, 1,605–1,618.

    Google Scholar 

  • Fitzjarrald, D. R. and Lenschow, D. H.: 1983, 'The Counter-Gradient Heat Flux in the Lower Atmosphere and in the Laboratory', Atmos. Environ. 17, 2,505–2,512.

    Google Scholar 

  • Gao, W. and Wesely, M.: 1994, 'Numerical Modelling of the Turbulent Fluxes of Chemically Reactive Trace Gasses in the Atmopheric Boundary Layer', J. Appl. Meteorol. 33, 835–847.

    Google Scholar 

  • Garratt, J. R.: 1994, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.

    Google Scholar 

  • Hamba, F.: 1993, 'A Modified K Model for Chemically Reactive Species in the Planetary Boundary Layer', J. Geophys. Res. 98, 5,173–5,182.

    Google Scholar 

  • Holtslag, A. A. M. and Moeng, C. H.: 1991, 'Eddy Diffusivity and Countergradient Transport in the Convective Atmospheric Boundary Layer', J. Atmos. Sci. 48, 1,690–1,698.

    Google Scholar 

  • Hunt, J. C. R., Kaimal, J. C., and Gaynor, J. E.: 1988, 'Eddy Structure in the Convective Boundary Layer-New Measurements and New Concepts', Quart. J. Roy. Meteorol. Soc. 114, 827–858.

    Google Scholar 

  • Isaka, H. and Guillemet, B.: 1983, 'Molecular Dissipation of Turbulent Fluctuations in the Convective Mixed Layer. Part 2: Height Variations of Characteristic Time Scales and Experimental Test of Molecular Dissipation Models', Boundary-Layer Meteorol. 27, 257–279.

    Google Scholar 

  • Lenschow, J. C. W. D. H. and Pennell, W. T.: 1980, 'Mean-Field and Second-Moment Budgets in a Baroclinic, Convective Boundary Layer', J. Atmos. Sci. 37, 1,313–1,326.

    Google Scholar 

  • Mellor, G. L. and Yamada, T.: 1974, 'A Hierarchy of Turbulent Closure Models for Planetary Boundary Layers', J. Atmos. Sci. 31, 1,791–1,806.

    Google Scholar 

  • Moeng, C. H. and Wyngaard, J. C.: 1986, 'An Analyses of Closures for Pressure-Scalar Covariances in the Convective Boundary Layer', J. Atmos. Sci. 43, 2,499–2,513.

    Google Scholar 

  • Moeng, C. H. and Wyngaard, J. C.: 1989, 'Evaluation of Turbulent Transport and Dissipation Closures in Second-Order Modelling', J. Atmos. Sci. 46, 2,311–2,330.

    Google Scholar 

  • Nieuwstadt, F. and Brost, R.: 1986, 'Decay of Convective Turbulence', J. Atmos. Sci. 43, 532–546.

    Google Scholar 

  • Rao, K., Wyngaard, J., and Coté, O.: 1974, 'The Structure of the Two-Dimensional Internal Boundary Layer over a Sudden Change of Surface Roughness', J. Atmos. Sci. 31, 738–746.

    Google Scholar 

  • Schumann, U.: 1989, 'Large-Eddy Simulation of Turbulent Diffusion with Chemical Reactions in the Convective Boundary Layer', Atmos. Environ. 23, 1,713–1,727.

    Google Scholar 

  • Sorbjan, Z.: 1989, Structure of The Atmospheric Boundary Layer, Prentice-Hall, New Jersey, 317 pp.

    Google Scholar 

  • Sykes, R., Parker, S., Henn, D., and Lewellen, W.: 1994, 'Turbulent Mixing with Chemical Reaction in the Planetary Boundary Layer', J. Appl. Meteorol. 33, 825–834.

    Google Scholar 

  • Therry, G. and Lacarrère, P.: 1983, 'Improving the Eddy Kinetic Energy Model for Planetary Boundary-Layer Description', Boundary-Layer Meteorol. 25, 63–88.

    Google Scholar 

  • Van Ulden, A. P. and Holtslag, A. A. M.: 1985, 'Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications}', J. Clim. Appl. Meteorol.} 24}, 1,196–1

    Google Scholar 

  • Vilá-Guerau de Arellano, J. and Duynkerke, P.G.: 1992, 'Influence of Chemistry on the Flux-Gradient Relationships for the NO-O3-NO2 System', Boundary-Layer Meteorol. 61, 375–387.

    Google Scholar 

  • Weil, J. C.: 1993, 'A Diagnosis of the Asymmetry in Top-Down and Bottom-Up Diffusion Using a Lagrangian Stochastic Model', J. Atmos. Sci. 47, 501–515.

    Google Scholar 

  • Wyngaard, J. C., Pennell, W. T., Lenschow, D. H., and LeMone, M. A.: 1978, 'The Temperature Humidity Covariance Budget in the Covective Boundary Layer', J. Atmos. Sci. 35, 47–58.

    Google Scholar 

  • Zeman, O. and Lumley, J.: 1976, 'Modelling Buoyancy Driven Mixed Layers', J. Atmos. Sci. 33, 1974–1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verver, G.H.L., Van Dop, H. & Holtslag, A.A.M. Turbulent mixing of reactive gases in the convective boundary layer. Boundary-Layer Meteorology 85, 197–222 (1997). https://doi.org/10.1023/A:1000414710372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000414710372

Navigation